[1]Zhu, C., Zheng, C., Lei, S., Han, G. (2012). A survey on coverage and con-nectivity issues in wireless sensor networks. Journal of Network and ComputerApplications, 35(2), 619-632.;
[2]Renold, A. P., Chandrakala, S. (2016). Survey on state scheduling-based topol-ogy control in unattended wireless sensor networks. Computers and ElectricalEngineering, 56, 334-349.;
[3]Bo, Z., Tong, E., Jie, H., Niu, W., Gang, L. (2016). Energy efficient sleep schedulewith service coverage guarantee in wireless sensor networks. Journal of Network and Systems Management, 24(4), 834-858.;
[4]Singh, B., Lobiyal, D. K. (2013). Traffic-aware density-based sleep schedulingand energy modeling for two dimensional gaussian distributed wireless sensornetwork. Wireless Personal Communications, 70(4), 1373-1396.;
[5]Xu, Y., Peng, Y., zheng, Ch., Liao,Y. (2020). Node neergy balanced coveragestrategy in WSNs based on improved PSO algorithm. Transducer and MicrosystemTechnologies, 39(02), 29-32.;
[6]Wang, A., Liu, Y., Zhang, J., Liu, Y. (2016). Coverage algorithm for finding theminimum working sets in WSNs. Journal of Xidian University, 43(04), 141-146.;
[7]Liu, X., Zhang, X., Hu, T., Zhu, Q. (2018). Deployment optimization of wire-less sensor network based on parallelized cuckoo search algorithm. ApplicationResearch of Computers, 35(7), 2063-2065.;
[8]Yu, W., Li, X., Yang, H., Huang, B. (2017). Extrapolation artificial bee colonyalgorithm research on deployment optimization in wireless sensor network. In-strument Technique and Sensor, 6,158-160.;
[9]Zhou, L., Yang, K., Zhou, P. (2010). Optimal coverage configuration based onartificial fish swarm algorithm in WSNs. Application Research of Computers, 6,2276-2279.;
[10]Qin, N., Chen, J., Ding, Z. (2015). Balanced rate area coverage algorithm. ChineseJournal of Sensors and Actuators, 28(4),578-584.;
[11]Elbes, M., Alzubi, S., Kanan, T., Al-Fuqaha, A., Hawashin, B. (2019). A sur-vey on particle swarm optimization with emphasis on engineering and networkapplications. Evolutionary Intelligence, 12(2), 113-129.;
[12]Ahmed, K., Al-Khateeb, B., Mahmood, M. (2019). Application of chaos discreteparticle swarm optimization algorithm on pavement maintenance schedulingproblem. Cluster Computing, 22 (2), 4647-4657.;
[13]Liu, J., Yang, R. Sun, S. (2011).The analysis of binary particle swarm optimization.Journal of Nanjing University (Natural Science),47(5), 504-514.;
[14]Wang, Y., Qiu, F., Guo, H. (2019). Adaptive inertia weight binary particle swarmoptimization algorithm with mutation operator. Journal of Chinese ComputerSystems, 40(04), 733-737.;
[15]Wu, X., Zhang, C., Zhang, R., Sun, Y. (2019). Clustering routing protocol based onimproved PSO algorithm in WSN. Journal on Communications, 40(12), 114-123.;
[16]Li, Y., Pan, B. (2018). Research of WSN regional coverage based on adaptivemutation binary particle swarm optimization. Journal of Sichuan University ofScience & Engineering (Natural Science Edition), 31(01), 20-24.;
[17]Chen, X., Cheng, L., Liu, C., Liu, Q., Liu, J., Mao, Y., Murphy, J. (2020). AWOA-based optimization approach for task scheduling in cloud computing sys-tems. IEEE Systems journal, 14(3), 3117-3128.;
[18]Liu, Q., Cheng, L., Alves, R., Ozcelebi, T., Kuipers, F., Xu, G., ... Chen, S. (2021).Cluster-based flow control in hybrid software-defined wireless sensor networks.Computer Networks, 187, 107788.;
[19]Liu, Q., Cheng, L., Alves, R., Ozcelebi, T., Kuipers, F., Xu, G., ... Chen, S.(2021). Cluster-based flow control in hybrid software-defined wireless sensornetworks. Computer Networks, 187, 107788.;
[20]Cheng, L., Wang, Y., Pei, Y., Epema, D. (2017, August). A coflow-based co-optimization framework for high-performance data analytics. In 2017 46th Inter-national Conference on Parallel Processing (ICPP) (pp. 392-401).;