Abstract
With the increasing incidents of fatal road injuries, there is an urgent need for developing effective road safety management systems. The study aims to develop predictive models based on machine learning to forecast the likelihood of road collisions depending on factors like weather, road condition, time, and driver behaviour in Chicago, USA. A machine learning approach has been applied to the crash dataset to evaluate the factors affecting the prevalence of road accidents. Python programming and the Jupyter Notebook platform have been used for performing descriptive statistics, correlation and three classification algorithms (Random Forest, KNN, Decision Tree and MLP Classification). Obtained accuracy of the KNN classifier is slightly higher than the other two classification models. The research explored insights into collision patterns related to roads, locations, and intersections. The study helps to increase road safety through targeted interventions with resource prioritisation, reducing the frequency and severity of traffic incidents by leveraging historical accident data with diverse spatial analysis techniques.
Funding
This work was supported without any funding.
Cite This Article
APA Style
Shaik, R., Raj, K., Singh, A., & Kumar, T. (2025). Predictive Analysis for Road Safety Enhancement in Chicago County. IECE Transactions on Computer Science, 2(1), 1–9. https://doi.org/10.62762/TCS.2024.766854
Publisher's Note
IECE stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Institute of Emerging and Computer Engineers (IECE) or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.