Abstract
This paper proposes an improved object detection algorithm based on a dynamically deformable convolutional network (D-DCN), aiming to solve the multi-scale and variability challenges in object detection tasks. First, we review traditional methods in the field of object detection and introduce the current research status of improved methods based on multi-scale and variability convolutional neural networks. Then, we introduce in detail our proposed improved algorithms, including an improved feature pyramid network and a dynamically deformable network. In the improved feature pyramid network, we introduce a multi-scale feature fusion mechanism to better capture target information at different scales. In dynamically deformable networks, we propose dynamic offset calculations and dynamic convolution operations to achieve dynamic adaptation to the target shape and pose. We also validate our method by conducting experiments on the datasets KITTI and Caltech. Finally, we design a comprehensive loss function that considers both location localization error and category classification error to guide model training. Experimental results show that our improved algorithm achieves significant performance improvements in target detection tasks, with higher accuracy and robustness compared with traditional methods. Our work provides an effective method to solve the multi-scale and variability challenges in target detection tasks and has high practical value and prospects for general application.
Funding
This work was supported without any funding.
Cite This Article
APA Style
Yang, J., & Gapar, Y. (2024). Improved Object Detection Algorithm Based on Multi-scale and Variability Convolutional Neural Networks. IECE Transactions on Emerging Topics in Artificial Intelligence, 1(1), 31-43. https://doi.org/10.62762/TETAI.2024.115892
Publisher's Note
IECE stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Institute of Emerging and Computer Engineers (IECE) or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.