Abstract
With the rapid development of autonomous driving technology, the demand for real-time and efficient object detection systems has been increasing to ensure vehicles can accurately perceive and respond to the surrounding environment. Traditional object detection models often suffer from issues such as large parameter sizes and high computational resource consumption, limiting their applicability on edge devices. To address this issue, we propose a lightweight object detection model called YOLOv8-Lite, based on the YOLOv8 framework, and improved through various enhancements including the adoption of the FastDet structure, TFPN pyramid structure, and CBAM attention mechanism. These improvements effectively enhance the performance and efficiency of the model. Experimental results demonstrate significant performance improvements of our model on the NEXET and KITTI datasets. Compared to traditional methods, our model exhibits higher accuracy and robustness in object detection tasks, better addressing the challenges in fields such as autonomous driving, and contributing to the advancement of intelligent transportation systems.
Keywords
autonomous driving
object detection
YOLOv8
real-time performance
intelligent transportation
Funding
This work was supported without any funding.
Cite This Article
APA Style
M,Yang & X,Fan. (2024). YOLOv8-Lite: A Lightweight Object Detection Model for Real-time Autonomous Driving Systems.IECE Transactions on Emerging Topics in Artificial Intelligence
,1(1),1-16. https://doi.org/10.62762/TETAI.2024.894227
Publisher's Note
IECE stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Institute of Emerging and Computer Engineers (IECE) or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.