Abstract
The identification of immature apples is a key technical link to realize automatic real-time monitoring of orchards, expert decision-making, and realization of orchard output prediction. In the orchard scene, the reflection caused by light and the color of immature apples are highly similar to the leaves, especially the obscuration and overlap of fruits by leaves and branches, which brings great challenges to the detection of immature apples. This paper proposes an improved YOLOv3 detection method for immature apples in the orchard scene. Use CSPDarknet53 as the backbone network of the model, introduce the CIOU target frame regression mechanism, and combine with the Mosaic algorithm to improve the detection accuracy. For the data set with severely occluded fruits, the F1 and mAP of the immature apple recognition model proposed in this article are 0.652 and 0.675, respectively. The inference speed for a single 416×416 picture is 12 ms, the detection speed can reach 83 frames/s on 1080ti, and the inference speed is 8.6 ms. Therefore, for the severely occluded immature apple data set, the method proposed in this article has a significant detection effect, and provides a feasible solution for the automation and mechanization of the apple industry.
Keywords
Orchard scene
Immature apple
Improved YOLOv3
Mosaic algorithm
CIOU target frame regression mechanism
Funding
This research was funded by the Special Projectof Education Department of Shaanxi ProvincialGovernment of china, grant number 16JK1048.
Publisher's Note
IECE stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Institute of Emerging and Computer Engineers (IECE) or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.