-
CiteScore
1.44
Impact Factor
IECE Transactions on Intelligent Systematics, 2024, Volume 1, Issue 2: 58-68

Free to Read | Review Article | 23 September 2024
1 Cognitive Neuroimaging Centre, Nanyang Technological University, Singapore 636921, Singapore
2 Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
3 Department of Obstetrics and Gynecology, Jiangxi Fifth People's Hospital, Nanchang 330046, China
* Corresponding Author: Qian Hong, [email protected]
Received: 20 August 2024, Accepted: 14 September 2024, Published: 23 September 2024  
Abstract
The integration of graph neural networks (GNNs) with brain functional network analysis is an emerging field that combines neuroscience and machine learning to enhance our understanding of complex brain dynamics. We first briefly introduce the fundamentals of brain functional networks, followed by an overview of Graph Neural Network principles and architectures. The review then focuses on the applications of these networks and address current challenges in the field, such as the need for interpretable models and effective integration of multi-modal neuroimaging data. We also highlight the potential of GNNs in clinical perimenopausal areas such as perimenopausal depression research, demonstrating the broad applicability of this approach. The review concludes by outlining future research directions, including the development of more sophisticated architectures for large-scale, heterogeneous brain graphs, and the exploration of causal inference in brain networks. By synthesizing recent advances and identifying key research directions, this review aims to summarize the focal points of brain functional network analysis and GNNs, explore the potential of their integration, and provide a reference for advancing this interdisciplinary field.

Graphical Abstract
Modeling Brain Functional Networks Using Graph Neural Networks: A Review and Clinical Application

Keywords
graph neural networks
brain functional networks
neuroimaging analysis

Funding
This work was supported by funding from the Cognitive Neuroimaging Centre, NTU Shared Research Facility under Grant D821/CoNiC.

Cite This Article
APA Style
Zhang, W. & Hong, Q. (2024). Modeling Brain Functional Networks Using Graph Neural Networks: A Review and Clinical Application. IECE Transactions on Intelligent Systematics, 1(2), 58–68. https://doi.org/10.62762/TIS.2024.680959

References
  1. Park, H. J., & Friston, K. (2013). Structural and functional brain networks: from connections to cognition. Science, 342(6158), 1238411.
    [Google Scholar]
  2. Yuan, H., Ding, L., Zhu, M., Zotev, V., Phillips, R., & Bodurka, J. (2016). Reconstructing large-scale brain resting-state networks from high-resolution EEG: spatial and temporal comparisons with fMRI. Brain connectivity, 6(2), 122-135.
    [Google Scholar]
  3. Stam, C. V., & Van Straaten, E. C. W. (2012). The organization of physiological brain networks. Clinical neurophysiology, 123(6), 1067-1087.
    [Google Scholar]
  4. Bullmore, E. T., & Bassett, D. S. (2011). Brain graphs: graphical models of the human brain connectome. Annual review of clinical psychology, 7(1), 113-140.
    [Google Scholar]
  5. Zhang, W., Feng, J., Liu, W., Zhang, S., Yu, X., Liu, J., ... & Ma, L. (2024). Investigating Sea-Level Brain Predictors for Acute Mountain Sickness: A Multimodal MRI Study before and after High-Altitude Exposure. American Journal of Neuroradiology, 45(6), 809-818.
    [Google Scholar]
  6. Wei, C., Gong, S., Zou, Q., Zhang, W., Kang, X., Lu, X., ... & Shan, B. (2021). A comparative study of structural and metabolic brain networks in patients with mild cognitive impairment. Frontiers in Aging Neuroscience, 13, 774607.
    [Google Scholar]
  7. Sporns, O. (2018). Graph theory methods: applications in brain networks. Dialogues in clinical neuroscience, 20(2), 111-121.
    [Google Scholar]
  8. Hong, S., Lv, C., Zhao, T., Wang, B., Wang, J., & Zhu, J. (2016). Cascading failure analysis and restoration strategy in an interdependent network. Journal of Physics A: Mathematical and Theoretical, 49(19), 195101.
    [Google Scholar]
  9. Hong, S., Zhu, J., Braunstein, L. A., Zhao, T., & You, Q. (2017). Cascading failure and recovery of spatially interdependent networks. Journal of Statistical Mechanics: Theory and Experiment, 2017(10), 103208.
    [Google Scholar]
  10. Bessadok, A., Mahjoub, M. A., & Rekik, I. (2022). Graph neural networks in network neuroscience. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(5), 5833-5848.
    [Google Scholar]
  11. Wein, S., Malloni, W. M., Tomé, A. M., Frank, S. M., Henze, G. I., Wüst, S., ... & Lang, E. W. (2021). A graph neural network framework for causal inference in brain networks. Scientific reports, 11(1), 8061.
    [Google Scholar]
  12. Gauthier, C. J., & Fan, A. P. (2019). BOLD signal physiology: models and applications. Neuroimage, 187, 116-127.
    [Google Scholar]
  13. Kim, S. G., Richter, W., & Ugurbil, K. (1997). Limitations of temporal resolution in functional MRI. Magnetic resonance in medicine, 37(4), 631-636.
    [Google Scholar]
  14. da Silva, F. L. (2013). EEG and MEG: relevance to neuroscience. Neuron, 80(5), 1112-1128.
    [Google Scholar]
  15. Zhang, W., Jiang, M., Teo, K. A. C., Bhuvanakantham, R., Fong, L., Sim, W. K. J., ... & Guan, C. (2024). Revealing the spatiotemporal brain dynamics of covert speech compared with overt speech: A simultaneous EEG-fMRI study. NeuroImage, 293, 120629.
    [Google Scholar]
  16. Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature reviews neuroscience, 10(3), 186-198.
    [Google Scholar]
  17. Girvan, M., & Newman, M. E. (2002). Community structure in social and biological networks. Proceedings of the national academy of sciences, 99(12), 7821-7826.
    [Google Scholar]
  18. Barthelemy, M. (2004). Betweenness centrality in large complex networks. The European physical journal B, 38(2), 163-168.
    [Google Scholar]
  19. Ravasz, E., & Barabási, A. L. (2003). Hierarchical organization in complex networks. Physical review E, 67(2), 026112.
    [Google Scholar]
  20. Bassett, D. S., & Bullmore, E. T. (2017). Small-world brain networks revisited. The Neuroscientist, 23(5), 499-516.
    [Google Scholar]
  21. van den Heuvel, M. P., Stam, C. J., Boersma, M., & Pol, H. H. (2008). Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. Neuroimage, 43(3), 528-539.
    [Google Scholar]
  22. Hosseini, S. H., Hoeft, F., & Kesler, S. R. (2012). GAT: a graph-theoretical analysis toolbox for analyzing between-group differences in large-scale structural and functional brain networks. PloS one, 7(7), e40709.
    [Google Scholar]
  23. Wang, J., Wang, X., Xia, M., Liao, X., Evans, A., & He, Y. (2015). GRETNA: a graph theoretical network analysis toolbox for imaging connectomics. Frontiers in human neuroscience, 9, 386.
    [Google Scholar]
  24. Kruschwitz, J. D., List, D., Waller, L., Rubinov, M., & Walter, H. (2015). GraphVar: a user-friendly toolbox for comprehensive graph analyses of functional brain connectivity. Journal of neuroscience methods, 245, 107-115.
    [Google Scholar]
  25. Cui, H., Dai, W., Zhu, Y., Kan, X., Gu, A. A. C., Lukemire, J., ... & Yang, C. (2022). Braingb: a benchmark for brain network analysis with graph neural networks. IEEE transactions on medical imaging, 42(2), 493-506.
    [Google Scholar]
  26. Abboud, R., Ceylan, I. I., Grohe, M., & Lukasiewicz, T. (2020). The surprising power of graph neural networks with random node initialization. arXiv preprint arXiv:2010.01179.
    [Google Scholar]
  27. Li, J., Song, Y., Song, X., & Wipf, D. (2023, July). On the initialization of graph neural networks. In International Conference on Machine Learning (pp. 19911-19931). PMLR.
    [Google Scholar]
  28. Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. Advances in neural information processing systems, 30.
    [Google Scholar]
  29. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. stat, 1050(20), 10-48550.
    [Google Scholar]
  30. Mesquita, D., Souza, A., & Kaski, S. (2020). Rethinking pooling in graph neural networks. Advances in Neural Information Processing Systems, 33, 2220-2231.
    [Google Scholar]
  31. Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., & Leskovec, J. (2018). Hierarchical graph representation learning with differentiable pooling. Advances in neural information processing systems, 31.
    [Google Scholar]
  32. Lee, J., Lee, I., & Kang, J. (2019, May). Self-attention graph pooling. In International conference on machine learning (pp. 3734-3743). pmlr.
    [Google Scholar]
  33. Zhang, Z., Bu, J., Ester, M., Zhang, J., Li, Z., Yao, C., ... & Wang, C. (2021). Hierarchical multi-view graph pooling with structure learning. IEEE Transactions on Knowledge and Data Engineering, 35(1), 545-559.
    [Google Scholar]
  34. Ranjan, E., Sanyal, S., & Talukdar, P. (2020, April). Asap: Adaptive structure aware pooling for learning hierarchical graph representations. In Proceedings of the AAAI conference on artificial intelligence (Vol. 34, No. 04, pp. 5470-5477).
    [Google Scholar]
  35. Murphy, R., Srinivasan, B., Rao, V., & Ribeiro, B. (2019, May). Relational pooling for graph representations. In International Conference on Machine Learning (pp. 4663-4673). PMLR.
    [Google Scholar]
  36. Chen, Z., Chen, F., Zhang, L., Ji, T., Fu, K., Zhao, L., ... & Lu, C. T. (2020). Bridging the gap between spatial and spectral domains: A survey on graph neural networks. arXiv preprint arXiv:2002.11867.
    [Google Scholar]
  37. Zhang, S., Tong, H., Xu, J., & Maciejewski, R. (2019). Graph convolutional networks: a comprehensive review. Computational Social Networks, 6(1), 1-23.
    [Google Scholar]
  38. Zhang, H., Song, R., Wang, L., Zhang, L., Wang, D., Wang, C., & Zhang, W. (2022). Classification of brain disorders in rs-fMRI via local-to-global graph neural networks. IEEE transactions on medical imaging, 42(2), 444-455.
    [Google Scholar]
  39. Klepl, D., He, F., Wu, M., Blackburn, D. J., & Sarrigiannis, P. (2022). EEG-based graph neural network classification of Alzheimer’s disease: An empirical evaluation of functional connectivity methods. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30, 2651-2660.
    [Google Scholar]
  40. Cao, J., Yang, L., Sarrigiannis, P. G., Blackburn, D., & Zhao, Y. (2024). Dementia classification using a graph neural network on imaging of effective brain connectivity. Computers in Biology and Medicine, 168, 107701.
    [Google Scholar]
  41. Li, X., Dvornek, N. C., Zhou, Y., Zhuang, J., Ventola, P., & Duncan, J. S. (2019). Graph neural network for interpreting task-fmri biomarkers. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part V 22 (pp. 485-493). Springer International Publishing.
    [Google Scholar]
  42. Chan, Y. H., Girish, D., Gupta, S., Xia, J., Kasi, C., He, Y., ... & Rajapakse, J. C. (2024). Discovering robust biomarkers of neurological disorders from functional MRI using graph neural networks: A Review. arXiv preprint arXiv:2405.00577.
    [Google Scholar]
  43. Li, X., Zhou, Y., Dvornek, N. C., Zhang, M., Zhuang, J., Ventola, P., & Duncan, J. S. (2020). Pooling regularized graph neural network for fmri biomarker analysis. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part VII 23 (pp. 625-635). Springer International Publishing.
    [Google Scholar]
  44. Yang, C., Wang, P., Tan, J., Liu, Q., & Li, X. (2021). Autism spectrum disorder diagnosis using graph attention network based on spatial-constrained sparse functional brain networks. Computers in biology and medicine, 139, 104963.
    [Google Scholar]
  45. Li, Z., Hwang, K., Li, K., Wu, J., & Ji, T. (2022). Graph-generative neural network for EEG-based epileptic seizure detection via discovery of dynamic brain functional connectivity. Scientific reports, 12(1), 18998.
    [Google Scholar]
  46. Zhu, Y., Cui, H., He, L., Sun, L., & Yang, C. (2022, July). Joint embedding of structural and functional brain networks with graph neural networks for mental illness diagnosis. In 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 272-276). IEEE.
    [Google Scholar]
  47. Zheng, K., Yu, S., & Chen, B. (2024). Ci-gnn: A granger causality-inspired graph neural network for interpretable brain network-based psychiatric diagnosis. Neural Networks, 172, 106147.
    [Google Scholar]
  48. Kim, B. H., Ye, J. C., & Kim, J. J. (2021). Learning dynamic graph representation of brain connectome with spatio-temporal attention. Advances in Neural Information Processing Systems, 34, 4314-4327.
    [Google Scholar]
  49. Kim, M., Kim, J., Qu, J., Huang, H., Long, Q., Sohn, K. A., ... & Shen, L. (2021, December). Interpretable temporal graph neural network for prognostic prediction of Alzheimer’s disease using longitudinal neuroimaging data. In 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 1381-1384). IEEE.
    [Google Scholar]
  50. Dong, Z., Wu, Y., Xiao, Y., Chong, J. S. X., Jin, Y., & Zhou, J. H. (2023, October). Beyond the snapshot: Brain tokenized graph transformer for longitudinal brain functional connectome embedding. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 348-357). Cham: Springer Nature Switzerland.
    [Google Scholar]
  51. Yang, Y., Ye, C., Guo, X., Wu, T., Xiang, Y., & Ma, T. (2023). Mapping multi-modal brain connectome for brain disorder diagnosis via cross-modal mutual learning. IEEE Transactions on Medical Imaging.
    [Google Scholar]
  52. Cui, H., Dai, W., Zhu, Y., Li, X., He, L., & Yang, C. (2022, September). Interpretable graph neural networks for connectome-based brain disorder analysis. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 375-385). Cham: Springer Nature Switzerland.
    [Google Scholar]
  53. Sebenius, I., Campbell, A., Morgan, S. E., Bullmore, E. T., & Liò, P. (2021, October). Multimodal graph coarsening for interpretable, MRI-based brain graph neural network. In 2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP) (pp. 1-6). IEEE.
    [Google Scholar]
  54. Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2018). How powerful are graph neural networks?. arXiv preprint arXiv:1810.00826.
    [Google Scholar]
  55. Liu, N., Feng, Q., & Hu, X. (2022). Interpretability in graph neural networks. Graph neural networks: foundations, frontiers, and applications, 121-147.
    [Google Scholar]
  56. Wang, Z., Xu, Y., Peng, D., Gao, J., & Lu, F. (2023). Brain functional activity-based classification of autism spectrum disorder using an attention-based graph neural network combined with gene expression. Cerebral Cortex, 33(10), 6407-6419.
    [Google Scholar]
  57. Zhang, W., Zhang, T., Pan, T., Zhao, S., Nie, B., Liu, H., ... & Alzheimer’s Disease Neuroimaging Initiative. (2021). Deep learning with 18F-fluorodeoxyglucose-PET gives valid diagnoses for the uncertain cases in memory impairment of Alzheimer’s disease. Frontiers in Aging Neuroscience, 13, 764272.
    [Google Scholar]
  58. Yu, L., Shen, J., Li, J., & Lerer, A. (2020). Scalable graph neural networks for heterogeneous graphs. arXiv preprint arXiv:2011.09679.
    [Google Scholar]
  59. Zhao, S., Khoo, S., Ng, S. C., & Chi, A. (2022). Brain functional network and amino acid metabolism association in females with subclinical depression. International Journal of Environmental Research and Public Health, 19(6), 3321.
    [Google Scholar]
  60. Stickel, S., Wagels, L., Wudarczyk, O., Jaffee, S., Habel, U., Schneider, F., & Chechko, N. (2019). Neural correlates of depression in women across the reproductive lifespan–An fMRI review. Journal of affective disorders, 246, 556-570.
    [Google Scholar]

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 1225
PDF Downloads: 132

Publisher's Note
IECE stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions
IECE or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
IECE Transactions on Intelligent Systematics

IECE Transactions on Intelligent Systematics

ISSN: 2998-3355 (Online) | ISSN: 2998-3320 (Print)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/iece/

Copyright © 2024 Institute of Emerging and Computer Engineers Inc.