Agricultural Science and Food Processing
ISSN: request pending (Online)
Email: [email protected]
[1] Lisboa, H. M., Pasquali, M. B., dos Anjos, A. I., Sarinho, A. M., de Melo, E. D., Andrade, R., ... & Barros, A. (2024). Innovative and Sustainable Food Preservation Techniques: Enhancing Food Quality, Safety, and Environmental Sustainability. Sustainability, 16(18), 8223.
[2] Wang, J., Huang, X. H., Zhang, Y. Y., Li, S., Dong, X., & Qin, L. (2023). Effect of sodium salt on meat products and reduction sodium strategies—A review. Meat Science, 109296.
[3] Bernal, A., Zafra, M. A., Simón, M. J., & Mahía, J. (2023). Sodium homeostasis, a balance necessary for life. Nutrients, 15(2), 395.
[4] Zhang, J., Hartmann, A. M., & Guo, J. (2023). Chloride homeostasis in animal cell physiology. Frontiers in Physiology, 14, 1227565.
[5] Fulladosa, E., Serra, X., Gou, P., & Arnau, J. (2009). Effects of potassium lactate and high pressure on transglutaminase restructured dry-cured hams with reduced salt content. Meat science, 82(2), 213-218.
[6] Liu, J., Liu, D., Zheng, A., & Ma, Q. (2022). Haem-mediated protein oxidation affects water-holding capacity of beef during refrigerated storage. Food Chemistry: X, 14, 100304.
[7] Kang, Z. L., Zhang, X. H., Li, X., Song, Z. J., Ma, H. J., Lu, F., ... & Wang, Z. R. (2021). The effects of sodium chloride on proteins aggregation, conformation and gel properties of pork myofibrillar protein Running Head: Relationship aggregation, conformation and gel properties. Journal of food science and technology, 58, 2258-2264.
[8] Gaudette, N. J., & Pickering, G. J. (2013). Modifying bitterness in functional food systems. Critical reviews in food science and nutrition, 53(5), 464-481.
[9] Yang, C., Shuaibu, A., Lan, H., Zhao, Y., Xu, Y., Gao, Y., & Deng, S. (2024). Substitution of NaCl by organic sodium salts in cured large yellow croaker (Larimichthys crocea): Improvement of the quality and flavor characteristic. Food Chemistry, 141704.
[10] Kęska, P., & Stadnik, J. (2017). Taste-active peptides and amino acids of pork meat as components of dry-cured meat products: An in-silico study. Journal of Sensory Studies, 32(6), e12301.
[11] Vinitha, K., Leena, M. M., Moses, J. A., & Anandharamakrishnan, C. (2021). Size-dependent enhancement in salt perception: Spraying approaches to reduce sodium content in foods. Powder Technology, 378, 237-245.
[12] de Quadros, D. A., & Bolini, H. M. A. (2015). Effect of salt reduction and washing process of fish pulp on quality characteristics of Serra Spanish mackerel (Scomberomorus brasiliensis) fish burgers for school meals. Journal of food science and technology, 52, 7449-7456.
[13] Cerón-Guevara, M. I., Rangel-Vargas, E., Lorenzo, J. M., Bermúdez, R., Pateiro, M., Rodríguez, J. A., ... & Santos, E. M. (2020). Reduction of salt and fat in frankfurter sausages by addition of Agaricus bisporus and Pleurotus ostreatus flour. Foods, 9(6), 760.
[14] Pietrasik, Z., Gaudette, N. J., & Johnston, S. P. (2016). The use of high pressure processing to enhance the quality and shelf life of reduced sodium naturally cured restructured cooked hams. Meat science, 116, 102-109.
[15] Santos, J. A., Sparks, E., Thout, S. R., McKenzie, B., Trieu, K., Hoek, A., ... & Webster, J. (2019). The Science of Salt: A global review on changes in sodium levels in foods. The Journal of Clinical Hypertension, 21(8), 1043-1056.
[16] Nurmilah, S., Cahyana, Y., Utama, G. L., & Aït-Kaddour, A. (2022). Strategies to reduce salt content and its effect on food characteristics and acceptance: a review. Foods, 11(19), 3120.
[17] Barcenilla, C., Álvarez-Ordóñez, A., López, M., Alvseike, O., & Prieto, M. (2022). Microbiological safety and shelf-life of low-salt meat products—A Review. Foods, 11(15), 2331.
[18] Hu, Y., Li, Y., Zhu, J., Kong, B., Liu, Q., & Chen, Q. (2021). Improving the taste profile of reduced-salt dry sausage by inoculating different lactic acid bacteria. Food Research International, 145, 110391.
[19] Rios-Mera, J. D., Saldaña, E., Cruzado-Bravo, M. L., Patinho, I., Selani, M. M., Valentin, D., & Contreras-Castillo, C. J. (2019). Reducing the sodium content without modifying the quality of beef burgers by adding micronized salt. Food Research International, 121, 288-295.
[20] Rama, R., Chiu, N., Carvalho Da Silva, M., Hewson, L., Hort, J., & Fisk, I. D. (2013). Impact of salt crystal size on in-mouth delivery of sodium and saltiness perception from snack foods. Journal of Texture Studies, 44(5), 338-345.
[21] Beck, P. H. B., Matiucci, M. A., Neto, A. A. M., & Feihrmann, A. C. (2021). Sodium chloride reduction in fresh sausages using salt encapsulated in carnauba wax. Meat Science, 175, 108462.
[22] Park, J. N., Hwang, K. T., Kim, S. B., & Kim, S. Z. (2009). Partial replacement of NaCl by KCl in salted mackerel (Scomber japonicus) fillet products: effect on sensory acceptance and lipid oxidation. International journal of food science & technology, 44(8), 1572-1578.
[23] Vidal, V. A., Biachi, J. P., Paglarini, C. S., Pinton, M. B., Campagnol, P. C., Esmerino, E. A., ... & Pollonio, M. A. (2019). Reducing 50% sodium chloride in healthier jerked beef: An efficient design to ensure suitable stability, technological and sensory properties. Meat Science, 152, 49-57.
[24] Israr, T., Rakha, A., Sohail, M., Rashid, S., & Shehzad, A. (2016). Salt reduction in baked products: Strategies and constraints. Trends in Food Science & Technology, 51, 98-105.
[25] Schivazappa, C., & Virgili, R. (2020). Impact of salt levels on the sensory profile and consumer acceptance of Italian dry-cured ham. Journal of the Science of Food and Agriculture, 100(8), 3370-3377.
[26] Xiang, J., Wang, X., Guo, C., Zang, L., He, H., Yin, X., ... & Cao, J. (2024). Quality and Flavor Difference in Dry-Cured Meat Treated with Low-Sodium Salts: An Emphasis on Magnesium. Molecules, 29(10), 2194.
[27] Ruusunen, M., & Puolanne, E. (2005). Reducing sodium intake from meat products. Meat science, 70(3), 531-541.
[28] Tamm, A., Bolumar, T., Bajovic, B., & Toepfl, S. (2016). Salt (NaCl) reduction in cooked ham by a combined approach of high pressure treatment and the salt replacer KCl. Innovative Food Science & Emerging Technologies, 36, 294-302.
[29] Rodrigues, I., Trindade, M. A., Caramit, F. R., Candoğan, K., Pokhrel, P. R., & Barbosa-Cánovas, G. V. (2016). Effect of high pressure processing on physicochemical and microbiological properties of marinated beef with reduced sodium content. Innovative Food Science & Emerging Technologies, 38,328-333.
[30] Yang, H., Han, M., Wang, X., Han, Y., Wu, J., Xu, X., & Zhou, G. (2015). Effect of high pressure on cooking losses and functional properties of reduced-fat and reduced-salt pork sausage emulsions. Innovative Food Science & Emerging Technologies, 29, 125-133.
[31] Picouet, P. A., Sala, X., Garcia-Gil, N., Nolis, P., Colleo, M., Parella, T., & Arnau, J. (2012). High pressure processing of dry-cured ham: Ultrastructural and molecular changes affecting sodium and water dynamics. Innovative Food Science & Emerging Technologies, 16, 335-340.
[32] Tintchev, F., Bindrich, U., Toepfl, S., Strijowski, U., Heinz, V., & Knorr, D. (2013). High hydrostatic pressure/temperature modeling of frankfurter batters. Meat Science, 94(3), 376-387.
[33] Gómez-Salazar, J. A., Ochoa-Montes, D. A., Cerón-García, A., Ozuna, C., & Sosa-Morales, M. E. (2018). Effect of acid marination assisted by power ultrasound on the quality of rabbit meat. Journal of Food Quality, 2018(1), 5754930.
[34] Zou, Y., Kang, D., Liu, R., Qi, J., Zhou, G., & Zhang, W. (2018). Effects of ultrasonic assisted cooking on the chemical profiles of taste and flavor of spiced beef. Ultrasonics sonochemistry, 46, 36-45.
[35] Barretto, T. L., Pollonio, M. A. R., Telis-Romero, J., & da Silva Barretto, A. C. (2018). Improving sensory acceptance and physicochemical properties by ultrasound application to restructured cooked ham with salt (NaCl) reduction. Meat Science, 145, 55-62.
[36] Pan, Q., Yang, G. H., Wang, Y., Wang, X. X., Zhou, Y., Li, P. J., & Chen, C. G. (2020). Application of ultrasound-assisted and tumbling dry-curing techniques for reduced-sodium bacon. Journal of Food Processing and Preservation, 44(8), e14607.
[37] Shao, J., Ding, R., Sheng, C., Xu, X., & Zhao, X. (2024). Effects of ultrasonic assisted marination on the mass transfer kinetics and quality of low-salt duck breast and thigh meat. Food Materials Research, (fmr-0024-0010), 1-9.
[38] Deng, Y., Wang, W., & Liu, D. (2024). Ultrasound-assisted accelerated penetration extraction of polyphenols from pomegranate peels: Enhanced mass transfer by calcium ion precipitation and utilization of Fick’s law. Food and Bioprocess Technology, 17(4), 1017-1029.
[39] Bhat, Z. F., Morton, J. D., Mason, S. L., & Bekhit, A. E. D. A. (2019). Current and future prospects for the use of pulsed electric field in the meat industry. Critical Reviews in Food Science and Nutrition, 59(10), 1660-1674.
[40] Yeung, C. K., & Huang, S. C. (2017). Effects of ultrasound pretreatment and ageing processing on quality and tenderness of pork loin. Journal of Food and Nutrition Research, 5(11), 809-816.
[41] Bhat, Z. F., Morton, J. D., Mason, S. L., & Bekhit, A. E. D. A. (2020). The application of pulsed electric field as a sodium reducing strategy for meat products. Food Chemistry, 306, 125622.
[42] Ma, Q., Hamid, N., Oey, I., Kantono, K., Faridnia, F., Yoo, M., & Farouk, M. (2016). Effect of chilled and freezing pre-treatments prior to pulsed electric field processing on volatile profile and sensory attributes of cooked lamb meats. Innovative Food Science & Emerging Technologies, 37, 359-374.
[43] Arihara, K., Zhou, L., & Ohata, M. (2017). Bioactive properties of Maillard reaction products generated from food protein-derived peptides. Advances in food and nutrition research, 81, 161-185.
[44] Zhuang, M., Lin, L., Zhao, M., Dong, Y., Sun-Waterhouse, D., Chen, H., ... & Su, G. (2016). Sequence, taste and umami-enhancing effect of the peptides separated from soy sauce. Food Chemistry, 206, 174-181.
[45] Schindler, A., Dunkel, A., Stähler, F., Backes, M., Ley, J., Meyerhof, W., & Hofmann, T. (2011). Discovery of salt taste enhancing arginyl dipeptides in protein digests and fermented fish sauces by means of a sensomics approach. Journal of Agricultural and Food Chemistry, 59(23), 12578-12588.
[46] Taladrid, D., Laguna, L., Bartolomé, B., & Moreno-Arribas, M. V. (2020). Plant-derived seasonings as sodium salt replacers in food. Trends in Food Science & Technology, 99, 194-202.
[47] Hunter, S. R., Beatty, C., & Dalton, P. H. (2023). More spice, less salt: How capsaicin affects liking for and perceived saltiness of foods in people with smell loss. Appetite, 190, 107032.
[48] García-Lomillo, J., Del Pino-García, R., & Muñiz-Rodríguez, P. (2017). Alternative natural seasoning to improve the microbial stability of low-salt beef patties. Food chemistry, 227, 122-128.
[49] Kazmi, Z., Fatima, I., Perveen, S., & Malik, S. S. (2017). Monosodium glutamate: Review on clinical reports. International Journal of food properties, 20(sup2), 1807-1815.
[50] Ferrão, L. L., Ferreira, M. V. S., Cavalcanti, R. N., Carvalho, A. F. A., Pimentel, T. C., Silva, H. L., ... & Cruz, A. G. (2018). The xylooligosaccharide addition and sodium reduction in requeijão cremoso processed cheese. Food research international, 107, 137-147.
[51] Lee, G. H. (2011). A salt substitute with low sodium content from plant aqueous extracts. Food Research International, 44(2), 537-543.
[52] Myrdal Miller, A., Mills, K., Wong, T., Drescher, G., Lee, S. M., Sirimuangmoon, C., ... & Guinard, J. X. (2014). Flavor-enhancing properties of mushrooms in meat-based dishes in which sodium has been reduced and meat has been partially substituted withmushrooms. Journal of Food Science, 79(9), S1795-S1804.
[53] Kilcast, D., & Angus, F. (Eds.). (2007). Reducing salt in foods: Practical strategies. elsevier.
[54] Fraqueza, M. J., Alfaia, C. M., Rodrigues, S. S., & Teixeira, A. (2024). Strategies to Reduce Salt Content: PDO and PGI Meat Products Case. Foods, 13(17), 2681.
[55] Cluff, M., Kobane, I. A., Bothma, C., Hugo, C. J., & Hugo, A. (2017). Intermediate added salt levels as sodium reduction strategy: Effects on chemical, microbial, textural and sensory quality of polony. Meat Science, 133, 143-150.
[56] Bampi, M., Domschke, N. N., Schmidt, F. C., & Laurindo, J. B. (2016). Influence of vacuum application, acid addition and partial replacement of NaCl by KCl on the mass transfer during salting of beef cuts. LWT, 74, 26-33.
[57] Albarracín, W., Sánchez, I. C., Grau, R., & Barat, J. M. (2011). Salt in food processing; usage and reduction: a review. International Journal of Food Science & Technology, 46(7), 1329-1336.
[58] Rhee, K. S., Smith, G. C., & Terrell, R. N. (1983). Effect of reduction and replacement of sodium chloride on rancidity development in raw and cooked ground pork. Journal of Food Protection, 46(7), 578-581.
[59] Sharedeh, D., Gatellier, P., Astruc, T., & Daudin, J. D. (2015). Effects of pH and NaCl levels in a beef marinade on physicochemical states of lipids and proteins and on tissue microstructure. Meat Science, 110, 24-31.
[60] dos Santos, B. A., Campagnol, P. C. B., Fagundes, M. B., Wagner, R., & Pollonio, M. A. R. (2017). Adding blends of NaCl, KCl, and CaCl2 to low-sodium dry fermented sausages: Effects on lipid oxidation on curing process and shelf life. Journal of Food Quality, 2017(1), 7085798.
[61] Wu, H., Zhang, Y., Long, M., Tang, J., Yu, X., Wang, J., & Zhang, J. (2014). Proteolysis and sensory properties of dry-cured bacon as affected by the partial substitution of sodium chloride with potassium chloride. Meat science, 96(3), 1325-1331.
[62] Estrada-Solis, J., Figueroa-Rodriguez, K. A., Figueroa-Sandoval, B., Hernandez-Rosas, F., & Hernandez-Cazares, A. S. (2016). Microstructure and physical changes in the Mexican cooked lamb meat barbacoa made with chilled and frozen meat. Meat science, 118, 122-128.
[63] Horita, C. N., Morgano, M. A., Celeghini, R. M. S., & Pollonio, M. A. R. (2011). Physico-chemical and sensory properties of reduced-fat mortadella prepared with blends of calcium, magnesium and potassium chloride as partial substitutes for sodium chloride. Meat science, 89(4), 426-433.
[64] Flores, M., Nieto, P., Ferrer, J. M., & Flores, J. (2005). Effect of calcium chloride on the volatile pattern and sensory acceptance of dry-fermented sausages. European Food Research and Technology, 221, 624-630.
[65] Martinez, M. (2014). Evaluation of microbial dynamics on low-sodium cooked bologna under different packaging conditions (Doctoral dissertation, University of Saskatchewan).
[66] Bower, C. G., Stanley, R. E., Fernando, S. C., & Sullivan, G. A. (2018). The effect of salt reduction on the microbial community structure and quality characteristics of sliced roast beef and turkey breast. LWT, 90, 583-591.
[67] Aaslyng, M. D., Vestergaard, C., & Koch, A. G. (2014). The effect of salt reduction on sensory quality and microbial growth in hotdog sausages, bacon, ham and salami. Meat Science, 96(1), 47-55.
[68] Zhang P., Yang Y., Gong Y., Cao C., Guo Y., Lv S., ... & He L.. (2014). Effects of salt content on changes of intramuscular lipids in Sichuan bacon during processing and storage. Science and Technology of Food Industry, (13), 327–331.
[69] Harnack, L. J., Cogswell, M. E., Shikany, J. M., Gardner, C. D., Gillespie, C., Loria, C. M., ... & Steffen, L. M. (2017). Sources of sodium in US adults from 3 geographic regions. Circulation, 135(19), 1775-1783.
[70] Delgado-Pando, G., Fischer, E., Allen, P., Kerry, J. P., O’Sullivan, M. G., & Hamill, R. M. (2018). Salt content and minimum acceptable levels in whole-muscle cured meat products. Meat Science, 139, 179-186.
[71] Raccach, M., & Henningsen, E. C. (1997). The effect of chloride salts onYersinia enterocoliticain meat. Food microbiology, 14(5), 431-438.
[72] Fernández-López, J., Pateiro, M., Perez-Alvarez, J. A., Santos, E. M., Teixeira, A., & Viuda-Martos, M. (2024). Salt reduction and replacers in food production. In Strategies to Improve the Quality of Foods (pp. 65-86). Academic Press.
[73] Coban, H. B. (2020). Organic acids as antimicrobial food agents: applications and microbial productions. Bioprocess and Biosystems Engineering, 43(4), 569-591.
[74] Elias, M., Laranjo, M., Agulheiro-Santos, A. C., & Potes, M. E. (2020). The role of salt on food and human health. Salt in the Earth, 19, 1-19.
[75] Boziaris, I. S., Skandamis, P. N., Anastasiadi, M., & Nychas, G. J. (2007). Effect of NaCl and KCl on fate and growth/no growth interfaces of Listeria monocytogenes Scott A at different pH and nisin concentrations. Journal of Applied Microbiology, 102(3), 796-805.
[76] Li, F., Xiong, X. S., Yang, Y. Y., Wang, J. J., Wang, M. M., Tang, J. W., ... & Gu, B. (2021). Effects of NaCl concentrations on growth patterns, phenotypes associated with virulence, and energy metabolism in Escherichia coli BW25113. Frontiers in microbiology, 12,705326.
[77] Dos Santos, B. A., Campagnol, P. C. B., Fagundes, M. B., Wagner, R., & Pollonio, M. A. R. (2015). Generation of volatile compounds in Brazilian low-sodium dry fermented sausages containing blends of NaC1, KC1, and CaC12 during processing and storage. Food Research International, 74, 306-314.
[78] Ripollés, S., Campagnol, P. C. B., Armenteros, M., Aristoy, M. C., & Toldrá, F. (2011). Influence of partial replacement of NaCl with KCl, CaCl2 and MgCl2 on lipolysis and lipid oxidation in dry-cured ham. Meat science, 89(1), 58-64.
[79] Wang, S., Wang, X., Pan, W., Liu, A., Liu, S., Yang, Y., & Zou, L. (2021). Evaluation of bacterial diversity and quality features of traditional Sichuan bacon from different geographical region. Applied Sciences, 11(20), 9738.
[80] Taormina, P. J. (2010). Implications of salt and sodium reduction on microbial food safety. Critical reviews in food science and nutrition, 50(3), 209-227.
[81] Ojangba, T., Zhang, L., Boamah, S., Gao, Y., Wang, Z., & Amagloh, F. K. (2022). Effect of partial substitution of sodium chloride (NaCl) with potassium chloride (KCl) coupled with high-pressure processing (HPP) on physicochemical properties and volatile compounds of beef sausage under cold storage at 4° C. Processes, 10(2), 431.
Portico
All published articles are preserved here permanently:
https://www.portico.org/publishers/iece/