Chinese Journal of Information Fusion
ISSN: 2998-3371 (Online) | ISSN: 2998-3363 (Print)
Email: [email protected]
[1]Mathiassen, K., Hanssen, L., & Hallingstad, O. (2010, September). A low cost navigation unit for positioning of personnel after loss of GPS position. In 2010 international conference on indoor positioning and indoor navigation (pp. 1-10). IEEE.
[2]Huang, Z., Zhang, P., Liu, R., & Li, D. (2023). An Improved YOLOv3-Based Method for Immature Apple Detection. IECE Transactions on Internet of Things, 1(1), 9-14.
[3]Bar-Shalom, Y., Li, X. R., & Kirubarajan, T. (2004). Estimation with applications to tracking and navigation: theory algorithms and software. John Wiley & Sons.
[4]Julier, S. J., & Uhlmann, J. K. (1997, July). New extension of the Kalman filter to nonlinear systems. In Signal processing, sensor fusion, and target recognition VI (Vol. 3068, pp. 182-193). Spie.
[5]Julier, S., Uhlmann, J., & Durrant-Whyte, H. F. (2000). A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on automatic control, 45(3), 477-482.
[6]Julier, S. J., & Uhlmann, J. K. (2004). Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 92(3), 401-422.
[7]Arasaratnam, I., & Haykin, S. (2009). Cubature kalman filters. IEEE Transactions on automatic control, 54(6), 1254-1269.
[8]Li, P., Yu, J., Wan, M., Huang, J., & Huang, J. (2009, September). The augmented form of cubature Kalman filter and quadrature Kalman filter for additive noise. In 2009 IEEE Youth Conference on Information, Computing and Telecommunication (pp. 295-298). IEEE.
[9]Chen, Y., Xie, X., Yu, B., Li, Y., & Lin, K. (2021). Multitarget vehicle tracking and motion state estimation using a novel driving environment perception system of intelligent vehicles. Journal of advanced transportation, 2021(1), 6251399.
[10]Eltoukhy, M., Ahmad, M. O., & Swamy, M. N. S. (2020). An adaptive turn rate estimation for tracking a maneuvering target. IEEE Access, 8, 94176-94189.
[11]Wang, L., & Zhou, G. (2021). Pseudo-spectrum based track-before-detect for weak maneuvering targets in range-Doppler plane. IEEE Transactions on Vehicular Technology, 70(4), 3043-3058.
[12]Jia, S., Zhang, Y., & Wang, G. (2017). Highly maneuvering target tracking using multi-parameter fusion Singer model. Journal of Systems Engineering and Electronics, 28(5), 841-850.
[13]Zhenkai, X., Fanying, L., & Lei, Z. (2018). Study on Maneuvering Target On-axis Tracking Algorithm of Modified Current Statistical Model. In MATEC Web of Conferences (Vol. 160, p. 02008). EDP Sciences.
[14]Bar-Shalom, Y., & Blair, W. D. (1992). Multitarget-multisensor tracking: applications and advances. chapter 2.
[15]Lin, H. J., & Atherton, D. P. (1993, May). Investigation of IMM tracking algorithm for the maneuvering target tracking. In Proceedings. The First IEEE Regional Conference on Aerospace Control Systems, (pp. 113-117). IEEE.
[16]Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
[17]Chen, C., Zhao, P., Lu, C. X., Wang, W., Markham, A., & Trigoni, N. (2020). Deep-learning-based pedestrian inertial navigation: Methods, data set, and on-device inference. IEEE Internet of Things Journal, 7(5), 4431-4441.
[18]Wang, B., Chen, C., Lu, C. X., Zhao, P., Trigoni, N., & Markham, A. (2020, April). Atloc: Attention guided camera localization. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 06, pp. 10393-10401).
[19]Wang, S., Clark, R., Wen, H., & Trigoni, N. (2017, May). Deepvo: Towards end-to-end visual odometry with deep recurrent convolutional neural networks. In 2017 IEEE international conference on robotics and automation (ICRA) (pp. 2043-2050). IEEE.
[20]Clark, R., Wang, S., Markham, A., Trigoni, N., & Wen, H. (2017). Vidloc: A deep spatio-temporal model for 6-dof video-clip relocalization. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 6856-6864).
[21]Zhou, T., Brown, M., Snavely, N., & Lowe, D. G. (2017). Unsupervised learning of depth and ego-motion from video. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1851-1858).
[22]Sun, Y., Xie, J., & Guo, J. (2014, December). A new maneuvering target tracking method using adaptive cubature Kalman filter. In 2014 IEEE International Conference on Control Science and Systems Engineering (pp. 40-44). IEEE.
[23]Nagui, N., Attallah, O., Zaghloul, M. S., & Morsi, I. (2021). Improved GPS/IMU loosely coupled integration scheme using two kalman filter-based cascaded stages. Arabian Journal for Science and Engineering, 46, 1345-1367.
[24]Sun, Y., Xie, J., Guo, J., Wang, H., & Zhao, Y. (2014, December). A modified marginalized Kalman filter for maneuvering target tracking. In Proceedings of 2nd International Conference on Information Technology and Electronic Commerce (pp. 107-111). IEEE.
[25]Huang, Y., Zhang, Y., Shi, P., & Chambers, J. (2020). Variational adaptive Kalman filter with Gaussian-inverse-Wishart mixture distribution. IEEE Transactions on Automatic Control, 66(4), 1786-1793.
[26]Chang, Y., Wang, Y., Shen, Y., & Ji, C. (2021). A new fuzzy strong tracking cubature Kalman filter for INS/GNSS. GPS Solutions, 25(3), 120.
[27]Xiong, S. S., & Zhou, Z. Y. (2003). Neural filtering of colored noise based on Kalman filter structure. IEEE Transactions on Instrumentation and Measurement, 52(3), 742-747.
[28]Morales, E. F., Murrieta-Cid, R., Becerra, I., & Esquivel-Basaldua, M. A. (2021). A survey on deep learning and deep reinforcement learning in robotics with a tutorial on deep reinforcement learning. Intelligent Service Robotics, 14(5), 773-805.
[29]Yeo, K., & Melnyk, I. (2019). Deep learning algorithm for data-driven simulation of noisy dynamical system. Journal of Computational Physics, 376, 1212-1231.
[30]Liu, J., Wang, Z., & Xu, M. (2020). DeepMTT: A deep learning maneuvering target-tracking algorithm based on bidirectional LSTM network. Information Fusion, 53, 289-304.
[31]Zhang, J., Wu, Y., & Jiao, S. (2021, November). Research on trajectory tracking algorithm based on LSTM-UKF. In 2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC) (pp. 61-65). IEEE.
[32]Li, S., Hu, C., Wang, R., Zhou, C., & Yang, J. (2019, December). A maneuvering tracking method based on LSTM and CS model. In 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP) (pp. 1-4). IEEE.
[33]Yaqi, C., You, H. E., Tiantian, T. A. N. G., & Yu, L. I. U. (2022). A new target tracking filter based on deep learning. Chinese Journal of Aeronautics, 35(5), 11-24.
[34]Vedula, K., Weiss, M. L., Paffenroth, R. C., Uzarski, J. R., & Brown, D. R. (2020, November). Maneuvering target tracking using the autoencoder-interacting multiple model filter. In 2020 54th Asilomar Conference on Signals, Systems, and Computers (pp. 1512-1517). IEEE.
[35]Giuliari, F., Hasan, I., Cristani, M., & Galasso, F. (2021, January). Transformer networks for trajectory forecasting. In 2020 25th international conference on pattern recognition (ICPR) (pp. 10335-10342). IEEE.
[36]Hui, B., Yan, D., Chen, H., & Ku, W. S. (2021, August). Trajnet: A trajectory-based deep learning model for traffic prediction. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (pp. 716-724).
[37]James, J. Q. (2020). Travel mode identification with GPS trajectories using wavelet transform and deep learning. IEEE Transactions on Intelligent Transportation Systems, 22(2), 1093-1103.
[38]Liu, J., & Guo, G. (2021). Vehicle localization during GPS outages with extended Kalman filter and deep learning. IEEE Transactions on Instrumentation and Measurement, 70, 1-10.
[39]Moradi, N., Nezhadshahbodaghi, M., & Mosavi, M. R. (2023). GPS signal acquisition based on deep convolutional neural network and post-correlation methods. GPS Solutions, 27(3), 132.
[40]Taghizadeh, S., & Safabakhsh, R. (2023). An integrated INS/GNSS system with an attention-based hierarchical LSTM during GNSS outage. GPS Solutions, 27(2), 71.
[41]He, S., Liu, J., Zhu, X., Dai, Z., & Li, D. (2023). Research on modeling and predicting of BDS-3 satellite clock bias using the LSTM neural network model. GPS Solutions, 27(3), 108.
[42]Orouji, N., & Mosavi, M. R. (2021). A multi-layer perceptron neural network to mitigate the interference of time synchronization attacks in stationary GPS receivers. GPS solutions, 25, 1-15.
[43]Venkataraman, V., Fan, G., Havlicek, J. P., Fan, X., Zhai, Y., & Yeary, M. B. (2012). Adaptive kalman filtering for histogram-based appearance learning in infrared imagery. IEEE transactions on image processing, 21(11), 4622-4635.
Chinese Journal of Information Fusion
ISSN: 2998-3371 (Online) | ISSN: 2998-3363 (Print)
Email: [email protected]
Portico
All published articles are preserved here permanently:
https://www.portico.org/publishers/iece/