Chinese Journal of Information Fusion
ISSN: 2998-3371 (Online) | ISSN: 2998-3363 (Print)
Email: [email protected]
[1]Coué, C., Pradalier, C., Laugier, C., Fraichard, T., & Bessière, P. (2006). Bayesian occupancy filtering for multitarget tracking: an automotive application. The International Journal of Robotics Research, 25(1), 19-30.
[2]Tay, M. K., Mekhnacha, K., Yguel, M., Coue, C., Pradalier, C., Laugier, C., ... & Bessiere, P. (2008). The Bayesian occupation filter. In Probabilistic Reasoning and Decision Making in Sensory-Motor Systems (pp. 77-98). Berlin, Heidelberg: Springer Berlin Heidelberg.
[3]Kondaxakis, P., Kasderidis, S., & Trahanias, P. (2008). Tracking multiple targets from a mobile robot platform using a laser range scanner. In 2008 IET Seminar on Target Tracking and Data Fusion: Algorithms and Applications(pp. 175-184).
[4]Vu, T. D., Burlet, J., & Aycard, O. (2008). Mapping of environment, detection and tracking of moving objects using occupancy grids. In Intelligent Vehicles Symposium (pp. 684-689). Los Alamitos: IEEE.
[5]Gindele, T., Brechtel, S., Schroder, J., & Dillmann, R. (2009, June). Bayesian occupancy grid filter for dynamic environments using prior map knowledge. In 2009 IEEE Intelligent Vehicles Symposium (pp. 669-676). IEEE.
[6]Baig, Q., Perrollaz, M., & Laugier, C. (2014). Advances in the Bayesian Occupancy Filter framework using robust motion detection technique for dynamic environment monitoring. IEEE Robotics and Automation Magazine.
[7]Saarinen, J. P., Andreasson, H., Stoyanov, T., & Lilienthal, A. J. (2013). 3D normal distributions transform occupancy maps: An efficient representation for mapping in dynamic environments. The International Journal of Robotics Research, 32(14), 1627-1644.
[8]Mosberger, R., Andreasson, H., & Lilienthal, A. J. (2014). A customized vision system for tracking humans wearing reflective safety clothing from industrial vehicles and machinery. Sensors, 14(10), 17952-17980.
[9]Durrant-Whyte, H., & Bailey, T. (2006). Simultaneous localization and mapping: part I. IEEE robotics & automation magazine, 13(2), 99-110.
[10]Bailey, T., & Durrant-Whyte, H. (2006). Simultaneous localization and mapping (SLAM): Part II. IEEE robotics & automation magazine, 13(3), 108-117.
[11]Petrovskaya, A., Perrollaz, M., Oliveira, L., Spinello, L., Triebel, R., Makris, A., ... & Bessière, P. (2012). Awareness of road scene participants for autonomous driving. Handbook of Intelligent Vehicles, 1383-1432.
[12]Kucner, T., Saarinen, J., Magnusson, M., & Lilienthal, A. J. (2013, November). Conditional transition maps: Learning motion patterns in dynamic environments. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 1196-1201). IEEE.
[13]Wang, C. C., Thorpe, C., Thrun, S., Hebert, M., & Durrant-Whyte, H. (2007). Simultaneous localization, mapping and moving object tracking. The International Journal of Robotics Research, 26(9), 889-916.
[14]Ess, A., Leibe, B., Schindler, K., & Van Gool, L. (2009, May). Moving obstacle detection in highly dynamic scenes. In 2009 IEEE International Conference on Robotics and Automation (pp. 56-63). IEEE.
[15]Baig, Q., Perrollaz, M., Do Nascimento, J. B., & Laugier, C. (2012, December). Using fast classification of static and dynamic environment for improving Bayesian occupancy filter (BOF) and tracking. In 2012 12th International Conference on Control Automation Robotics & Vision (ICARCV) (pp. 656-661). IEEE.
[16]Hahnel, D., Triebel, R., Burgard, W., & Thrun, S. (2003, September). Map building with mobile robots in dynamic environments. In 2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422) (Vol. 2, pp. 1557-1563). IEEE.
[17]Elfes, A. (1989). A probabilistic framework for robot perception and navigation. PhD thesis, Carnegie-Mellon University.
[18]Elfes, A. (1989). Using occupancy grids for mobile robot perception and navigation. Computer, 22(6), 46-57.
[19]Pancham, A., Tlale, N., & Bright, G. (2011). Literature review of SLAM and DATMO. RobMech 2011.
[20]Baig, Q., & Aycard, O. (2012, June). Improving moving objects tracking using road model for laser data. In 2012 IEEE Intelligent Vehicles Symposium (pp. 790-795). IEEE.
[21]Chen, C., Tay, C., Laugier, C., & Mekhnacha, K. (2006, December). Dynamic environment modeling with gridmap: a multiple-object tracking application. In 2006 9th International Conference on Control, Automation, Robotics and Vision (pp. 1-6). IEEE.
[22]Mekhnacha, K., Mao, Y., Raulo, D., & Laugier, C. (2008, September). Bayesian occupancy filter based" fast clustering-tracking" algorithm. In IROS 2008.
[23]Tay, M. K., Mekhnacha, K., Chen, C., Yguel, M., & Laugier, C. (2008). An efficient formulation of the Bayesian occupation filter for target tracking in dynamic environments. International Journal of Vehicle Autonomous Systems, 6(1-2), 155-171.
[24]Fan, H., Kucner, T. P., Magnusson, M., Li, T., & Lilienthal, A. J. (2017). A dual PHD filter for effective occupancy filtering in a highly dynamic environment. IEEE Transactions on Intelligent Transportation Systems, 19(9), 2977-2993.
[25]Zhu, D., Li, Y., & Zhu, Z. (2007). A keystone transform without interpolation for SAR ground moving-target imaging. IEEE Geoscience and Remote Sensing Letters, 4(1), 18-22.
[26]Zhao, Y., Wang, J., Huang, L., & Yang, R. (2011, October). Low complexity keystone transform without interpolation for dim moving target detection. In Proceedings of 2011 IEEE CIE International Conference on Radar (Vol. 2, pp. 1745-1748). IEEE.
[27]Huang, P., Liao, G., Yang, Z., Xia, X. G., Ma, J., & Zheng, J. (2016). Ground maneuvering target imaging and high-order motion parameter estimation based on second-order keystone and generalized Hough-HAF transform. IEEE Transactions on Geoscience and Remote Sensing, 55(1), 320-335.
[28]Huang, P., Liao, G., Yang, Z., Xia, X. G., Ma, J. T., & Ma, J. (2016). Long-time coherent integration for weak maneuvering target detection and high-order motion parameter estimation based on keystone transform. IEEE Transactions on Signal Processing, 64(15), 4013-4026.
[29]Zhan, M., Huang, P., Zhu, S., Liu, X., Liao, G., Sheng, J., & Li, S. (2021). A modified keystone transform matched filtering method for space-moving target detection. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-16.
[30]Fan, H., Lu, D., Kucner, T. P., Magnusson, M., & Lilienthal, A. (2018, July). 2D spatial keystone transform for sub-pixel motion extraction from noisy occupancy grid map. In 2018 21st International Conference on Information Fusion (FUSION) (pp. 1-7). IEEE.
[31]Richards, M. A. (2014). The keystone transformation for correcting range migration in range-doppler processing. pulse, 1000(1).
[32]Rabiner, L. R., Schafer, R. W., & Rader, C. M. (1969). The chirp z‐transform algorithm and its application. Bell System Technical Journal, 48(5), 1249-1292.
[33]Rajmic, P., Prusa, Z., & Wiesmeyr, C. (2014, September). Computational cost of Chirp Z-transform and Generalized Goertzel algorithm. In 2014 22nd European Signal Processing Conference (EUSIPCO) (pp. 1004-1008). IEEE.
Chinese Journal of Information Fusion
ISSN: 2998-3371 (Online) | ISSN: 2998-3363 (Print)
Email: [email protected]
Portico
All published articles are preserved here permanently:
https://www.portico.org/publishers/iece/