Chinese Journal of Information Fusion
ISSN: 2998-3371 (Online) | ISSN: 2998-3363 (Print)
Email: [email protected]
[1] David, O., Blauwblomme, T., Job, A. S., Chabardès, S., Hoffmann, D., Minotti, L., & Kahane, P. (2011). Imaging the seizure onset zone with stereo-electroencephalography. Brain, 134(10), 2898–2911.
[2] Cai, D., Chen, J., Yang, Y., Liu, T., & Li, Y. (2023, August). MBrain: A Multi-channel Self-Supervised Learning Framework for Brain Signals. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 130–141).
[3] Craik, A., He, Y., & Contreras-Vidal, J. L. (2019). Deep learning for electroencephalogram (EEG) classification tasks: a review. Journal of neural engineering, 16(3), 031001.
[4] Hosseini, M. P., Hosseini, A., & Ahi, K. (2020). A review on machine learning for EEG signal processing in bioengineering. IEEE reviews in biomedical engineering, 14, 204–218.
[5] Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning (Vol. 4, No. 4, p. 738). New York: springer.
[6] Jiang, X., Bian, G. B., & Tian, Z. (2019). Removal of artifacts from EEG signals: a review. Sensors, 19(5), 987.
[7] Zhang, X., Yao, L., Wang, X., Monaghan, J., Mcalpine, D., & Zhang, Y. (2019). A survey on deep learning based brain computer interface: Recent advances and new frontiers. arXiv preprint arXiv:1905.04149, 66.
[8] Zhang, K., Wen, Q., Zhang, C., Cai, R., Jin, M., Liu, Y., ... & Pan, S. (2024). Self-supervised learning for time series analysis: Taxonomy, progress, and prospects. IEEE Transactions on Pattern Analysis and Machine Intelligence.
[9] Jin, M., Koh, H. Y., Wen, Q., Zambon, D., Alippi, C., Webb, G. I., ... & Pan, S. (2024). A survey on graph neural networks for time series: Forecasting, classification, imputation, and anomaly detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 46, no. 12, pp. 10466-10485.
[10] Liang, Y., Wen, H., Nie, Y., Jiang, Y., Jin, M., Song, D., ... & Wen, Q. (2024, August). Foundation models for time series analysis: A tutorial and survey. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 6555-6565).
[11] Jiang, W. B., Zhao, L. M., & Lu, B. L. (2024). Large brain model for learning generic representations with tremendous EEG data in BCI. arXiv preprint arXiv:2405.18765.
[12] Zhang, X., Chowdhury, R. R., Gupta, R. K., & Shang, J. (2024). Large language models for time series: A survey. arXiv preprint arXiv:2402.01801.
[13] Jin, M., Wen, Q., Liang, Y., Zhang, C., Xue, S., Wang, X., ... & Xiong, H. (2023). Large models for time series and spatio-temporal data: A survey and outlook. arXiv preprint arXiv:2310.10196.
[14] Yang, Y., Jin, M., Wen, H., Zhang, C., Liang, Y., Ma, L., ... & Wen, Q. (2024). A survey on diffusion models for time series and spatio-temporal data. arXiv preprint arXiv:2404.18886.
[15] Zhang, Z., Sun, Y., Wang, Z., Nie, Y., Ma, X., Sun, P., & Li, R. (2024). Large language models for mobility in transportation systems: A survey on forecasting tasks. arXiv preprint arXiv:2405.02357.
[16] Wen, Q., Zhou, T., Zhang, C., Chen, W., Ma, Z., Yan, J., & Sun, L. (2022). Transformers in time series: A survey. arXiv preprint arXiv:2202.07125.
[17] Liu, K., Xiao, A., Zhang, X., Lu, S., & Shao, L. (2023). Fac: 3d representation learning via foreground aware feature contrast. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 9476-9485).
[18] Gao, T., Yao, X., & Chen, D. (2021). Simcse: Simple contrastive learning of sentence embeddings. arXiv preprint arXiv:2104.08821.
[19] Mohsenvand, M. N., Izadi, M. R., & Maes, P. (2020, November). Contrastive representation learning for electroencephalogram classification. In Machine Learning for Health (pp. 238-253). PMLR.
[20] Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020, November). A simple framework for contrastive learning of visual representations. In International conference on machine learning (pp. 1597-1607). PMLR.
[21] Eldele, E., Ragab, M., Chen, Z., Wu, M., Kwoh, C. K., Li, X., & Guan, C. (2021). Time-series representation learning via temporal and contextual contrasting. arXiv preprint arXiv:2106.14112.
[22] Jiang, X., Zhao, J., Du, B., & Yuan, Z. (2021, July). Self-supervised contrastive learning for EEG-based sleep staging. In 2021 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE.
[23] Kumar, V., Reddy, L., Kumar Sharma, S., Dadi, K., Yarra, C., Bapi, R. S., & Rajendran, S. (2022, September). mulEEG: a multi-view representation learning on EEG signals. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 398-407). Cham: Springer Nature Switzerland.
[24] Chuang, C. Y., Robinson, J., Lin, Y. C., Torralba, A., & Jegelka, S. (2020). Debiased contrastive learning. Advances in neural information processing systems, 33, 8765-8775.
[25] Robinson, J., Chuang, C. Y., Sra, S., & Jegelka, S. (2020). Contrastive learning with hard negative samples. arXiv preprint arXiv:2010.04592.
[26] Yang, C., Xiao, C., Westover, M. B., & Sun, J. (2023). Self-supervised electroencephalogram representation learning for automatic sleep staging: model development and evaluation study. JMIR AI, 2(1), e46769.
[27] Wang, Y., Han, Y., Wang, H., & Zhang, X. (2024). Contrast everything: A hierarchical contrastive framework for medical time-series. Advances in Neural Information Processing Systems, 36.
[28] Zhang, H., Wang, J., Xiao, Q., Deng, J., & Lin, Y. (2021). Sleeppriorcl: Contrastive representation learning with prior knowledge-based positive mining and adaptive temperature for sleep staging. arXiv preprint arXiv:2110.09966.
[29] Weng, W., Gu, Y., Zhang, Q., Huang, Y., Miao, C., & Chen, Y. (2023). A Knowledge-Driven Cross-view Contrastive Learning for EEG Representation. arXiv preprint arXiv:2310.03747.
[30] Devlin, J. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
[31] Kostas, D., Aroca-Ouellette, S., & Rudzicz, F. (2021). BENDR: Using transformers and a contrastive self-supervised learning task to learn from massive amounts of EEG data. Frontiers in Human Neuroscience, 15, 653659.
[32] Baevski, A., Zhou, Y., Mohamed, A., & Auli, M. (2020). wav2vec 2.0: A framework for self-supervised learning of speech representations. Advances in neural information processing systems, 33, 12449-12460.
[33] Vaswani, A. (2017). Attention is all you need. Advances in Neural Information Processing Systems.
[34] Chien, H. Y. S., Goh, H., Sandino, C. M., & Cheng, J. Y. (2022). Maeeg: Masked auto-encoder for eeg representation learning. arXiv preprint arXiv:2211.02625.
[35] Peng, R., Zhao, C., Xu, Y., Jiang, J., Kuang, G., Shao, J., & Wu, D. (2023, June). Wavelet2vec: a filter bank masked autoencoder for EEG-based seizure subtype classification. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1-5). IEEE.
[36] Dosovitskiy, A. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.
[37] Obeid, I., & Picone, J. (2016). The temple university hospital EEG data corpus. Frontiers in neuroscience, 10, 196.
[38] Zheng, W. L., Zhu, J. Y., & Lu, B. L. (2017). Identifying stable patterns over time for emotion recognition from EEG. IEEE transactions on affective computing, 10(3), 417-429.
[39] Kemp, B., Zwinderman, A. H., Tuk, B., Kamphuisen, H. A., & Oberye, J. J. (2000). Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG. IEEE Transactions on Biomedical Engineering, 47(9), 1185-1194.
[40] Khalighi, S., Sousa, T., Santos, J. M., & Nunes, U. (2016). ISRUC-Sleep: A comprehensive public dataset for sleep researchers. Computer methods and programs in biomedicine, 124, 180-192.
[41] Anguita, D., Ghio, A., Oneto, L., Parra, X., & Reyes-Ortiz, J. L. (2013, April). A public domain dataset for human activity recognition using smartphones. In Esann (Vol. 3, p. 3).
[42] Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P., & Elger, C. E. (2001). Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Physical Review E, 64(6), 061907.
[43] Lessmeier, C., Kimotho, J. K., Zimmer, D., & Sextro, W. (2016, July). Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: A benchmark data set for data-driven classification. In PHM Society European Conference (Vol. 3, No. 1).
[44] Guillot, A., Sauvet, F., During, E. H., & Thorey, V. (2020). Dreem open datasets: Multi-scored sleep datasets to compare human and automated sleep staging. IEEE transactions on neural systems and rehabilitation engineering, 28(9), 1955-1965.
[45] Zhang, G. Q., Cui, L., Mueller, R., Tao, S., Kim, M., Rueschman, M., ... & Redline, S. (2018). The National Sleep Research Resource: towards a sleep data commons. Journal of the American Medical Informatics Association, 25(10), 1351-1358.
[46] Biswal, S., Sun, H., Goparaju, B., Westover, M. B., Sun, J., & Bianchi, M. T. (2018). Expert-level sleep scoring with deep neural networks. Medical Informatics Association Journal of the American , 25(12), 1643-1650.
[47] Escudero, J., Abásolo, D., Hornero, R., Espino, P., & López, M. (2006). Analysis of electroencephalograms in Alzheimer’s disease patients with multiscale entropy. Physiological measurement, 27(11), 1091.
[48] Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., ... & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. circulation, 101(23), e215-e220.
[49] Van Dijk, H., Van Wingen, G., Denys, D., Olbrich, S., Van Ruth, R., & Arns, M. (2022). The two decades brainclinics research archive for insights in neurophysiology (TDBRAIN) database. Scientific data, 9(1), 333.
[50] O’reilly, C., Gosselin, N., Carrier, J., & Nielsen, T. (2014). Montreal Archive of Sleep Studies: an open-access resource for instrument benchmarking and exploratory research. Journal of sleep research, 23(6), 628-635.
[51] Schalk, G., McFarland, D. J., Hinterberger, T., Birbaumer, N., & Wolpaw, J. R. (2004). BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Transactions on biomedical engineering, 51(6), 1034-1043.
[52] Shoeb, A. H. (2009). Application of machine learning to epileptic seizure onset detection and treatment (Doctoral dissertation, Massachusetts Institute of Technology).
[53] Tangermann, M., Müller, K. R., Aertsen, A., Birbaumer, N., Braun, C., Brunner, C., ... & Blankertz, B. (2012). Review of the BCI competition IV. Frontiers in neuroscience, 6, 55.
[54] Margaux, P., Emmanuel, M., Sébastien, D., Olivier, B., & Jérémie, M. (2012). Objective and Subjective Evaluation of Online Error Correction during P300-Based Spelling. Advances in Human-Computer Interaction, 2012(1), 578295.
[55] Peng, R., Zhao, C., Jiang, J., Kuang, G., Cui, Y., Xu, Y., ... & Wu, D. (2022). TIE-EEGNet: Temporal information enhanced EEGNet for seizure subtype classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30, 2567-2576.
[56] Loshchilov, I. (2017). Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101.
[57] Park, H. J., & Friston, K. (2013). Structural and functional brain networks: from connections to cognition. Science, 342(6158), 1238411.
[58] Jia, Z., Lin, Y., Wang, J., Zhou, R., Ning, X., He, Y., & Zhao, Y. (2020, July). GraphSleepNet: Adaptive spatial-temporal graph convolutional networks for sleep stage classification. In Ijcai (Vol. 2021, pp. 1324-1330).
[59] Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural networks on graphs with fast localized spectral filtering. Advances in neural information processing systems, 29.
[60] Wang, Y., Xu, Y., Yang, J., Wu, M., Li, X., Xie, L., & Chen, Z. (2024, March). Graph-Aware Contrasting for Multivariate Time-Series Classification. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 38, No. 14, pp. 15725-15734).
[61] Cai, W., Liang, Y., Liu, X., Feng, J., & Wu, Y. (2024, March). Msgnet: Learning multi-scale inter-series correlations for multivariate time series forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 38, No. 10, pp. 11141-11149).
[62] Deng, A., & Hooi, B. (2021, May). Graph neural network-based anomaly detection in multivariate time series. In Proceedings of the AAAI conference on artificial intelligence (Vol. 35, No. 5, pp. 4027-4035).
[63] Salvador, R., Suckling, J., Coleman, M. R., Pickard, J. D., Menon, D., & Bullmore, E. D. (2005). Neurophysiological architecture of functional magnetic resonance images of human brain. Cerebral cortex, 15(9), 1332-1342.
[64] Pearson, K., & Lee, A. (1903). On the laws of inheritance in man: I. Inheritance of physical characters. Biometrika, 2(4), 357-462.
[65] Danon, L., Diaz-Guilera, A., Duch, J., & Arenas, A. (2005). Comparing community structure identification. Journal of statistical mechanics: Theory and experiment, 2005(09), P09008.
[66] Aydore, S., Pantazis, D., & Leahy, R. M. (2013). A note on the phase locking value and its properties. Neuroimage, 74, 231-244.
[67] Tang, S., Dunnmon, J. A., Saab, K., Zhang, X., Huang, Q., Dubost, F., ... & Lee-Messer, C. (2021). Self-supervised graph neural networks for improved electroencephalographic seizure analysis. arXiv preprint arXiv:2104.08336.
[68] Ho, T. K. K., & Armanfard, N. (2023, June). Self-supervised learning for anomalous channel detection in EEG graphs: Application to seizure analysis. In Proceedings of the AAAI conference on artificial intelligence (Vol. 37, No. 7, pp. 7866-7874).
[69] Jia, Z., Lin, Y., Wang, J., Ning, X., He, Y., Zhou, R., ... & Li-wei, H. L. (2021). Multi-view spatial-temporal graph convolutional networks with domain generalization for sleep stage classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29, 1977-1986.
[70] Li, R., Wang, Y., & Lu, B. L. (2021, October). A multi-domain adaptive graph convolutional network for EEG-based emotion recognition. In Proceedings of the 29th ACM International Conference on Multimedia (pp. 5565-5573).
[71] Wang, J., Ning, X., Shi, W., & Lin, Y. (2023, April). A Bayesian Graph Neural Network for EEG Classification—A Win-Win on Performance and Interpretability. In 2023 IEEE 39th International Conference on Data Engineering (ICDE) IEEE. (pp. 2126-2139).
[72] Jia, Z., Lin, Y., Wang, J., Feng, Z., Xie, X., & Chen, C. (2021, October). HetEmotionNet: two-stream heterogeneous graph recurrent neural network for 29th ACM International Conference on Multimedia multi-modal emotion recognition. In Proceedings of the (pp. 1047-1056).
[73] Chen, J., Yang, Y., Yu, T., Fan, Y., Mo, X., & Yang, C. (2022, August). Brainnet: Epileptic wave detection from seeg with hierarchical graph diffusion learning. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 2741-2751).
[74] Koelstra, S., Muhl, C., Soleymani, M., Lee, J. S., Yazdani, A., Ebrahimi, T., ... & Patras, I. (2011). Deap: A database for emotion analysis; using physiological signals. IEEE transactions on affective computing, 3(1), 18-31.
[75] Soleymani, M., Lichtenauer, J., Pun, T., & Pantic, M. (2011). A multimodal database for affect recognition and implicit tagging. IEEE transactions on affective computing, 3(1), 42-55.
[76] Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., ... & Liang, P. (2021). On the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258.
[77] Brown, T. B. (2020). Language models are few-shot learners. arXiv preprint arXiv:2005.14165.
[78] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., ... & Sutskever, I. (2021, July). Learning transferable visual models from natural language supervision. In International conference on machine learning (pp. 8748-8763). PMLR.
[79] Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., ... & Girshick, R. (2023). Segment anything. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 4015-4026).
[80] Wagh, N., & Varatharajah, Y. (2020, November). Eeg-gcnn: Augmenting electroencephalogram-based neurological disease diagnosis using a domain-guided graph convolutional neural network. In Machine Learning for Health (pp. 367-378). PMLR.
[81] Zhang, D., Yuan, Z., Yang, Y., Chen, J., Wang, J., & Li, Y. (2024). Brant: Foundation model for intracranial neural signal. Advances in Neural Information Processing Systems, 36.
[82] Cui, W., Jeong, W., Thölke, P., Medani, T., Jerbi, K., Joshi, A. A., & Leahy, R. M. (2024, May). Neuro-GPT: Towards a foundation model for EEG. In 2024 IEEE International Symposium on Biomedical Imaging (ISBI) (pp. 1-5). IEEE.
[83] Abbaspourazad, S., Elachqar, O., Miller, A. C., Emrani, S., Nallasamy, U., & Shapiro, I. (2023). Large-scale training of foundation models for wearable biosignals. arXiv preprint arXiv:2312.05409.
[84] Zhang, D., Yuan, Z., Chen, J., Chen, K., & Yang, Y. (2024, August). Brant-X: A Unified Physiological Signal Alignment Framework. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 4155-4166).
[85] Yuan, Z., Zhang, D., Chen, J., Gu, G., & Yang, Y. (2024). Brant-2: Foundation Model for Brain Signals. arXiv preprint arXiv:2402.10251.
[86] Chen, Y., Ren, K., Song, K., Wang, Y., Wang, Y., Li, D., & Qiu, L. (2024). EEGFormer: Towards transferable and interpretable large-scale EEG foundation model. arXiv preprint arXiv:2401.10278.
[87] Wang, C., Subramaniam, V., Yaari, A. U., Kreiman, G., Katz, B., Cases, I., & Barbu, A. (2023). BrainBERT: Self-supervised representation learning for intracranial recordings. arXiv preprint arXiv:2302.14367.
[88] Apple Heart & Movement Study – Study site for information and progress updates for AH&MS. https://appleheartandmovementstudy.bwh.harvard.edu/
[89] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
[90] Zaremba, W. (2014). Recurrent neural network regularization. arXiv preprint arXiv:1409.2329.
[91] Vaswani, A. (2017). Attention is all you need. Advances in Neural Information Processing Systems.
[92] Gu, A., & Dao, T. (2023). Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint arXiv:2312.00752.
[93] Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M. A., Lacroix, T., ... & Lample, G. (2023). Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971.
[94] Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., ... & Scialom, T. (2023). Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288.
[95] Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., ... & McGrew, B. (2023). Gpt-4 technical report. arXiv preprint arXiv:2303.08774.
[96] Iapascurta, V., & Fiodorov, I. (2023, September). NLP Tools for Epileptic Seizure Prediction Using EEG Data: A Comparative Study of Three ML Models. In International Conference on Nanotechnologies and Biomedical Engineering (pp. 170-180). Cham: Springer Nature Switzerland.
[97] bbrinkm, & Will Cukierski. (2014). American Epilepsy Society Seizure Prediction Challenge. https://kaggle.com/competitions/seizure-prediction.
[98] Xue, H., & Salim, F. D. (2023). Promptcast: A new prompt-based learning paradigm for time series forecasting. IEEE Transactions on Knowledge and Data Engineering.
[99] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of machine learning research, 21(140), 1-67.
[100] Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. (1990). STL: A seasonal-trend decomposition. J. off. Stat, 6(1), 3-73.
[101] Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., ... & Chen, W. (2021). Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685.
[102] Wu, H., Xu, J., Wang, J., & Long, M. (2021). Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting. Advances in neural information processing systems, 34, 22419-22430.
[103] Chang, C., Peng, W. C., & Chen, T. F. (2023). Llm4ts: Two-stage fine-tuning for time-series forecasting with pre-trained llms. arXiv preprint arXiv:2308.08469.
[104] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI blog, 1(8), 9.
[105] Jin, M., Wang, S., Ma, L., Chu, Z., Zhang, J. Y., Shi, X., ... & Wen, Q. (2023). Time-llm: Time series forecasting by reprogramming large language models. arXiv preprint arXiv:2310.01728.
[106] Pan, Z., Jiang, Y., Garg, S., Schneider, A., Nevmyvaka, Y., & Song, D. (2024). $ Sˆ 2$ IP-LLM: Semantic Space Informed Prompt Learning with LLM for Time Series Forecasting. In Forty-first International Conference on Machine Learning.
[107] Zhou, T., Niu, P., Sun, L., & Jin, R. (2023). One fits all: Power general time series analysis by pretrained lm. Advances in neural information processing systems, 36, 43322-43355.
[108] Bagnall, A., Dau, H. A., Lines, J., Flynn, M., Large, J., Bostrom, A., ... & Keogh, E. (2018). The UEA multivariate time series classification archive, 2018. arXiv preprint arXiv:1811.00075.
[109] Sun, C., Li, H., Li, Y., & Hong, S. (2023). TEST: Text prototype aligned embedding to activate LLM’s ability for time series. arXiv preprint arXiv:2308.08241.
[110] Zhang, Y., Yang, S., Cauwenberghs, G., & Jung, T. P. (2024). From Word Embedding to Reading Embedding Using Large Language Model, EEG and Eye-tracking. arXiv preprint arXiv:2401.15681.
[111] Hollenstein, N., Rotsztejn, J., Troendle, M., Pedroni, A., Zhang, C., & Langer, N. (2018). ZuCo, a simultaneous EEG and eye-tracking resource for natural sentence reading. Scientific data, 5(1), 1-13.
[112] Qiu, J., Han, W., Zhu, J., Xu, M., Weber, D., Li, B., & Zhao, D. (2023, December). Can brain signals reveal inner alignment with human languages?. In Findings of the Association for Computational Linguistics: EMNLP 2023 (pp. 1789-1804).
[113] Park, C. Y., Cha, N., Kang, S., Kim, A., Khandoker, A. H., Hadjileontiadis, L., ... & Lee, U. (2020). K-EmoCon, a multimodal sensor dataset for continuous emotion recognition in naturalistic conversations. Scientific Data, 7(1), 293.
[114] Li, J., Liu, C., Cheng, S., Arcucci, R., & Hong, S. (2024, January). Frozen language model helps ecg zero-shot learning. In Medical Imaging with Deep Learning (pp. 402-415). PMLR.
[115] Alsentzer, E., Murphy, J. R., Boag, W., Weng, W. H., Jin, D., Naumann, T., & McDermott, M. (2019). Publicly available clinical BERT embeddings. arXiv preprint arXiv:1904.03323.
[116] Wagner, P., Strodthoff, N., Bousseljot, R. D., Kreiseler, D., Lunze, F. I., Samek, W., & Schaeffter, T. (2020). PTB-XL, a large publicly available electrocardiography dataset. Scientific data, 7(1), 1-15.
[117] Moody, G. B., & Mark, R. G. (2001). The impact of the MIT-BIH arrhythmia database. IEEE engineering in medicine and biology magazine, 20(3), 45-50.
[118] Jia, F., Wang, K., Zheng, Y., Cao, D., & Liu, Y. (2024, March). GPT4MTS: Prompt-based Large Language Model for Multimodal Time-series Forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 38, No. 21, pp. 23343-23351).
[119] Yu, H., Guo, P., & Sano, A. (2024). ECG Semantic Integrator (ESI): A Foundation ECG Model Pretrained with LLM-Enhanced Cardiological Text. arXiv preprint arXiv:2405.19366.
[120] Yasunaga, M., Leskovec, J., & Liang, P. (2022). Linkbert: Pretraining language models with document links. arXiv preprint arXiv:2203.15827.
[121] Zheng, J., Chu, H., Struppa, D., Zhang, J., Yacoub, S. M., El-Askary, H., ... & Rakovski, C. (2020). Optimal multi-stage arrhythmia classification approach. Scientific reports, 10(1), 2898.
[122] Cheng, M., Chen, Y., Liu, Q., Liu, Z., & Luo, Y. (2024). Advancing Time Series Classification with Multimodal Language Modeling. arXiv preprint arXiv:2403.12371.
[123] Van Den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., ... & Kavukcuoglu, K. (2016). Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499, 12.
[124] Cheng, M., Liu, Q., Liu, Z., Zhang, H., Zhang, R., & Chen, E. (2023). Timemae: Self-supervised representations of time series with decoupled masked autoencoders. arXiv preprint arXiv:2303.00320.
[125] Liu, M., Ren, S., Ma, S., Jiao, J., Chen, Y., Wang, Z., & Song, W. (2021). Gated transformer networks for multivariate time series classification. arXiv preprint arXiv:2103.14438.
[126] Cheng, M., Tao, X., Liu, Q., Zhang, H., Chen, Y., & Lei, C. (2024). Learning Transferable Time Series Classifier with Cross-Domain Pre-training from Language Model. arXiv preprint arXiv:2403.12372.
[127] Kim, J. W., Alaa, A., & Bernardo, D. (2024). EEG-GPT: exploring capabilities of large language models for EEG classification and interpretation. arXiv preprint arXiv:2401.18006.
[128] Wang, Y., Jin, R., Wu, M., Li, X., Xie, L., & Chen, Z. (2024). K-Link: Knowledge-Link Graph from LLMs for Enhanced Representation Learning in Multivariate Time-Series Data. arXiv preprint arXiv:2403.03645.
[129] Han, Z., Gao, C., Liu, J., Zhang, J., & Zhang, S. Q. (2024). Parameter-efficient fine-tuning for large models: A comprehensive survey. arXiv preprint arXiv:2403.14608.
[130] Lester, B., Al-Rfou, R., & Constant, N. (2021). The power of scale for parameter-efficient prompt tuning. arXiv preprint arXiv:2104.08691.
[131] Hinton, G. (2015). Distilling the Knowledge in a Neural Network. arXiv preprint arXiv:1503.02531.
[132] Jiang, Y., Pan, Z., Zhang, X., Garg, S., Schneider, A., Nevmyvaka, Y., & Song, D. (2024). Empowering time series analysis with large language models: A survey. arXiv preprint arXiv:2402.03182.
[133] Wang, Z., & Ji, H. (2022, June). Open vocabulary electroencephalography-to-text decoding and zero-shot sentiment classification. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 36, No. 5, pp. 5350-5358).
[134] Lewis, M. (2019). Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. arXiv preprint arXiv:1910.13461.
[135] Cao, D., Jia, F., Arik, S. O., Pfister, T., Zheng, Y., Ye, W., & Liu, Y. (2023). Tempo: Prompt-based generative pre-trained transformer for time series forecasting. arXiv preprint arXiv:2310.04948.
[136] Liu, P., Guo, H., Dai, T., Li, N., Bao, J., Ren, X., ... & Xia, S. T. (2024). Taming Pre-trained LLMs for Generalised Time Series Forecasting via Cross-modal Knowledge Distillation. arXiv preprint arXiv:2403.07300.
[137] Tan, M., Merrill, M. A., Gupta, V., Althoff, T., & Hartvigsen, T. (2024, June). Are language models actually useful for time series forecasting?. In The Thirty-eighth Annual Conference on Neural Information Processing Systems.
[138] Zheng, L. N., Dong, C. G., Zhang, W. E., Yue, L., Xu, M., Maennel, O., & Chen, W. (2024). Revisited Large Language Model for Time Series Analysis through Modality Alignment. arXiv preprint arXiv:2410.12326.
[139] Zhou, T., Niu, P., Wang, X., Sun, L., & Jin, R. (2023). One fits all: Universal time series analysis by pretrained lm and specially designed adaptors. arXiv preprint arXiv:2311.14782.
[140] Li, T., Kong, L., Yang, X., Wang, B., & Xu, J. (2024). Bridging Modalities: A Survey of Cross-Modal Image-Text Retrieval. Chinese Journal of Information Fusion, 1(1), 79-92.
[141] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139-144.
[142] Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in neural information processing systems, 33, 6840-6851.
[143] Kavasidis, I., Palazzo, S., Spampinato, C., Giordano, D., & Shah, M. (2017, October). Brain2image: Converting brain signals into images. In Proceedings of the 25th ACM international conference on Multimedia (pp. 1809-1817).
[144] Spampinato, C., Palazzo, S., Kavasidis, I., Giordano, D., Souly, N., & Shah, M. (2017). Deep learning human mind for automated visual classification. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 6809-6817).
[145] Tirupattur, P., Rawat, Y. S., Spampinato, C., & Shah, M. (2018, October). Thoughtviz: Visualizing human thoughts using generative adversarial network. In Proceedings of the 26th ACM international conference on Multimedia (pp. 950-958).
[146] Kumar, P., Saini, R., Roy, P. P., Sahu, P. K., & Dogra, D. P. (2018). Envisioned speech recognition using EEG sensors. Personal and Ubiquitous Computing, 22, 185-199.
[147] Singh, P., Pandey, P., Miyapuram, K., & Raman, S. (2023, June). EEG2IMAGE: image reconstruction from EEG brain signals. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1-5). IEEE.
[148] Singh, P., Dalal, D., Vashishtha, G., Miyapuram, K., & Raman, S. (2024). Learning Robust Deep Visual Representations from EEG Brain Recordings. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 7553-7562).
[149] Kaneshiro, B., Perreau Guimaraes, M., Kim, H. S., Norcia, A. M., & Suppes, P. (2015). A representational similarity analysis of the dynamics of object processing using single-trial EEG classification. Plos one, 10(8), e0135697.
[150] Bai, Y., Wang, X., Cao, Y. P., Ge, Y., Yuan, C., & Shan, Y. (2023). Dreamdiffusion: Generating high-quality images from brain eeg signals. arXiv preprint arXiv:2306.16934.
[151] Lan, Y. T., Ren, K., Wang, Y., Zheng, W. L., Li, D., Lu, B. L., & Qiu, L. (2023). Seeing through the brain: image reconstruction of visual perception from human brain signals. arXiv preprint arXiv:2308.02510.
[152] Liu, H., Hajialigol, D., Antony, B., Han, A., & Wang, X. (2024). EEG2TEXT: Open Vocabulary EEG-to-Text Decoding with EEG Pre-Training and Multi-View Transformer. arXiv preprint arXiv:2405.02165.
[153] Gifford, A. T., Dwivedi, K., Roig, G., & Cichy, R. M. (2022). A large and rich EEG dataset for modeling human visual object recognition. NeuroImage, 264, 119754.
[154] Wang, J., Song, Z., Ma, Z., Qiu, X., Zhang, M., & Zhang, Z. (2024). Enhancing EEG-to-Text Decoding through Transferable Representations from Pre-trained Contrastive EEG-Text Masked Autoencoder. arXiv preprint arXiv:2402.17433.
[155] Duan, Y., Chau, C., Wang, Z., Wang, Y. K., & Lin, C.T. (2024). Dewave: Discrete encoding of eeg waves for eeg to text translation. Advances in Neural Information Processing Systems, 36.
[156] Guo, Y., Liu, T., Zhang, X., Wang, A., & Wang, W. (2023). End-to-end translation of human neural activity to speech with a dual–dual generative adversarial network. Knowledge-Based Systems, 277, 110837.
[157] Daly, I. (2023). Neural decoding of music from the EEG. Scientific Reports, 13(1), 624.
[158] Radford, A. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.
[159] Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., & Aila, T. (2020). Training generative adversarial networks with limited data. Advances in neural information processing systems, 33, 12104-12114.
[160] Jayaram, V., & Barachant, A. (2018). MOABB: trustworthy algorithm benchmarking for BCIs. Journal of neural engineering, 15(6), 066011.
[161] Blankertz, B., Dornhege, G., Krauledat, M., Müller, K. R., & Curio, G. (2007). The non-invasive Berlin brain–computer interface: fast acquisition of effective performance in untrained subjects. NeuroImage, 37(2), 539-550.
[162] Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern recognition, 30(7), 1145-1159.
[163] Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X. (2016). Improved techniques for training gans. Advances in neural information processing systems, 29.
[164] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., & Hochreiter, S. (2017). Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural information processing systems, 30.
[165] Bińkowski, M., Sutherland, D. J., Arbel, M., & Gretton, A. (2018). Demystifying mmd gans. arXiv preprint arXiv:1801.01401.
[166] Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing, 13(4), 600-612.
[167] Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2002, July). Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association for Computational Linguistics (pp. 311-318).
[168] Lin, C. Y. (2004, July). Rouge: A package for automatic evaluation of summaries. In Text summarization branches out (pp. 74-81).
[169] Kubichek, R. (1993, May). Mel-cepstral distance measure for objective speech quality assessment. In Proceedings of IEEE pacific rim conference on communications computers and signal processing (Vol. 1, pp. 125-128). IEEE.
[170] Dao, T., & Gu, A. (2024). Transformers are SSMs: Generalized models and efficient algorithms through structured state space duality. arXiv preprint arXiv:2405.21060.
[171] Liu, Z., Wang, Y., Vaidya, S., Ruehle, F., Halverson, J., Soljačić, M., ... & Tegmark, M. (2024). Kan: Kolmogorov-arnold networks. arXiv preprint arXiv:2404.19756.
[172] Ni, R., Lin, Z., Wang, S., & Fanti, G. (2024, April). Mixture-of-Linear-Experts for Long-term Time Series Forecasting. In International Conference on Artificial Intelligence and Statistics (pp. 4672-4680). PMLR.
[173] Yu, C., Wang, F., Shao, Z., Qian, T., Zhang, Z., Wei, W., & Xu, Y. (2024, August). Ginar: An end-to-end multivariate time series forecasting model suitable for variable missing. In Proceedings of the 30th ACM SIGKDD conference on knowledge discovery and data mining (pp. 3989-4000).
[174] Qiao, Z., Pham, Q., Cao, Z., Le, H. H., Suganthan, P. N., Jiang, X., & Savitha, R. (2024). Class-incremental learning for time series: Benchmark and evaluation. arXiv preprint arXiv:2402.12035.
[175] Ragab, M., Eldele, E., Wu, M., Foo, C. S., Li, X., & Chen, Z. (2023, August). Source-free domain adaptation with temporal imputation for time series data. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 1989-1998).
[176] Qiu, X., Hu, J., Zhou, L., Wu, X., Du, J., Zhang, B., ... & Yang, B. (2024). Tfb: Towards comprehensive and fair benchmarking of time series forecasting methods. arXiv preprint arXiv:2403.20150.
[177] Wang, Y., Wu, H., Dong, J., Liu, Y., Long, M., & Wang, J. (2024). Deep time series models: A comprehensive survey and benchmark. arXiv preprint arXiv:2407.13278.
[178] Savran, A., Ciftci, K., Chanel, G., Cruz_Mota, J., Viet, L. H., Sankur, B., ... & Rombaut, M. (2006). Emotion detection in the loop from brain signals and facial images. In eINTERFACE’06-SIMILAR NoE Summer Workshop on Multimodal Interfaces.
[179] Trujillo, L. T., Stanfield, C. T., & Vela, R. D. (2017). The effect of electroencephalogram (EEG) reference choice on information-theoretic measures of the complexity and integration of EEG signals. Frontiers in neuroscience, 11, 425.
Chinese Journal of Information Fusion
ISSN: 2998-3371 (Online) | ISSN: 2998-3363 (Print)
Email: [email protected]
Portico
All published articles are preserved here permanently:
https://www.portico.org/publishers/iece/