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Abstract
In Dempster-Shafer evidence theory (DST), the
determination of basic belief assignment (BBA) is
an important yet challenging issue. The rational
mass determination of compound focal elements
is crucial for fully taking advantage of DST,
i.e., the ability to represent the ambiguity. In
this paper, for the compound focal elements, we
select and construct the “compound-class samples”
with ambiguous class membership. Then, we
use these samples to construct an end-to-end
model called Evidential Radial Basis Function
Network (E-RBFN), with the input as the sample
and the output as the corresponding BBA. The
E-RBFN can directly determine the mass values
for all focal elements (including the singleton and
compound ones).Experimental results of evidence
decision-based pattern classification onmultipleUCI
and image datasets show that our proposed method
is rational and effective.
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1 Introduction
Dempster-Shafer evidence theory (DST) [1, 2], also
known as the theory of belief functions, is an
important mathematical framework for uncertainty
modeling and reasoning. It has been widely applied
in several fields, such as information fusion [3,
4], pattern classification [5, 6], and multi-attribute
decision-making [7, 8].

In DST, the determination (or generation) of BBA
corresponds to the modeling of uncertainty [9], which
currently remains a challenging issue. The methods
for determining BBA are often related to the specific
applications. For automatic target classification, Selzer
et al. [10] proposed a BBAdeterminationmethodusing
the class number and the target’s neighborhood. Bi et
al. [11] proposed a focal element triplet-based method
for text classification. Zhang et al. [12] proposed to
determine BBA using the evidential Markov random
field for the image segmentation problem. For image
edge detection, Dezert et al. [13] determined BBA
to describe the uncertainty of the chosen threshold.
For multi-attribute decision-making, Han et al. [7]
determined BBA using the intervals of the expected
payoffs for different alternatives.
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In addition, some general BBA determination methods
have been proposed. Jiang et al. [14] proposed a
BBA determination method based on the triangular
fuzzy number. Han et al. [15] proposed a method
for transforming the fuzzy membership function
into BBA using uncertain optimization. Kang
et al. [16] proposed an interval number-based BBA
determination method.
For BBA determination, the rational mass determina-
tion of compound focal elements is crucial for fully
taking advantage of DST (i.e., the capability to
represent and handle the ambiguity). However,
when determining the mass value of compound focal
elements, traditional methods are often heuristic and
lack sufficient soundness, such as the method using
singleton focal elements’ complement set [11] or the
method using discount to singleton focal elements[17].
In this paper, for the compound focal elements, we
first select and construct “compound-class samples”,
defined as samples with ambiguous class membership.
Based on these samples, we construct an end-to-end
model called Evidential Radial Basis FunctionNetwork
(E-RBFN), where the input is the sample and
the output is the corresponding BBA. That is, the
E-RBFN can directly determine the mass values
for all focal elements (including the singleton and
compound ones). Experimental results of evidence
decision-based pattern classification on multiple UCI
and image datasets show that our proposed method
performs better thanmany existing BBA determination
methods.

2 Preliminary
2.1 Basics of Dempster Shafer Theory
In DST, the frame of discernment (FOD) is defined as
a set consisting of nmutually exclusive and exhaustive
elements, denoted by Θ = {θ1, θ2, . . . , θn}. Let 2Θ be
the power set of the FOD Θ. If a set functionm : 2Θ →
[0, 1] satisfies ∑

A⊆Θ

m(A) = 1,m(∅) = 0 (1)

then m is called a basic belief assignment (BBA, also
called a mass function). A is called a focal element of
the BBA m(·) if and only ifm(A) > 0.
Given a BBA on the FODΘ, the belief functionBel and
plausibility function Pl are respectively defined as

Bel(A) =
∑
B⊆A

m(B),∀A ⊆ Θ (2)

Pl(A) =
∑

B∩A ̸=∅

m(B), ∀A ⊆ Θ (3)

The Bel(A) and Pl(A) constitute the lower and
upper bounds of the belief interval [Bel(A), P l(A)],
which represents the degree of imprecision for the
proposition A.
Suppose that m1 and m2 are two independent BBAs
on the same FOD, which can be combined via the
Dempster’s rule of combination [1] as follows

m(A) =

{
0, A = ∅∑
B∩C=A

m1(B)m2(C)

1−K , A ̸= ∅
(4)

where K=∑
B

⋂
C=∅m1(B)m2(C) is the conflict

coefficient between the two BBAs.
The pignistic probability [18] corresponding to a BBA
m is defined as

BetP (θi) =
∑
θi∈B

m(B)

|B|
,∀B ⊆ Θ (5)

where |B| is the cardinality of the focal element B.
Based on this, one can perform probabilistic decisions
according to the decision rule defined as follows.

i∗ = argmax
i

BetP (θi) (6)

2.2 Traditional BBA Determination Methods
1) BBA Determination Using Discount to Singletons
[17]: Suppose that FOD Θ = {θ1.θ2, . . . , θn}, given
an input sample x, the probability for each class is
first obtained by a well-trained classifier (such as
the fully-connected neural network), represented as
p1(x), p2(x), . . . , pn(x). Then, the mass value for each
singleton focal element is calculated by applying a
discount to the corresponding probability, as shown
in Eq. (7).

m({θi}) = αpi(x) (7)
where α is the discount factor designed by users, with
values ranging from [0, 1]. Finally, the mass value for
the compound focal elementΘ is calculated by Eq. (8).

m(Θ) = 1− α
n∑

i=1

pi(x) (8)

For example, if the FOD Θ = {θ1, θ2, θ3}, given a
test sample, its probabilities corresponding to each
class are first obtained using a trained classifier
(a fully-connected neural network), represented as
p1(x) = 0.56, p2(x) = 0.12, p3(x) = 0.32.
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If the discount factor is set to 0.8, the corresponding
BBA for this sample is represented asm({θ1}) = 0.8×
0.56 = 0.448,m({θ2}) = 0.8×0.12 = 0.096,m({θ3}) =

0.8× 0.32 = 0.256,m(Θ) = 1−
3∑

i=1
m({θi}) = 0.2.

2) BBA Determination Using Tri-Focal Element [11]:
Suppose that FOD Θ = {θ1, θ2, . . . , θn}, given an
input sample x, the probability for each class is
first obtained by a well-trained classifier (such as
the fully-connected neural network), represented as
p1(x), p2(x), . . . , pn(x). Define the tri-focal element as
⟨A1, A2, A3⟩, whereA1, A2 are singleton focal elements,
and A3 is compound focal element, defined as

A1 = {θi1}, i1 = argmax
j

pj

A2 = {θi2}, i2 = arg max
j,j ̸=i1

pj

A3 = Θ

(9)

The mass values of A1, A2 and A3 are respectively
calculated by Eq.(10).

m(A1) = p1(x),

m(A2) = p2(x),

m(A3) = 1−m(A1)−m(A2)

(10)

For example, if the FOD Θ = {θ1, θ2, θ3}, given a test
sample, its probabilities corresponding to each class
are first obtained p1(x) = 0.12, p2(x) = 0.38, p3(x) =
0.50. For the tri-focal element ⟨A1, A2, A3⟩, A1 is
defined as {θ3}. A2 is defined as {θ2}. A3 is defined
as Θ. Then, the mass value of each focal element is
calculated asm({θ3}) = 0.50,m({θ2}) = 0.38,m(Θ) =
1 − 0.50 − 0.38 = 0.12. For the BBA determination,
the rational mass determination for compound focal
elements is crucial, which is related to fully taking
advantage of DST, i.e., the capability to represent
ambiguity. However, in the above methods, the mass
values of compound focal elements are heuristically
determined using the singleton focal elements’ mass
values (by the complementary set). These approaches
lack sufficient witness. To address this, we propose
an end-to-end BBA determination method based
on a radial basis function network (RBFN), which
can directly determine the mass values for all focal
elements (including the singleton and compound
ones), detailed in Section 3.

3 BBA Determination Based on E-RBFN
In this paper, we propose to design the BBA
determination as an end-to-end model called E-RBFN,
with the sample as input and the corresponding BBA

as the output. Our proposed method is divided
into two parts. First, we select and construct the
“compound-class samples” with ambiguous class
membership, which corresponds to the compound
focal elements in the FOD Θ. Second, we treat the
compound classes as new class labels to construct
the E-RBFN (together with the crisp classes), thus
implementing the mass modeling for all focal elements
(including the singleton and compound ones).

3.1 Selection of Compound-Class Samples
Before constructing the E-RBFN, we first select and
construct the compound-class samples. In this paper,
compound-class samples are defined as samples with
ambiguous class membership, which corresponds to
compound focal elements in the FOD Θ. For example,
if a sample belongs to the compound class {θ1, θ2},
it represents that the sample’s class membership is
ambiguous between the crisp class {θ1} and crisp
class {θ2}. In this paper, we propose to use the
confusion matrix and the information entropy to select
and construct compound-class samples, as shown in
Figure 1.

Obtain 

Confusion 

Matrix

Pick out 

Misclassified 

Samples

Calculate 

Information 

Entropy

Training 

Set

Select 

Compound-Class 

Samples

Figure 1. Procedure of Compound-Class Samples Selection.

1) Step1-Construct Confusion Matrix: First, we use the
cross validation (via the naive Bayesian classifier) to
construct confusion matrix. Suppose that FOD Θ =
{θ1, θ2, θ3}, the confusion matrix is shown in Figure 2.

2) Step2-Pick out Misclassified Samples: Based on
the confusion matrix, we pick out the misclassified
samples to serve as the compound-class samples.
Meanwhile, the correctly classified samples are
considered as crisp-class samples.

3) Step3-Calculate Information Entropy: To measure the
ambiguity of misclassified samples, we calculate the
information entropy of each misclassified sample. For
a misclassified sample x, its information entropy is
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Actual 
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Class 1 Class 2 Class 3

{q1} {q1,q2} {q1,q3}
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{q1,q3} {q2,q3} {q3}

Figure 2. Construction of Confusion Matrix.

calculated as follows.

H(x) = −
C∑
i=1

pi(x)log2(pi(x)) (11)

where pi(x) is the probability for the sample x
belonging to the crisp class i (obtained by the Bayesian
classifier). C is the total number of the crisp classes.
Higher entropy indicates that the probabilities of each
class are more similar, implying greater ambiguity.
4) Step4-Select Compound-Class Samples: After calcula-
ting the entropy for each misclassified sample, we
compare it with a predefined threshold (we set it to 1
for the simplicity; other values can also be used). For
a sample misclassified between class 1 and class 2 (as
an example), if its entropy exceeds the threshold, this
sample is assigned to the total set {Θ}. If its entropy is
less than the threshold, this sample is assigned to the
compound class {θ1, θ2}. The illustrative example of
the compound-class samples selection is provided in
Section 3.3.

3.2 Construction of E-RBFN
After obtaining the compound-class samples, we treat
them as new classes to construct E-RBFN together
with crisp-class samples, thus implementing the
mass modeling for each focal element (including the
compound focal element). For the dataset containing
three crisp classes, there are seven class labels: {θ1},
{θ2}, {θ3}, {θ1, θ2}, {θ1, θ3}, {θ2, θ3} and {θ1, θ2, θ3}.
The structure of E-RBFN is shown in Figure 3. Note
that some classes are omitted.
As shown in Figure 3, the input of E-RBFN is the data
sample, and the output is the corresponding BBA. This
end-to-end modal can directly determine the mass
values for all compound focal elements.
In the structure of E-RBFN, we use the RBF neuron to
represent the local region of each class (including the

Input Sample

Normalization

{q1} {q2} {q1,q2}

Output BBA

{q1,q2,q3}

RBF Neuron

2

2

1
exp( )

2
x c


− −

c

1{ }m q 2{ }m q 1 2{ , }m q q { }m 

Figure 3. The Structure of E-RBFN.

crisp class and the compound class). The activation
function of the RBF neuron is defined as the radial
basis function, as calculated in Eq. (12).

R(x− cna) = exp(− 1

2σ2
∥x− cna∥

2) (12)

where x is the input sample. cna is the n-th RBF neuron
center of class a. σ2 is the variance of each RBF neuron.
In this paper, the RBF neuron centers are obtained by
the k-means clustering algorithm [19]. For example,
for the compound class {θ1, θ2}, we implement the
k-means algorithm in all samples belonging to this
class, and then designate the cluster centers as the RBF
neuron centers for {θ1, θ2}. For the variance of the RBF
neuron, we calculate it by the empirical formula [20].

σ =
dmax√
2h

(13)

where dmax is the maximum distance between the
centers of RBF neurons, h is the number of RBF
neurons.

3.3 E-RBFN’s Application in Pattern Classification
In this section, we use an example to illustrate the
process of our E-RBFN-based BBA determination
method and its application in pattern classification,
with the whole procedure shown in Figure 4. We
use the Iris dataset [21] as an example to show
our method. This dataset comprises 150 samples,
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distributed equally among three classes: Setosa (Se),
Versicolor (Ve), and Virginica (Vi). We select 25
samples from each class to serve as the training set.

Training

Set

Select 

Compound-Class

Training 

Phase

Test Phase

Constructed E-RBFN

Construct 

E-RBFN

Compound-Class 

Samples

Crisp-Class 

Samples

Test 

Sample
E-RBFN

Decision-

Making
BBA

Figure 4. Procedure of E-RBFN-Based Pattern Classification.
1) Select Compound-Class Samples: First, we select the
compound-class samples using the confusion matrix
and information entropy. Here, the confusionmatrix is
constructed by the cross validation (with the Bayesian
decision) on training datasets, as shown in Table 1.

Table 1. Confusion matrix of Iris dataset.

Size Predicted Class
Se Ve Vi

Actual Class
Se 20 3 2
Ve 4 16 5
Vi 4 3 18

Then, we pick out the misclassified samples and
calculate the corresponding entropy. For a sample
misclassified between class Se and V e, if its entropy
exceeds the threshold (set to 1), the misclassified
sample is classified as {Se, V e, V i}. If its entropy is
less than the threshold, it is classified as {Se, V e}.
2) Construct E-RBFN: After selecting compound-class
samples, we treat the compound classes as new
class labels and construct the E-RBFN together with
the crisp-class samples. In this example, there are
seven classes: {Se}, {V e}, {V i}, {Se, V e}, {Se, V i},
{V e, V i} and {Se, V e, V i}. The k-means clustering
algorithm is implemented on each class to obtain the
RBF neuron centers (k is set to 2). The variance of each
RBF neuron is calculated by Eq. (13).
3) BBA Determination Based on E-RBFN: Once the
E-RBFN is constructed, it can be used for BBA

determination to support the decision-making. To
show this process, we select a test sample belonging
to the Se class as an example. The feature values of
this sample are as SL = 5.1 cm, SW = 3.5 cm, PL =
1.4 cm, PW = 0.2 cm .
The selected sample is the input of the E-RBFN.
Then, the E-RBFN can determine the mass values
for each focal elements (including the singleton
and compound ones) in an end-to-end manner, as
m({θ1}) = 0.9032,m({θ2}) = 0.0054,m({θ3}) =
0.0129, and m({θ1, θ2}) = 0.0171,m({θ1, θ3}) =
0.0389,m({θ2, θ3}) = 0.0018,m(Θ) = 0.0207.
Next, we transform this BBA into pignistic probability
using Eq. (5), and we obtain BetP ({Se}) =
0.9381, BetP ({Ve}) = 0.0218, BetP ({V i}) = 0.0401.
Finally, the test sample is classified as Se, which is
consistent with the actual label.

4 Experiments
In the section, we conduct the evidence decision-based
pattern classification experiments onmultipleUCI [21]
datasets and image datasets (from the Kaggle platform
[22]) to evaluate the effectiveness of our proposed BBA
determination method. The characteristics of these
datasets are shown in Table 2.

Table 2. Characteristics of Datasets Used.
Dataset Type Class Instance
WDBC

UCI

2 569
Thyroid 3 215
CMC 3 1473
Robot 4 5456
Vowel 6 871

Blood Cell
Image

4 12500
Crop Diseases 5 21397

CIFAR-10 10 60000
Fashion-MNIST 10 70000

In the experiments, we compare the classification
performance of our method with several traditional
BBA determination methods: tri-focal element method
[11], discount-based method [17], triangular fuzzy
number (TFN)-based method [14] and interval
number(IN)-based method [16]. For the E-RBFN,
we set the number of layers to 3: the input layer
corresponds to the sample feature dimensions, the
middle layer is the RBF layer, and the output layer
corresponds to the dimensions of the BBA. In the
RBF layer, the number of RBF neurons for each class
(including the compound classes) is set to 2 (for the
simplicity, other values can also be used). For UCI
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Table 3. Experimental Results of Evidence Decision-Based Pattern Classification.
Average ± Std/% Triplet Discount TFN IN E-RBFN

WDBC
Accuracy 89.72±1.37 88.60±1.45 90.91±1.47 89.16±1.68 91.46±1.88
Precision 89.86±2.45 88.01±1.71 90.72±0.98 88.91±2.06 91.82±0.86
Recall 88.45±1.24 89.16±0.43 91.10±0.83 90.21±2.52 90.74±2.13

F1-Score 88.93±1.82 88.25±1.82 90.91±1.17 90.54±0.64 91.09±0.81

Thyroid
Accuracy 90.85±1.55 90.06±1.86 93.21±1.74 91.28±0.96 93.94±2.40
Precision 90.28±1.91 90.53±1.50 92.56±1.63 92.14±0.88 94.15±0.98
Recall 91.02±2.41 89.94±1.23 93.34±0.28 91.66±0.51 94.05±0.85

F1-Score 90.57±0.34 90.05±0.51 92.78±0.36 91.89±1.97 93.98±0.32

CMC
Accuracy 62.12±1.36 62.36±1.32 64.52±0.64 63.29±1.23 66.94±1.66
Precision 62.23±1.91 62.87±0.43 63.94±2.12 62.48±0.85 65.89±0.97
Recall 61.57±1.08 61.89±1.82 64.61±1.52 63.12±0.48 66.45±2.15

F1-Score 61.81±1.91 62.02±0.53 64.00±0.64 62.63±1.94 66.16±0.88

Robot
Accuracy 92.34±0.69 91.15±1.59 94.48±0.47 93.72±1.36 95.41±1.23
Precision 92.76±1.36 91.89±1.32 94.43±0.64 93.58±1.23 95.69±1.15
Recall 93.12±1.59 92.55±1.64 95.28±1.15 94.24±0.64 95.12±2.37

F1-Score 92.81±2.48 92.04±0.95 94.79±1.88 93.68±1.52 95.26±0.35

Vowel
Accuracy 91.24±1.36 92.05±1.31 93.19±2.17 94.32±2.00 95.42±1.02
Precision 91.67±1.88 91.02±2.41 92.74±1.79 94.67±1.94 95.19±1.76
Recall 92.14±2.07 91.56±1.18 93.25±0.95 93.45±1.25 96.03±0.88

F1-Score 91.52±1.27 91.18±0.91 92.84±1.54 94.01±2.37 95.29±0.69

Blood Cell
Accuracy 94.12±1.08 94.15±2.28 95.55±1.39 95.92±1.64 96.57±1.63
Precision 94.24±1.39 93.89±1.39 96.02±1.76 95.74±0.98 96.83±1.00
Recall 94.61±0.48 94.07±1.64 95.94±1.39 95.45±2.34 97.16±1.38

F1-Score 94.75±0.79 93.98±0.28 95.98±1.67 95.59±1.94 96.98±0.97

Crop Diseases
Accuracy 91.34±2.26 92.15±1.13 94.56±2.29 96.12±1.39 96.35±0.45
Precision 91.47±0.47 91.98±2.36 94.63±0.98 95.01±1.22 96.28±1.82
Recall 92.12±0.98 92.05±1.39 95.27±1.55 96.96±2.43 96.89±1.56

F1-Score 91.89±2.52 92.03±1.35 94.90±2.08 95.98±1.28 96.72±1.95

CIFAR-10
Accuracy 92.56±1.95 93.28±2.59 94.40±0.58 94.12±1.56 95.74±1.25
Precision 92.34±1.36 93.10±2.47 95.02±0.97 93.81±2.19 94.56±0.87
Recall 93.01±1.94 92.72±1.78 94.21±0.91 94.50±0.67 95.85±1.18

F1-Score 92.38±1.39 92.98±0.45 94.39±1.74 94.16±1.08 95.54±0.99

Fashion-MNIST
Accuracy 91.73±0.57 91.12±1.13 92.67±0.43 92.35±1.36 93.91±0.98
Precision 91.29±1.63 91.35±1.89 92.13±1.39 92.48±1.94 92.76±1.28
Recall 92.18±2.12 90.58±2.56 93.19±0.45 92.72±1.78 93.84±1.05

F1-Score 91.54±0.97 90.94±0.69 92.36±2.06 92.59±1.53 93.65±0.97

datasets, we conducted the experiments on the original
feature space of samples. For the image datasets, we
first extract deep features by the pre-trained ResNet50
model (the deep features before its fully connected
layer) [23]. Next, the evidence decision-based pattern
classification experiments are conducted on these deep
feature spaces. This process for image datasets is
shown in Figure 5.

In the experiments, each dataset is divided into two
parts, with 50% assigned to the training set and 50%
to the test set. The experiment on each dataset is
randomly performed ten times. We calculate the
average and variance of four measures, including
accuracy, precision, recall, and f1-score. The results
are shown in Table 3. As we can see, our proposed

ResNet

Deep Feature

Input 

Image

BBA 

Determination

Evidence 

Decision

BBA

Figure 5. Experiment process for Image Datasets.

method performs globally much better than several
traditional BBA determination methods on multiple
UCI and image datasets (with p-values less than
0.05 in Wilcoxon signed-rank tests), especially for the
methods that determine the mass values of compound
focal elements using the singleton focal elements (i.e.,
the tri-focal element method and the discount-based
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method). This indicates that by introducing the
compound classes and learning mechanism, our
E-RBFN offers superior advantages over the traditional
heuristic approaches.

5 Conclusions
To better determine the BBA, especially for the mass
determination for compound focal elements, we design
the BBAdetermination process as an end-to-endmodel
called E-RBFN. This model can directly determine
the mass values of all focal elements (including the
singleton and compound ones). Experimental results
of evidence decision-based pattern classification on
multiple UCI and image datasets show that our
method is effective and reasonable.
Note that in our approach, compound-class samples
are obtained by the confusion matrix and information
entropy, which may depend on the parameter settings.
In future work, we will attempt to use the inherent
ambiguity or uncertainty in the data to obtain
compound-class samples, thus reducing reliance on
parameters.
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