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Abstract
In the evolving framework of the Intelligence
of Social Things (IoST), which amalgamates
social networks and IoT ecosystems, knowledge
graphs are essential for facilitating networked
systems to efficiently process and leverage
intricate relational data. Knowledge graphs offer
essential technical assistance for various artificial
intelligence applications, such as e-commerce,
intelligent navigation, healthcare, and social media.
Nonetheless, current knowledge graphs frequently
lack completeness, harboring a considerable
quantity of implicit knowledge that remains to
be revealed. Consequently, tackling the difficulty
of finalising knowledge graphs has emerged as
a pressing research priority. Most contemporary
methods separately analyse entity neighbourhood
information or connection routes, neglecting the
significance of entity neighbourhood information
in the investigation of relationship paths. A
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novel approach, RPEN-KGC (Relationship Path
and Entity Neighbourhood Knowledge Graph
Completion), is suggested to enable the fusion
of relationship paths and entity neighbourhood
information for knowledge graph completion.
RPEN-KGC comprises a sampler and an inferencer.
The sampler conducts randomwalks between entity
pairs to furnish dependable inference methods for
the inferencer. The sampler utilises a contrastive
method grounded in entity neighbourhood
similarity to steer random walks, hence enhancing
sampling efficiency and augmenting inference
strategies. The inferencer derives semantic
characteristics of relationship paths and deduces
a greater variety of relationship paths within the
semantic domain. Experiments performed on
the public NELL-995 and FB15K-237 datasets for
the link prediction task indicate that RPEN-KGC
significantly enhances most metrics relative to
baseline approaches. These findings demonstrate
that RPEN-KGC proficiently forecasts absent
information in knowledge graphs.
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1 Introduction
Google introduced the concept of Knowledge Graphs
in 2012, significantly enhancing the ability to manage,
understand, and organize the vast amounts of data
in the world. This advancement is attributed to its
structured triplet form, which effectively represents
entities, their attributes, and the relationships between
them [1]. Over the last many years, knowledge
graphs have played an increasingly important role
in various perception tasks [2], especially bringing
vitality to areas like intelligent question answering [3],
software development [4], knowledge alignment [5],
and intelligent recommendation [6]. There are many
large-scale knowledge graphs, such as DBPedia [7],
Freebase [8], NELL [9], and WordNet [10], which are
widely used in numerous knowledge-aware artificial
intelligence applications. Although knowledge
graphs have high application value, they suffer from
incompleteness due to the large amount of valuable
knowledge that is implicit or missing. Data shows
that in current large knowledge graphs, some common
basic relationships (such as birth rate, nationality,
parents, etc.) are missing over 70% of the time, and
there is considerably little evidence of connectionswith
reduced usage rates [11]. To increase the knowledge
graph’s scalability, Knowledge Graph Completion
(KGC) attempts to predict and complete the missing
triplets [12].
The main difficulties and challenges currently faced
include: first, in the face of complex knowledge graph
structures, existing methods cannot effectively reflect
the neighborhood information of entities in the entity
embedding representations. Second, for the task of
knowledge graph completion, the close relationship
between the entity neighbourhood information and
relationship paths in the knowledge graph plays a
crucial role, but current methods fail to fully integrate
them. Finally, due to the differences in the training
dataset distribution, which is significantly different
from the real world, existing completion methods
have poor generalization ability and cannot cope with
the rapidly changing real world. To solve the above
challenges, this paper proposes a knowledge graph
completion model that integrates relationship paths
and entity neighbourhood information (RPEN-KGC).
The specific contributions of this paper are as follows:
1. The proposed RPEN-KGCmodel integrates entity

neighbourhood information and relationship
paths in the knowledge graph, and uses semantic
feature information from the relationship paths to
infer more potential semantic information in the

semantic space.
2. The RPEN-KGC model uses a

generator-adversarial network-based reasoning
engine to train adversarial on the generated
samples and expert samples formed by random
walks, ultimately obtaining reasoning paths for
the completion task and effectively improving the
model’s robustness to noisy data.

3. To provide more diverse expert paths to the
generator-adversarial network, an unsupervised
sampler is used to collect richer relationship paths
as expert paths based on the feature environment
of each entity.

Section 2, review existing studies, highlight
contributions, identify research gaps, and in section
3, explain framework addressing gaps with models,
diagrams, and algorithms. In section 4, present
experiments, evaluate performance, compare results,
analyze findings, and in section 5, conclude findings,
discuss implications, limitations, and suggest future
work.

2 Related Work
To solve the data sparsity issue in knowledge graphs
of artificial intelligence of social things, knowledge
graph completion uses the existing information to fill in
missing facts. This study summarizes previous studies
and classifies the known approaches for completing
knowledge graphs into three groups: those that rely
on translation, those that rely on semantic matching,
and those that rely on relationship paths.

2.1 Approaches Relying on Translation
By encoding things into low-dimensional embeddings
and the relationships between them as translation
vectors, translation-based algorithms provide great
performance with low complexity in knowledge
graph of artificial intelligence of social things. To
determine whether a triplet is accurate, these
methods usually use distance-based scoring and
establish a translation scoring system based on
dependencies. As the foundation of translation
models, the TransE model [13] can outperform most
conventional methods while maintaining a reasonable
level of efficiency by translating entities and their
relationships into a continuous low-dimensional vector
space. In this space, the tail entity is thought of
as the product of translating the head entity by the
relationship vector. Nevertheless, when it comes to
modeling complicated relationships, the TransEmodel
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falls short due to its oversimplification, which restricts
it to 1-to-1 relationships. One example is the TransH
model [14], which uses an extra mapping vector for
every relationship. This allows it to translate things
by assigning them to hyperplanes of the relationship.
Convolutional neural networks (CNNs) are used
to build the discriminator because of their great
performance in semantic feature extraction. This helps
to improve the semantic distinction between the expert
paths and the generated paths. Semantic feature
extraction is carried out after the generated paths
and expert paths are packaged as path bundles for
every entity pair. The PKICLA model determines
the probability score for the validity of the candidate
triplets by extracting semantic features from several
routes using CNN and Bi-LSTM. By first building
entity and relationship embeddings in their own vector
spaces, the TransR model [15] can then translate
these into their respective relationship spaces. To
improve computational performance, the TransD
model [16] replaces matrix multiplication with vector
multiplication, embeds two vectors for each entity,
and assigns a new relationship mapping matrix to
each entity, all of which are advancements over
TransR. In general, approaches based on translation,
which depend on internal structural information,
are straightforward, efficient, and frequently utilized
as a base for expanding models. These methods
are employed to solve knowledge graph completion
challenges.

2.2 Techniques Reinforced by Semantic Matching
The conventional approach to knowledge prediction
using semantic matching involves calculating a scoring
function that estimates the probability of new facts
emerging from existing data bymeasuring the possible
semantic similarity of entities and relationships in
vector space. Binary relationship data is intrinsically
structured, as the RESCAL model [17] illustrates
via a third-order tensor decomposition. An entity’s
possible semantics are represented by a vector, and the
interactions between these vectors are simulated using
a relation matrix. By substituting a diagonal matrix
for the dense one in RESCAL, the DistMult model
drastically lowers the model’s computing parameters.
While the DistMult model is capable of handling
asymmetric relations in the knowledge graph, this is
because the product operator on real numbers has
the property of being balanced. Recognized as the
pioneer in handling symmetric and antisymmetric
relations using complex-valued embeddings in
complex space, the ComplEx model [18] represents

each embedding with two vectors, one for real and
one for imaginary components. When it comes to
representing entities and relationships, traditional
semantic matching-based models have limitations
due to their exclusive focus on the intrinsic feature
information of the triplet and their disregard of the
rich According to research on semantic matching
approaches, neural networks can accurately model
the semantic links between individual items and
intelligently capture their semantic properties, which
in turn improves the reasoning accuracy of the
model. A two-dimensional convolutional network
is employed by the ConvE model [19] to anticipate
new information in the knowledge graph of artificial
intelligence of social things by combining local spatial
aspects of entities and relationships from various
viewpoints. The main difference between ConvE and
the ConvKB model [20], which was presented later, is
that the latter employs a 1D convolutional network to
extract global associations along the same dimension
of the input triplet matrix, rather than a 2D one. This
allows ConvKB to represent each triplet as a 3Dmatrix.
To characterize the possible semantic linkages along
routes of any length, the PATH-RNN model [21]
applies composite functions recursively using a
recurrent neural network., generating corresponding
path vectors to infermissing relations in the knowledge
graph of artificial intelligence of social things. The
Single-Model model, based on PATH-RNN, combines
relationships, entities, and entity types to effectively
improve the model’s reasoning performance.

2.3 Relationship Path-Based Methods
In knowledge graphs, there are many relationship
paths between entity pairs that represent their
semantic relationships. One reason knowledge graph
completion has progressed is because relationship
path-based methods have become more popular;
these pathways reflect the intricate reasoning patterns
between relations in the knowledge graph of artificial
intelligence of social things. Learning relationship
paths for reasoning in knowledge graphs were initially
introduced by the PRA model. It takes a pair of
entities as input, uses a classifier to find out if the
relationship you’re asking about actually exists, and
then builds relationship pathways between them using
random walks. By including multi-path relationship
reasoning and utilizing a resource allocation technique
to apply weights to the many routes, the PTransE
model improves the efficiency of the translation-based
model’s predictions. In contrast to the PRA algorithm’s
random walk technique, the DeepPath model searches
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for reasoning paths in the knowledge graph using
reinforcement learning, enabling it to regulate the
nature of the search. The MINERVA model [22]
is very similar to DeepPath in that it uses LSTM
networks to define relationship paths and uses
path validity as the only measure of success for
rewards. By encoding the historical information of
the searched paths in an RNN and mapping it into
the reinforcement learning state and action space,
the M-Walk model [23] improves reasoning accuracy
through inferring paths and generating more positive
rewards through an improvedMonte Carlo Tree Search
(MCTS). The DIVINE model can adaptively adjust
the reward function to optimize model performance
based on different environments. These models
only consider single-path reasoning and ignore the
semantic similarity between multiple paths. Given the
scenario described above, an emergent entity’s current
neighbors are taken into consideration as an additional
kind of input for inductive models. Hamaguchi et
al. [24] suggest using a Graph Neural Network (GNN)
on the KG, which creates an embedding of a new item
by combining all of its neighbors that are known to
exist. Hao et al. [25] the neighbors’ differences are
ignored by their model, which aggregates them using
basic pooling techniques.

The APCM model [26] introduces an attention
mechanism into relationship paths, assigning different
weights to each generated path based on its importance
by comparing the semantic similarity between
each path and the candidate relationship. The
PKICLA model uses CNN and Bi-LSTM to extract
semantic features of multiple paths and calculates
the probability score for the validity of the candidate
triplets.

3 Proposed Method
An extensive overview of the RPEN-KGC model’s
architecture and training procedure is given in this
section. The model’s relationship path reasoning
engine and expert path sampler make up the bulk of
its structure, as seen in Figure 1. The reasoning engine
is based on a generative adversarial network (GAN)
framework. It uses input expert paths as reasoning
strategies, trains the generator in the knowledge graph
to generate more reliable paths as completion results.
The sampler performs local and global sampling on
the relationship paths between entity pairs, providing
more diverse expert paths for the reasoning engine to
use as reasoning evidence.

3.1 Reasoning Engine
In the RPEN-KGC model, the reasoning engine
consists of a generator and a discriminator. The
generator performs random walks in the knowledge
graph to generate many relationship paths. These
paths are then input, along with the expert paths
generated by the sampler, into the discriminator.
The discriminator evaluates the semantic similarity
between the generated paths and the expert paths
as reasoning evidence, providing feedback to the
generator for parameter adjustment. Once the
discriminator and generator have undergone enough
adversarial training, reliable paths that match the
expert path distribution can be found, which can then
be used for knowledge graph of artificial intelligence
of social things completion.

Figure 1. Overall framework of the RPEN-KGC model.

To find reliable paths that match the expert paths
in the semantic space, the generator is constructed
using a policy-based agent in reinforcement learning.
Since convolutional neural networks (CNNs) have
high performance in semantic feature extraction, the
discriminator is constructed using a CNN, which helps
better distinguish between the generated paths and the
expert paths semantically. The generated paths and
expert paths are packaged for each entity pair in the
form of path bundles, and semantic feature extraction
is performed. Figure 2 provides a basic schematic
diagram of the path bundle embedding representation.
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Figure 2. Schematic diagram of path bag embedding
representation.

The path q = {r1, r2, · · · , rk, · · · } is embedded as:

q =
∑
rk∈q

rk (1)

Each path is composed of k relations, and each relation
is embedded using the TransEmethod, mapping it into
a vector rk ∈ Rd.
Each path bundle t contains N paths. By embedding
and concatenating all paths in the bundle, a real-valued
matrix is obtained.

t = q1 ⊕ q2 ⊕ · · · ⊕ qN (2)

where,⊕ represents the concatenation operator for the
path bundle t ∈ RNd.
After encoding the path bundle, it is input into a
discriminator based on a convolutional neural network
to extract its semantic features. First, local features are
extracted through a convolutional layer activated by
ReLU non-linear activation.

f = ReLU (Conv(t, ω) + bf ) (3)

where, ω ∈ Rh×l is the convolution kernel, and bf is
the bias coefficient.
Then, semantic features are further extracted through
two fully connected layers:

g = W2ReLU(Z1f) (4)

For simplicity, the corresponding bias terms are
omitted in the equations. Z1 and Z2 represent
the linear transformation matrices of two different
fully connected layers. The output of Equation (4)
is normalized using the sigmoid function, while
other layers employ the ReLU function for non-linear
transformation.
The probability of generating a path as an expert
path is calculated using the sigmoid function, and
the knowledge graph of artificial intelligence of social
things is completed based on the probability results.

3.2 Sampler
Local Relation Sampling: The knowledge graph uses a
bidirectional breadth-first search strategy to discover
the shortest path between each entity pair. The
correlations between entity pairs are more directly
reflected in shorter paths. Although longer paths may
hold hidden value, they are more likely to introduce
noise, which can reduce the quality of expert paths. By
performing local relation sampling for each entity pair,
an initial expert path set ΩE is obtained.
Global Relation Sampling: Static sampling techniques
are easy to use, but they produce fewer expert paths
and ignore each entity’s local context in the artificial
intelligence of social objects knowledge network. As a
result, this research suggests a sampling strategy based
on entity neighborhood similarity. For each query
triple, the method extracts its relation r and the entity
pairs directly connected to it in the knowledge graph as
the sampling set. Using the distribution characteristics
of word vectors in the semantic space (i.e., the more
similar the attribute information or descriptions of
entities, the closer they are in the embedding space),
the similarity between the entity pairs in the given
triple and those in the sampling set is measured via
vector dot product. A higher result indicates greater
similarity between the entities. To better transfer
relation r to other entity pairs, entity pairs with high
similarity scores for both head and tail entities are
selected for subsequent path exploration.
For the relation ri ∈ R in a given triple, all entities e
connected to ri form the set Ej , and the tail entities
among them form the set Uj . In the knowledge
graph of artificial intelligence of social things, through
randomwalk, if any entity hj in the setEj reaches uj ∈
Uj after several steps, the path is recorded as τ , and
all τ obtained from the relationship ri are taken as its
characteristic path set Γri . |Γri | represents the number
of characteristic paths inΓri . After the path exploration
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is completed, the symbol τj ∈ Γri(j = 1, 2, · · · , |Γri |)
represents the j characteristic path obtained by the
relationship ri. In order to ensure the quality of the
expert path, the number of random walk steps is set
to 3. The possibility of the head entity hj reaching uj
through each path τj is:

mj =
∑

e∈range(τj)
q(hj , e; τ

′
j)Q(u|e; r′i) (5)

where, τ ′j is the sub-part of the path τj without the tail
relation r′i, and Q(u|e; r′i) represents the probability
that e reaches u through the relation:

Q(u|e; ri) = d(Ecj · e)
r′i(e, uj)

|r′i(e, ·)|
(6)

where, d(Ecj · e) represents the degree of association
between entities obtained through cosine similarity
and is used in the result calculation. Cosine similarity
is used to determine the degree of link between items,
and this information is used to calculate the result. The
dynamic sampling model’s parameters are trained in
this study using a logistic regression approach, which
also maps the computation. Using the sampler and
generator, sampling and learning are carried out for
every entity pair throughout the training phase. Some
baseline models find this difficult, requiring manual
hyperparameter modifications to fit various datasets.
Creating appropriate hyperparameters by hand might
be challenging. This paper employs a logistic
regression algorithm to train the parameters of the
dynamic sampling model and maps the computation
results to the range (0,1] using the sigmoid function.

Y =
1

1 + e−mj
(7)

where, Y represents the probability of successfully
transferring the relation ri from a given triple to other
entity pairs. A higher Y value indicates a greater
likelihood of successful transfer.

3.3 Training
During the training phase, for each entity pair,
sampling and learning are performed using the
sampler and generator. Based on whether the
agent can reach the target entity along the currently
collected paths, corresponding expert path sets ΩE

and generated path sets ΩG0 are created. The collected
paths are then grouped into different path bundles:
expert path bundles {ue|ue ⊆ ΩE} and generated path
bundles {ug|ug ⊆ ΩG}.

For each path bundle pair 〈ue, ug〉, the discriminator
aims to clearly distinguish between ue and ug. To
make the adversarial training process more stable
and effective, the RPEN-KGC model updates the
discriminator using the loss function proposed in the
WGAN-GP model.

AC = N[D(ug)]− N[D(ue)] (8)

AP = λN
(

(‖∇ũD(ũ)‖2 − 1)2
)

(9)

AD = AC +AP (10)

where AC , AP , and AD represent the critic function,
gradient penalty function, and discriminator loss
function, respectively. λ is the gradient penalty
coefficient, and ũ is uniformly sampled between ug
and ue. Based on the feedback from the discriminator,
the reward RG is calculated as:

RG = Hg max {N[D(ug)]− N[D(un)], 0} (11)

Hg =

{
1, ug ⊆ Ω+

G

0, otherwise (12)

where, un represents noise embeddings composed
of continuous uniformly distributed random noise,
Hg denotes the characteristic function indicating the
validity of the bundle ug, and Ω+

G represents the
set of all valid generated paths. By rewarding
valid paths with higher expectations compared to
noise embedding un, poor-quality paths are filtered
out, improving the efficiency of convergence during
training.
Finally, the loss function of the discriminator is
optimized using the mini-batch stochastic gradient
descent algorithm, while the generator is updated
using the Adam algorithm [27].

4 Experiments and Analysis
4.1 Databases and Assessment Criteria
In this study, two commonly used datasets for
knowledge graph of artificial intelligence of social
things completion experiments: NELL-995 [28]
and FB15K-237 [29], for link prediction. Detailed
information is shown in Table 1. The link prediction
task’s NELL-995 and FB15K-237 datasets demonstrate
that RPEN-KGC significantly outperforms baseline
methods in the majority of metrics. These results
demonstrate that RPEN-KGC is capable to accurately
predicting knowledge graphs’ missing data.
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Table 1. Dataset statistics.
Datasets #entities #relations #Train Set #Valid Set #Test Set #Tasks
NELL-995 75492 200 154213 5000 5000 12
FB15K-237 14541 237 272115 17535 20466 20

• NELL-995: This dataset is derived from the
NELL system [30] after the 995th iteration. It
selects triples corresponding to the top 200 most
frequently occurring relations.

• FB15K-237: This is a subset of FB15K [31], where
many reversible relation triples are removed. This
adjustment was made because models relying
on reversible relation principles in certain triples
can achieve optimal results, making it difficult
to distinguish the true performance of different
models.

To evaluate the performance of the model, this
study adopts commonly used metrics in the task of
knowledge graph completion: MAP (mean average
precision), MRR (mean reciprocal rank), and Hits@k.

• Hits@k: Indicates the probability that the correct
triple is ranked among the top kkk. A higher value
suggests better performance of the knowledge
graph completion method.

• MRR (Mean Reciprocal Rank): Represents the
average reciprocal rank of the correct triples. A
higher value indicates better model performance.

• MAP (Mean Average Precision): Refers to the
mean of the prediction rankings for head or tail
entities. A higher value reflects better model
performance. The definitions are as follows:

MAP =
1

m

m∑
i=1

1

|ui|
∑
y∈u

|{rank(y′) ≤ rank(y); y′ ∈ ui}|
rank(y)

(13)
In this case, the ranks of positive samples are
represented by rank(y) while those of negative
samples are represented by rank(y). Here, ui stands
for the test set andm for the overall sample size.

4.2 Comparison Methods and Parameter Settings
The model is tested against multiple baseline models
to ensure its efficacy:
• Translation-based models: TransE [32],

TransR [33].
• Semantic matching-based models: DistMult [34],

ConvE [35], Single-Model [36], and DRGI [37].
• Relation path-based models: PTransE [38],

DeepPath [39], JGAN [40], APCM [41], and
PKICLA [42].

In the experiments, every path bundleuhasN=5paths,
and the embedding dimension is set at 200. In this
convolutional neural network, the parameters 3×N for
the convolution kernel, λ for the gradient penalty, 1024
for the hidden layer, and a size for the output layer that
corresponds to the path embedding dimension are all
set. L2 regularization is used to avoid overfitting.
During testing, invalid triples are scored alongside

Table 2. Dataset statistics.

Dataset Model NELL-995 FB15K-237
MAP MRR Hits@1 Hits@3 MAP MRR Hits@1

TransE 0.737 0.715 0.608 0.702 0.532 0.286 0.190
TransR 0.789 0.727 0.631 0.714 0.54 0.315 0.216
DistMult 0.649 0.860 0.752 0.865 0.534 0.241 0.155

Single-Model 0.827 0.833 0.765 0.903 0.525 0.512 0.496
ConvE 0.812 0.862 0.826 0.919 0.536 0.509 0.430
DRGI 0.823 0.848 0.821 0.923 0.575 0.567 0.492

PTransE 0.793 0.838 0.723 0.793 0.547 0.381 0.361
DeepPath 0.796 0.852 0.808 0.884 0.572 0.495 0.449
APCM 0.838 0.847 0.783 0.905 0.558 0.556 0.513
JGAN 0.853 0.851 0.779 0.874 0.561 0.564 0.517

PKICLA 0.846 0.856 0.829 0.941 0.564 0.589 0.528
RPEN-KGC 0.887 0.859 0.827 0.953 0.659 0.686 0.531

33



Chinese Journal of Information Fusion

valid triples at a ratio of approximately 1:10, with
invalid triples generated by randomly replacing
entities.

4.3 Results and Analysis
Table 2 displays the link prediction experiment
outcomes in comparison to baseline models.
Compared to NELL-995, RPEN-KGC performs
better than the majority of baseline models, especially
on larger datasets like FB15K-237, which has a more
complex distribution of relation types. Specifically:
• NELL-995: The proposed model outperforms

translation-based models significantly. While
semantic matching-based models and relation
path-based models score higher on NELL-995,
their performance drops on FB15K-237, likely due
to the interference from reversible relations. On
NELL-995, RPEN-KGC is slightly behind some
models in MRR and Hits@1 metrics. However,
it improves over the best-performing models by
0.034 and 0.012 in MAP and Hits@3, respectively.

• FB15K-237: RPEN-KGC achieves the best
results across all metrics. Compared to the
best-performing fusion-based models, it improves
MAP, MRR, Hits@1, and Hits@3 by at least 0.084,
0.097, 0.003, and 0.009, respectively.

Comparison Insights:
• On NELL-995, compared to ConvE and DistMult,

RPEN-KGC shows a slight drop in MRR (by
0.003 and 0.001, respectively). This is because
NELL-995 contains fewer paths for certain entity
pairs, whereas RPEN-KGC requires a large
number of paths for expert and generated paths.
DistMult uses a bilinear scoring function for
triples, and ConvE employs 2D convolution
to process entity and relation embeddings,
effectively extracting entity similarity features and
enhancing performance.

• Compared to PKICLA, RPEN-KGC’s Hits@1 is
slightly lower because PKICLA not only extracts
local features of relation paths but also uses
an attention mechanism to assign weights to
multiple paths, extracting global features and thus
achieving prominent performance.

• An entity neighbourhood similarity comparison
mechanism is also included in the model, which
offers the reasoner a large number of trustworthy
expert pathways and successfully facilitates
semantic interaction between relation paths

and entity neighbourhood data. Experiments
on two publicly accessible knowledge graph
completion datasets show that the RPEN-KGC
model performs better than baseline methods on
the majority of metrics.

On FB15K-237, RPEN-KGC consistently achieves the
best performance across all evaluation metrics. This is
due to two key reasons:

1. Compared to other models, RPEN-KGC fully
extracts relational path features through
adversarial training between expert and generated
paths, while also leveraging entity similarity to
improve the success rate of expert path mining
and capturing entity feature information.

2. FB15K-237’s complex relation types make it
challenging for some baseline models, which
require manual hyper parameter adjustments to
fit different datasets. Designing suitable hyper
parameters manually can be complex. However,
RPEN-KGC automatically optimizes parameters
through generative adversarial networks and
uses a sampler to unsupervised extract many
reliable expert paths from the knowledge graph
of artificial intelligence of social things.

As a result, RPEN-KGC demonstrates more stable
performance and better real-world applicability
compared to other models.

Relationship paths and entity neighbourhood data
are combined for knowledge graph fused using
a novel method called RPEN-KGC (Relationship
Path and Entity Neighbourhood Knowledge Graph
Completion). The sampler provides the inferencer
with reliable inference methods by randomly walking
between entity pairs. To increase sampling efficiency
and support inference methodologies, the sampler
steers random walks using a contrastive method
based on entity neighborhood similarity. The
inferencer infers a wider range of relationship paths
within the semantic domain and extracts semantic
properties of relationship paths. RPEN-KGC greatly
improves most metrics compared to baseline methods,
according to experiments conducted on the publicly
availableNELL-995 and FB15K-237 datasets for the link
prediction task. These results show that RPEN-KGC
effectively predicts knowledge graphs with missing
information.
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4.4 Ablation Study
To validate the effectiveness of the model’s
components, an ablation study was conducted
by removing certain components of the model and
retraining on the FB15K-237 and NELL-995 datasets.
This quantifies the contributions of each component.
The three model variants in this study are as follows:
1. Removal of the Global Relation Sampling Module:

The model uses only the local relation sampling
method to obtain expert paths during training.

2. Removal of the Local Relation Sampling Module:
The model uses only the global relation sampling
method to obtain expert paths during training.

3. Removal of the Sampler Module: The
model conducts experiments using only the
reinforcement learning approach.

On the NELL-995 and FB15K-237 datasets, the
MAP metric is used to evaluate the link prediction
performance of the model. The experimental results
are shown in Table 3.

Table 3. Ablation experiment results.

Model MAP
NELL-995 FB15K-237

Model in this paper 0.887 0.659
w/o local relation sampling 0.817 0.651
w/o global relation sampling 0.802 0.643

w/o sampler 0.796 0.572

After removing the local relation sampling module,
global relation samplingmodule, and sampler module,
the MAP metric of the model shows varying degrees
of decline.
• After removing the local relation sampling

module, the model only uses global relation
sampling to obtain multi-hop paths between
entities as expert paths, ignoring the most direct
path relationships between entities. The MAP
score is close to but lower than that of the original
model.

• After removing the global relation sampling
module, the model cannot dynamically adjust
hyper parameters and lacks attention to entity
environmental features. It only uses a small
number of single-hop paths between entities
as expert paths, resulting in a MAP score
significantly lower than the original model.

• After removing the sampler module, the model

degenerates to DeepPath, and it performs the
worst compared to the other ablation models.

The ablation study results demonstrate the rationality
of each component in RPEN-KGC.
In order to develop reasoning paths for the completion
task and hence increase the model’s robustness
to noisy data, the RPEN-KGC model employs a
generator-adversarial network-based reasoning engine
to train adversarial on the generated samples and
expert samples created by random walks.

5 Conclusion
This paper proposes a knowledge graph completion
method, RPEN-KGC, that integrates relation paths
and entity domain information. By using a generative
adversarial network, it captures many relation paths
from the knowledge graph of intelligence of social
things. Additionally, by extracting semantic features
from these relation paths, it generates more diverse
reasoning paths in the semantic space. The model
also incorporates an entity neighbourhood similarity
comparison mechanism, providing many reliable
expert paths for the reasoner and effectively enabling
semantic interaction between relation paths and entity
neighbourhood information.
Experiments on two publicly available datasets for
knowledge graph completion demonstrate that the
RPEN-KGC model outperforms baseline models on
most metrics. In future research, this method will be
enhanced by incorporating multimodal information to
further improve the effectiveness of knowledge graph
completion.
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