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Abstract
Due to the poor imaging quality of remote sensing
images and the small size of targets, remote sensing
small target detection has become a current research
difficulty and hotspot. Recent years have seen
many new algorithms. Remote sensing small target
detection methods based on image super-resolution
reconstruction have attracted many researchers
due to their excellent performance. However,
these algorithms still have problems such as
weak feature extraction capability and insufficient
feature fusion. Then, we propose Enhanced Feature
based Small Target Detection Network in Remote
Sensing Images (EFSOD), which includes a Edge
Enhancement Super-Resolution Reconstruction
Module (EESRM) and a Cross-Model Feature
Fusion Module (CMFFM). EESRM enhances
the recognizability of small target contours by
fusing extracted edge features with the original
features through residual connections, alleviating
the constraints of feature blurring on detection
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performance. CMFFM achieves deep integration
of the detailed features extracted by the EESRM
network with the semantic features extracted by the
target detection network, improving the model’s
sensitivity and accuracy in recognizing small targets
in complex backgrounds. Additionally, considering
the effects of blurring, noise, illumination changes,
and atmospheric scattering on remote sensing
images, a remote sensing image degradation
simulation algorithm is proposed. This algorithm
realistically simulates the generation process of
low-resolution remote sensing images under natural
conditions, providing more realistic training and
testing data. The experimental results show that
the proposed EFSOD significantly enhances the
performance of small object detection in remote
sensing.

Keywords: remote sensing images, super-resolution, small
object detection, cross-model feature fusion.

1 Introduction
In recent years, with the development of deep
neural networks, methods based on deep learning
have achieved remarkable performance in various
visual tasks, and object detection is one of the
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key problems in computer vision. Due to the
limitations of the environment and remote sensing
image acquisition technology, remote sensing images
often have characteristics such as low resolution
and high noise, which are detrimental to the
detection of small targets in remote sensing. Among
the current mainstream algorithms, small target
detection technology based on image super-resolution
reconstruction has attracted the attention of many
researchers.

Current methods for detecting small targets in
low-resolution remote sensing images mainly follow
the "reconstruct first, then detect" technical paradigm.
Typical methods include attention mechanism
models based on single-image reconstruction
[1–4], multimodal spectral fusion frameworks,
and cross-scale feature migration networks [5–8].
However, there are three main limitations in existing
methods: First, decoupling the reconstruction process
from the detection task leads to a mismatch in
feature representation. Super-resolution networks
focus on optimizing PSNR metrics while neglecting
high-frequency edge features that are crucial for
detection. Second, multi-stage architectures cause
feature redundancy, as separate reconstruction and
detection modules require repeated feature extraction,
leading to redundant consumption of system storage
space and computational resources. Third, there is
insufficient degradation modeling; existing methods
often use simple bicubic downsampling to simulate
image degradation, failing to fully consider actual
physical constraints such as illumination, atmospheric
scattering, and sensor noise.

In this paper, We present an EFSOD to address the
above issues. Its innovation is reflected in two aspects:
First, an edge enhancement module is designed to
effectively alleviate the problem of detail loss by
introducing abundant high-frequency edge features,
thereby improving the accuracy and precision of
target detection. Second, a systematic analysis of
the intrinsic correlation between super-resolution
and target detection models in terms of feature
representation is conducted, and a multi-layer feature
fusion mechanism is proposed. This mechanism
achieves complementary and synergistic optimization
of both types of features through cross-modal
feature interaction, significantly enhancing detection
performance.

Our main contributions can be summarized into three
folds:

• We introduce the EFSOD. The network effectively
enhances the accuracy of small target detection
without increasing complexity.

• We propose a collaborative architecture of edge
enhancement super-resolution reconstruction
module and cross-model feature interaction
mechanism. The former enhances the edge
features of targets through an edge-enhanced
dense residual network. The latter addresses
the issues of detail loss and feature mismatch by
integrating the complementarity and consistency
of super-resolution features and target detection
features.

• We propose a remote sensing image degradation
method. This method simulates the impact
of lighting and atmospheric conditions on
the remote sensing imaging process through
Gaussian blurring, adding noise, downsampling,
and simulating illumination and atmospheric
scattering. This significantly enhances themodel’s
robustness in complex real-world scenarios.

2 Related Work
Small object detection is an important task in computer
vision. It focuses on identifying target objects that
are smaller in size and have a lower pixel proportion
in images or videos. Current methods proposed
for small object detection mainly include multi-scale
representation [9–12], contextual information [13–16] ,
region proposals [17–20], and image super-resolution
methods [21–23].
In object detection networks based on image
super-resolution, the method addresses the issue
of small objects covering few pixels by utilizing
generative adversarial networks (GAN) [24] to
transform low-resolution original images into
higher-resolution versions, thereby implementing
object detection on these high-definition images.
Li et al. [25] proposed a target detection method
based on two stages, which realized the framework
of automatic detection and search of potential target
regions. Krishna et al. [26] proposed a task-driven
super-resolution method that combines low-level
image processing with high-level visual objectives.
Perceptual GAN [27] enhances the representation
of small objects to super-resolution representations,
providing more substantial discernment capabilities.
To obtain more features, Bai et al. [28] introduced
image-level super-resolution on candidate boxes
for small objects in their SOD-MTGAN. EESRGAN
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Figure 1. The structural diagram of the proposed EFSOD.

employs ESRGAN [29] in the generator to obtain
intermediate super-resolution images (ISR) and uses
EEN to enhance edge features, resulting in the final
SR images that are inputted into the detection network
for detection.
Existing small object detection methods based
on super-resolution reconstruction have achieved
considerable advancements. However, these methods
still have some shortcomings. 1) Most approaches rely
on complex super-resolution generators or adversarial
networks, leading to high computational costs and
difficulty meeting real-time detection requirements.
2) The target features of super-resolution models are
easily disrupted in noisy and complex images, which
may affect detection accuracy. 3) Most current models
employ separate super-resolution and detection
networks, failing to utilize the complementary
relationship between their features fully. Therefore,
this paper considers enhancing edge features and
cross-model feature fusion for low-quality remote
sensing images to improve the accuracy of small object
detection while maintaining the same computational
complexity.

3 Methodology
3.1 Model Architecture
This paper proposes the EFSOD to address the
shortcomings of existing small object detection
algorithms based on super-resolution reconstruction.
The EESRM and the CMFFM improve image quality
and enhance target edge features, increasing detection
accuracy. EFSOD shares information at the feature
level, allowing super-resolution reconstruction results
to optimize the detection task more directly. The
overall structure of the EFSOD network is shown in
Figure 1.
In EFSOD, the generator mainly consists of the EESRM,
which generates high-quality super-resolved images

ISR from low-resolution remote sensing images ILR.
To better capture and preserve edge information in
the images, this paper proposes the Edge Enhanced
Dense Residual Module (EEDRM), which extracts
edge information from the feature maps of each layer
within the residual blocks and connects these edge
details through residual connections.
In the generator’s super-resolution reconstruction
network, the low-resolution remote sensing image
ILR is first processed through an initial convolutional
layer (Conv) to extract the basic features F0. Then,
the extracted features are applied to three EEDRM
to learn deeper features within the feature maps,
using residual connections to facilitate the flow of
information and obtaining the feature map Fd after
deep feature learning. Subsequently, the feature
map is further processed through a convolutional
layer (Conv) to extract the fused deep features Fdeep.
Finally, the learned feature map is upsampled using
pixel shuffle technology to increase the image to the
target resolution. Additional convolutional layers
further enhance and refine the features, and a final
convolutional layer converts the feature map into a
high-resolution image ISR. The ISR undergoes feature
extraction using the convolutional neural network
ResNet50 [30] to obtain the feature map.
The object detection network is responsible for
detecting and identifying objects in the generated
images. We propose the CMFFM module to extend
the object detection component. Firstly, to ensure
dimensional consistency between the feature map
Fsr ∈ RHs×Ws×Cs extracted from the super-resolution
reconstruction network and the feature map Fob ∈
RHd×Wd×Cd in the object detection network, we use
a Feature Alignment function FA(·) to adjust Fsr to
match the size of Fob as a feature map:

F̃sr = FA(Fsr) ∈ RHd×Wd×Cd (1)
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Then, F̃sr and Fob are concatenated at the channel level,
denoted as:

Fcat = Concat(F̃sr, Fob) ∈ RHd×Wd×(Cs+Cd) (2)
where Hd , Wd and Cs+Cd respectively denote the
height, width, and channels of the feature maps.
F̃sr is the super-resolution feature map after feature
alignment. Fcat represents the featuremap obtained by
channel-wise concatenation and fusion of the aligned
super-resolution feature map F̃sr with the object
detection feature map Fob.
This step effectively combines the features of the
two networks, where the super-resolution feature
map adds more detailed information and the object
detection feature map incorporates richer high-level
semantic information. The number of channels in the
concatenated feature map will increase, and to meet
the input requirements of the subsequent layers of
the object detection network, it is necessary to adjust
the number of channels in the feature map using
a convolution operation Conv(·), convert Fcat into a
feature map with C ′ target channels.

Fconv = Conv(Fcat) ∈ RHd×Wd×C
′

(3)
where C

′ respectively denotes the adjusted target
number of channels to match the input requirements
of the object detection network.
This convolutional layer adjusts the number of
channels and helps further integrate features from
two different networks. It is then followed by a batch
normalization layer (BN) to standardize the features,
adjusting and scaling the incoming features to promote
rapid convergence of the model.

Fbn = BN(Fconv) (4)
where Fbn respectively denotes the feature map
after batch normalization, BN(·) denotes the batch
normalization operation, standardizing the input
features so that their mean is close to 0 and variance is
close to 1.
Subsequently, the ReLU activation function is applied
to maintain non-linear characteristics.

Frelu = RELU(Fbn) (5)
where Frelu is the feature map after RELU activation,
the ReLU activation function is applied to enhance the
features’ nonlinear expressive capability.

Figure 2. Diagram of the EEDRM structure.

Finally, the fused features output by the CMFFM
module are:

Ffusion = Frelu ∈ RHd×Wd×C
′

(6)
where Ffusion denotes the fused feature map output
by the CMFFM.
This feature effectively integrates the detailed edge and
texture information provided by the super-resolution
networkwith the high-level semantic information from
the object detection network, thereby enhancing the
detection accuracy of small targets in remote sensing
images.

3.2 Edge Enhancement Super-Resolution
Reconstruction Module

This paper proposes the EESRM to better capture
and preserve edge information in images. The
EESRM primarily comprises the Edge-Enhanced
Dense Residual Module (EEDRM), whose network
structure is shown in Figure 2. Based on the dense
residual structure, EEDRM incorporates an Edge
Enhance Block (EEB) consisting of a convolution layer,
an activation layer, and a Laplacian operator.
The EEB extracts high-frequency components from
the feature layers extracted by the residuals using a
Laplacian operator [31] and connects them with the
original feature layers through residual connections.
This process can be expressed as:

F ie = αF i + F ile (7)

where F i represents the feature map extracted by
the ith dense residual module, F ile represents the
edge information extracted by the edge enhancement
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Figure 3. Structure of the Laplace Block.

module of F i, α denotes the adjustment factor, and
F ie represents the edge-enhanced feature layer output
through residual connection.
Motivated by the Laplacian operator, The structure is
illustrated in Figure 3, the original image undergoes
low-pass filtering and downsampling, followed by
upsampling to restore the dimensions. Finally,
the original image and the upsampled result are
subtracted, a process that can be expressed as:

Li = Gi − PyrUp(PyrDown(Gi)) (8)

where PyrUp is the upsampling, PyrDown is
the downsampling.we employ the Dense Residual
Laplacian Block (DLB) as the basic unit to extract
features from the original image. This approach
preserves more high-frequency edge information
without incurring significant computational overhead,
thereby improving the accuracy of small object
detection. The ith DLB, the feature map F i is
obtained through dense residual feature extraction.
Due to repeated convolution operations, the edge
information of small objects becomes weakened,
resulting in ghosting artifacts in the generated images.
Therefore, we embed an additional computation for
edge information extractionwithin each dense residual
block to enhance the high-frequency details of the
image better, thereby achieving a more precise and
refined super-resolution reconstruction.
For the feature extraction network of the
super-resolution model, a 3×3 convolutional layer
is first used to extract the shallow feature map FS

from the image. This operation reduces the spatial
dimensions of the featuremaps, increases the receptive
field of the network layers—thus enabling the capture
of a broader range of features—and simultaneously
decreases the volume of data subsequent layers need
to process. This process can be expressed as:

FS = Conv3×3(ILR) (9)

where Conv3×3 denotes the operation of a 3×3
convolutional layer.ILR x denotes the low-resolution
image.
Next, the shallow feature map FS is passed through a
series of EEDRM to extract deep features containing
edge information. In this process, the number of
EEDRM blocks is set to three. This module employs
dense residual connections through a multi-scale
residual network and an edge feature extraction
module to extract rich semantic information, thereby
enhancing the feature representation capability of the
target feature extraction module.Simultaneously, the
output of each convolutional layer is connected via
residual connections with all preceding convolutional
layers to prevent the loss of feature information.
Furthermore, the EEDRM employs the Laplacian
operator to extract edge information from the
image, and this extracted edge information is then
integrated through residual connections with the
previously extracted features, significantly enhancing
the utilization of edge features. After the series of
EEDRM blocks, an additional convolutional layer is
applied, and its output is added to the shallow feature
map to obtain the final deep feature F d. This process
can be expressed as:

F d = Conv3×3
(
EEDRM(F i)

)
+ FS , i = 1, ..., 3

(10)
Then, the extracted deep features undergo a feature
upsampling operation to increase their resolution
to the desired size. A convolutional layer extracts
features while preserving spatial resolution, followed
by an activation function to introduce non-linearity for
learning complex features.
Finally, a second convolution and activation operation
is performed to refine the target features further,
enhancing detail restoration and deep feature
extraction. The ultimately extracted target features
FSR can be expressed as:

FSR = σ(Conv3×3(σ
(
Conv3×3

(
Upsample(F d)

))
))

(11)

3.3 Cross-Model Feature Fusion Module
To integrate super-resolution features with target
detection features and obtain superior detection
performance, this paper proposes the CMFFM. The
core objective of this module is to effectively fuse
the target features extracted by the super-resolution
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Figure 4. Cross-model feature fusion module.

reconstruction network into the featuremaps extracted
by the target detection network. By leveraging the
detail enhancement capability of the super-resolution
network and the recognition and localization expertise
of the target detection network, the proposed method
jointly improves detection performance. This approach
introduces the super-resolution network’s sensitivity
to fine details without compromising the target
detection network’s spatial perception capability,
thereby achieving effective feature fusion between the
two networks and enhancing overall target detection
performance.
The network structure of CMFFM is shown in Figure
4. Csr represents the number of channels in the
super-resolution feature map, and Cob represents
the number of channels in the target detection
feature map. H and W denote the height and
width of the feature maps, respectively. Conv − 1
refers to a 1×1 convolutional layer, BN represents
Batch Normalization, and Relu denotes the nonlinear
activation function.
During the cross-model feature fusion process, the
given inputs include the target featuresFsrεFCsr×H×W

extracted from the super-resolution reconstruction
network and the features FobεFCob×H×W extracted
from the backbone of the target detection network.First,
it is necessary to ensure that the target features
generated by the super-resolution model match the
spatial dimensions of the final output layer of the
target detection backbone network. To achieve this,
the size of the additional features is adjusted using
bilinear interpolation to align with the dimensions of
the backbone features. The proposed feature fusion
network employs a series of feature fusion operations
using concatenation Concat to merge cross-model
features along the channel dimension. This process
can be expressed as:

F ′multi = Concat(Fsr, Fob) (12)
where Concat is the feature concatenation operation

along the channel dimension.
Then, the merged features are transformed into
the target number of channels through the 1×1
convolutional layers in CMFFM. Subsequently, batch
normalization and the ReLU activation function are
applied to enhance feature representation and the
network’s nonlinear capability. The final fused feature
Fmulti can be expressed as:

Fmulti = δ(BN
(
Conv1×1(F

′
multi)

)
) (13)

where Conv1×1 is the 1×1 convolution operation,
BN denotes batch normalization processing, and δ
represents the application of Relu as the nonlinear
activation function.
After the CMFFM processing, the fused features
effectively combine multi-level information,
incorporating rich high-level semantic representations.
This mechanism successfully integrates critical
attributes such as target categories and properties into
the final feature encoding, enabling object detection
models to leverage these advanced semantic cues for
more precise localization and classification. Notably,
the feature fusion module preserves sufficient spatial
resolution throughout the fusion process, ensuring the
retention of spatial fidelity at the feature level without
compromising detection accuracy. The resultant fused
features, enriched with comprehensive detail and
semantic depth, significantly enhance the model’s
capability to capture subtle characteristics and small
targets. By synergistically integrating heterogeneous
feature sources, the framework improves the model’s
contextual understanding of inter-object relationships
in complex scenes. It demonstrates outstanding
performance advantages in detecting small targets
within challenging environmental contexts.

3.4 Loss function
The network involved in this paper consists of
a super-resolution network based on Generative
Adversarial Networks (GANs) and a target detection
network. During the training process, an end-to-end
training approach is used, where the loss from
the target detection is backpropagated to the
generation network, guiding the generation network
to reconstruct images that are more conducive to
target detection.
We introduce a new loss in addition to the traditional
adversarial loss, perceptual loss Lper, and L1 loss
to prevent the edge enhancement module from
over-enhancing the edges. Specifically, we use
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Charbonnier loss, i.e., the consistency loss Lchar,
between the super-resolved image (SR) and the
high-resolution image (HR).

Lper = Exf ||vggfea(xf )− vgg(xr)||1 (14)

L1 = Exf ||xf − xr||1 (15)
Lchar = ρ(IHR − ISR) (16)

where Exf is the average value of all generated images
in a batch. At the same time, vggfea(xf ) and vgg(xr)
denote the feature representations extracted by the
convolutional neural network when the actual image
xr and the super-resolved image (xf are fed into the
network, respectively. ρ(·) is Charbonnier function.
Finally, we obtain the total loss of the edge-enhanced
super-resolution generation network by adding the
loss of the edge enhancement module to the original
generative network’s loss, with the empirical value set
to γ1 = 1, γ2 = 0.001, γ3 = 0.01, γ4 = 5

LG = γ1Lper + γ2L
Ra
G + γ3L1 + γ4Lchar (17)

where LRaG is the adversarial loss of the generator.
In the target detection network, Faster R-CNN,
regression loss, and localization loss exist for the
detected objects. Both losses are computed using
the smoothed L1 loss. The classification loss Lcls,
regression loss Lreg, and total detection loss Ldet can
be expressed as:

Lcls = EILR
[−log(Detcls(GG(ILR)))]1 (18)

Lreg = EILR
[smoothL1 (Detreg(GG(ILR), T∗))]1

(19)
Ldet = Lcls + αLreg (20)

where T∗ is the ground truth target coordinates, (GG(·)
denotes the super-resolution reconstruction network,
Detcls is the classification loss in the target detection
network, Detreg denotes the regression loss in target
detection, smoothL1(·) refers to the smoothed L1 loss,
and α is the balancing parameter. In the proposed
network,
The total loss of the entire discriminator LD_det can be
expressed as:

LD_det = LRaD + ηLdet (21)

whereLRaD is the adversarial loss, and η is the balancing
parameter for the discriminator loss, which measures
the contribution of the target detection network to the
discriminator. Based on empirical experience, η is set
to 1.

Finally, the overall loss of the entire network
architecture, Loverall, can be expressed as:

Loverall = LG + LD_det (22)

4 Experiments
This section designs an image degradation method
to simulate actual remote sensing image formation
to validate the effectiveness of the proposed EFSOD.
This ensures that the super-resolution target detection
model has better generalization ability and adapts
more effectively to real-world scenarios. First, we
conduct comparative experiments between EFSOD
and baseline networks. Then, we compare the EFSOD
algorithm with other super-resolution target detection
methods. Finally, an ablation analysis is performed on
the proposed modules.

4.1 Dataset
Currently, the two mainstream datasets in the field of
super-resolution target detection are the COWC [32]
and RSOD [33] datasets. The COWC (Cars Overhead
With Context) dataset consists of satellite images
collected from six different geographic locations, with
an image size of 256×256 pixels. The average target
length ranges from 24 to 48 pixels, while the width
ranges from 10 to 20 pixels. This dataset focuses solely
on small targets of the "car" category and includes
3954 images for training and testing. 3164 images
were randomly selected as the training set, while
790 were used as the test set. The RSOD dataset
includes four types of objects: airplanes, sports fields,
overpasses, and oil tanks. These objects exhibit diverse
characteristics and have targets of varying sizes. The
experiments divided this dataset into training and test
sets in an 8:2 ratio.

4.2 Degradation processing of remote sensing
image

Most methods for small target detection
in super-resolution remote sensing rely on
downsampling to create low-resolution datasets
without considering the imaging characteristics of
remote sensing images in practical scenarios. This
leads to models that perform well on specific datasets
but fail to generalize well on others, undermining
their robustness and generalization ability. Figure 5
shows remote sensing image degradation methods,
including blurring, downsampling, noise, and image
compression.
Before model training, to obtain paired
high/low-resolution images, it is necessary to
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Figure 5. remote sensing image degradation module.

preprocess the images in the dataset. A crucial part
of this process is degrading the high-resolution
remote sensing images to simulate the real
remote sensing image generation environment.
Let IHR ∈ RCin×H×W and ILR ∈ RCin×H×W

represent the initial high-resolution image and its
degraded low-resolution version, respectively. Cin, H ,
andW correspond to the number of channels, height,
and width of the input image.
First, Gaussian blurring is applied to the input
high-resolution image IHR. The blur kernel is based
on a Gaussian probability density function with
zero mean to achieve N(0,Σ), resulting in IHRblur ∈
RCin×H×W . This process can be represented as:

IHRblur = Gblur(I
HR) (23)

where Gblur(·) is the Gaussian blur function.
Secondly, considering that remote sensing images are
inevitably affected by noise during the generation
process, this paper focuses on two types of noise:
additive noise in optical imaging systems and
multiplicative features in remote sensing image
imaging systems. Additive and multiplicative features
are sequentially added to the blurred image. This
process can be expressed as:

IHRnoise = (IHRblur +N1)×N2 (24)
where N1 is additive noise, which follows a normal
distributionX∼N(0, σ2). N2 represents multiplicative
features, where each image pixel is multiplied by a
gain factor N2. This gain factor follows an exponential
distribution with unit mean N2∼Exp(1).
The resolution of the image is reduced through
downsampling to simulate the situation of a
low-resolution remote sensing image, resulting
in the low-resolution remote sensing image
ILRI ∈ RCin×H×W . This process can be expressed as:

ILRI = D(IHRnoise) (25)
where D(·) represents the downsampling operation
applied to the image.

Finally, the image parameters are adjusted to simulate
remote sensing images ILRB ∈ RCin×H×W under
different sunlight conditions. This process can be
expressed as:

ILRB = α(ILRI + ∆I − Ī) + Ī (26)

where ∆I is the brightness adjustment factor, α is
the contrast adjustment factor, and Ī is the average
brightness of the image.
In addition, to account for light attenuation caused
by atmospheric scattering and the increase in ambient
light due to scattering, the image after atmospheric
scattering processing is the final low-resolution remote
sensing image ILR. The effect of atmospheric
scattering on the image can be expressed as:

ILR(x) = ILRB (x) · e−βd(x) +A · (1− e−βd(x)) (27)

where ILR(x) is the image brightness at position x after
the influence of atmospheric scattering, ILRB (x) is the
brightness of the original image at position x, β is the
atmospheric scattering coefficient, d(x) is the distance
at position x in the scene, and A is the ambient light
intensity.
Through the above degradation processing, this paper
simulates more realistic low-resolution remote sensing
images in the data processing, providing a solid
foundation for the subsequent training and testing of
the network.

4.3 Experimental Setup
For the images in the dataset, this paper first processes
the original images using the proposed degradation
method to obtain low-resolution images, forming
high/low-resolution image pairs. During training,
the low-resolution and high-resolution images are
fed into the network for training. The parameter
settings are as follows: the batch_size is set to 5, the
learning rate for the super-resolution reconstruction
network is initialized to 500, and the Adam optimizer
parameters are set to δ1 = 0.9 and δ2 = 0.99. For
the object detection network, the initial learning rate
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is set to 0.005, and the momentum parameter of the
SGD optimizer is set to 0.9. The network is trained
in an end-to-end manner. During the testing phase,
only the low-resolution images must be input for
super-resolution object detection without requiring
high-resolution images.
This paper uses the MS COCO [22] evaluation matrix
to evaluate the object detection results. It selects AP 50,
APS , APM , APL, AR, ARS , ARM and ARL as the
verification criteria for the effectiveness of the object
detection experiments to assess the performance of the
degradation model.

4.4 Performance Evaluation
This paper evaluates the proposed EFSOD’s object
detection performance on remote sensing images
from both subjective and objective perspectives.
Considering the specific characteristics of remote
sensing images, the original images are processed
with blurring, downsampling, noise, simulated
lighting changes, and atmospheric scattering
when generating low-resolution images. In the
comparative experiments with the baseline networks,
ESRGAN+FRCNN and EESRGAN networks are
compared with the proposed network, evaluating
the networks from both object detection metrics
and parameter/computation complexity aspects.
EESRGAN adopts an end-to-end structure similar
to our method. Additionally, this paper compares
current mainstream object detection algorithms such
as Faster RCNN++ [34], RetinaNet [35], CenterNet
[36], and PP-YOLOv2 [37], as well as remote sensing
small target detection algorithms like AVDNet [38],
the target feature super-resolution vehicle detection
algorithm TGFSR-VD [39], and ASAHI [40]. All
of the above algorithms are based on the official
code provided, and experiments are conducted with
consistent experimental parameters as described in
the papers, trained, and tested on the COWC and
RSOD datasets.

4.4.1 Validity experiment of remote sensing image
degradation method

In order to verify the effectiveness of the degradation
model, this section is based on the COWC data set, and
the models proposed in this chapter are trained on the
image data set after bicubic downsampling and the
image data set after degradation method processing,
respectively, then the test is performed uniformly on
the low-quality degraded images that simulate the
actual application scenarios. The experimental results
are shown in Table 1.

As can be seen from the experimental results in Table 1,
the model trained with the degradation data set, the
Peak Signal-to-Noise Ratio (PSNR) is improved by
3.02, and the target detection accuracy is only selected
as the evaluation parameter in this section. It can be
seen that the target detection-related indicators have
been greatly improved, including 29.9%, 32%, and
34%. The experimental results show that compared
with the simple bicubic downsampling method, the
degradation method adopted in this chapter can better
simulate factors such as illumination and atmospheric
scattering in the practical application of remote
sensing images.This method can more accurately
simulate the performance of images under different
lighting conditions, including light intensity, shadow
change, etc., which makes the model more robust and
generalization ability in training. At the same time,
considering the influence of atmospheric scattering
and other phenomena on the image, the degradation
method can also simulate the influence of these factors
on image details and contrast, and provide more
prosperous and more realistic training samples for the
model. Through this detailed degradation simulation,
the generated low-resolution image is closer to the
actual remote sensing image, which makes the trained
model more robust and reliable in the real scene. This
method provides important support for improving
the robustness and stability of the model and helps
the model achieve better performance in practical
applications.
Therefore, in the subsequent experiments, this paper
uniformly adopts the degraded image data set as
the low-resolution data set, and by using these
low-resolution data that are closer to the real situation,
we can improve the accuracy of image processing,
models can be better trained to adapt to changes and
challenges in real-world environments. Such training
data helps to improve the generalization ability and
robustness of the model, making it more robust and
reliable in actual scenarios.

4.4.2 Comparative Experiments of EFSOD with Baseline
To verify the small target detection performance
of EFSOD, this section conducts comparative
experiments between the baseline networks
ESRGAN+FRCNN, EESRGAN, and EFSOD on
the COWC and RSOD datasets, respectively. The
experimental results are shown in Tables 2 and 3.
As shown in Table 2, on the COWC dataset, EFSOD
significantly improves all object detection metrics
compared to ESRGAN+FRCNN. Specifically, in terms
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Table 1. Experimental results of the degradation method.
Method Train/test PSNR AP 50 APS APM APL

EFSOD Bicucic/Degradation 28.18 57.10 0.409 0.443 -
EFSOD Degradation/Degradation 31.20 87.00 0.731 0.783 -

Table 2. Comparative experimental results of EFSOD, ESRGAN+FRCNN, and EESRGAN on the COWC dataset.
Method AP 50 APS APM APL AR ARS ARM ARL

ESRGAN+FRCNN 0.843 0.709 0.744 - 0.715 0.729 0.786 -
EESRGAN 0.893 0.744 0.779 - 0.768 0.771 0.815 -
EFSOD 0.892 0.773 0.841 - 0.799 0.801 0.847 -

Table 3. Comparative experimental results of EFSOD, ESRGAN+FRCNN, and EESRGAN on the RSOD dataset.
Method AP 50 APS APM APL AR ARS ARM ARL

ESRGAN+FRCNN 0.859 0.720 0.753 0.799 0.722 0.734 0.781 0.825
EESRGAN 0.902 0.771 0.806 0.839 0.763 0.781 0.822 0.858
EFSOD 0.913 0.779 0.854 0.865 0.808 0.820 0.861 0.877

Table 4. Comparison of experimental results between parameter quantity and computational quantity.
Method Param FLOPs

ESRGAN+FRCNN 53.51 120.32
EESRGAN 106.69 217.41
EFSOD 60.60 106.86

of accuracy, the most critical metric, AP 50, increases
by 5.8%, while the accuracy for small object detection,
APS , improves by 9.0%. The average accuracy for
medium-sized objects, APM , sees the highest increase
of 13.0%. Since the COWC dataset does not contain
large objects, the corresponding experimental results
are denoted as “-”. In terms of recall, EFSOD also
demonstrates notable improvements. The overall
recall rate, AR, increases by 11.7%, while the average
recall for small objects, ARS , improves by 9.9%, and
the average recall for medium-sized objects, ARM ,
increases by 7.8%.

Compared to the EESRGAN network, although the
overall object detection accuracy decreases by 0.1%,
EFSOD performs well in other metrics. Specifically,
small object detection APS accuracy increases by
3.9%, while the average accuracy of medium-sized
objects APM achieves the highest improvement of
7.9%. In terms of recall, EFSOD also shows significant
enhancements. The overall recall rate AR increases
by 4.0%, while the average recall for small objects
ARS improves by 3.89%, and the average recall for
medium-sized objects ARM increases by 3.9%. As
shown in Table 3, compared to ESRGAN+FRCNN,
EFSOD achieves the highest values across all metrics.
Specifically, AP 50 reaches 91.3%, the average accuracy
for small objects APS reaches 77.9%, the average

accuracy for medium-sized objects APM reaches
85.4%, and the average accuracy for large objects
APL reaches 86.5%. Similarly, recall performance is
significantly improved. The overall recall rate AR
reaches 80.8%, the average recall for small objects ARS
reaches 82.0%, the average recall for medium-sized
objects ARM reaches 86.1%, and the average recall for
large objects ARL reaches 87.7%. EFSOD also achieves
promising results on the RSOD datase.
The proposed EFSOD effectively integrates features
from the super-resolution reconstruction network into
the object detection task, enhancing the utilization of
super-resolution features. This allows the network
structure of the super-resolution reconstruction-based
object detection algorithm to be more compact,
achieving efficient use of super-resolution features in
object detection. Consequently, it has a significant
positive impact on the accuracy of small object
detection.
Considering the existence of resource constraints
in practical applications, the number of model
parameters (Params) and Floating Point Operations
(FLOPs) are added as evaluation indicators in this
paper, where the number of parameters reflect the size
and complexity of the model, and the FLOPs reflects
the complexity of the model, the higher the number
of parameters is, the stronger the expression ability
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Figure 6. Representative test results based on the COWC dataset.

of the model is, and the more computing resources
are required, which affects the storage requirements
and model complexity. The computational amount
measures the computational resources required
for a forward propagation of the model, that is,

the number of floating-point operations required
for a single inference. Flops are usually used to
measure the computational efficiency and speed of
the model. The experimental results are shown in
Table 4, because the EESRGAN increases a parameter
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Figure 7. Representative test results based on the RSOD dataset.

amount and computational complexity relative to the
ESRGAN+FRCNN network, although the parameter
amount of themodel is reduced relative to EFSOD. The
model is more efficient than the ESRGAN+FRCNN
network, however, the required network parameters
and computing resource consumption increase

significantly. In real applications, this increase may
hinder the effective deployment and operation of
models in resource-constrained environments due
to the limitations of storage capacity and computing
speed. Compared with EESRGAN, the EFSOD
network reduces the number of parameters by 46.09
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m and the amount of calculation by 110.55 GFLOPS,
which can effectively extract the edge information
of the image without increasing the number of
parameters and the amount of calculation, to improve
network performance.

In addition, EFSOD compared to the benchmark
network ESRGAN+FRCNN, the number of parameters
of the model increased by 7.09 m due to the addition
of the edge-enhanced dense residual block EEDRM,
which shows that EEDRM does not increase too many
parameters and computational burden, and it can
be used to improve the accuracy of the model, is
a relatively lightweight edge enhancement module.
In addition, the floating-point operation required
by the algorithm per inference is reduced by 13.46
GFLOPS, which is because ESRGAN+FRCNNuses the
FasterRCNN algorithm that comes with torchvision
and uses a pre-trained model, which can be used
to improve the performance of the algorithm, as a
result, the amount of parameters and calculation of
the model in the target detection network FasterRCNN
is relatively large, while EFSOD uses the improved
FasterRCNN and does not use the pre-training model,
which reduces the calculation of the network.

This section conducts an effectiveness analysis of
EFSOD on three representative images selected
from the COWC and RSOD datasets, as shown in
Figures 6 and 7, to further verify and analyze its
effectiveness. In the COWC dataset, the selected
images contain partially occluded objects. In contrast,
in the RSOD dataset, the chosen images feature objects
that are difficult to distinguish from the background
due to contrast factors. A comparative analysis is
performed on these two types of images, and the
detection visualization results are presented. Figures
6 and 7 consist of three columns from left to right:
(a), (b), and (c) in one figure, and (d), (e), and
(f) in the other, each representing one of the three
selected representative images. Vertically, there are
six rows corresponding to: the low-resolution images
obtained after degradation processing, ground-truth,
ESRGAN+FRCNN, EESRGAN, EESR-SOD and
EFSOD. The confidence score of the detected objects is
displayed in the upper right corner of the bounding
boxes, with values ranging from 0 to 1.

Figures 6 and 7 demonstrate that ESRGAN+FRCNN
fails to detect small objects with low contrast against
the background or partial occlusion due to its lack of
edge information extraction and utilization of other
super-resolution features, as shown in Figures 6(a)

and 7(e). EESRGAN, benefiting from the presence
of an edge enhancement network, is more sensitive
to object edges and can detect some low-contrast
objects, as illustrated in Figures 6(b), 6(c), 7(e),
and 7(f). However, due to the absence of other
super-resolution feature applications, it fails to detect
corresponding objects in images with complex lighting
and significant noise, such as 6(c).In contrast, the
proposed EFSOD integrates high-frequency edge
information, which is crucial for object detection, and
incorporates super-resolution object features extracted
from the super-resolution network into the object
detection feature map. As a result, EFSOD achieves
better performance in scenarios with low contrast and
high noise.
In summary, EFSOD significantly improves feature
extraction and feature enhancement capabilities.
While maintaining the parameter count, it achieves
enhancements across various object detection metrics,
with particularly noticeable improvements in small
object detection. Specifically, EFSOD exhibits more
substantial recognition capabilities, enabling better
identification of small objects in low-contrast and
high-noise scenarios.

4.4.3 Comparison of EFSOD and typical target detection
algorithms

To validate the model’s performance, this section
presents a comparative analysis of EFSOD against
other state-of-the-art general object detection
algorithms and specialized small object detection
algorithms for the remote sensing domain. The
detailed results are shown in Tables 4 and 6. The
comparison includes the following methods: Faster
RCNN++ [34], RetinaNet [35], CenterNet[36],
PP-YOLOv2[37], AVDNet[38], TGFSR-VD[39], and
ASAHI [40].
Tables 5 and 6 show that EFSOD demonstrates
outstanding performance on the COWC and RSOD
datasets. The highest values among all compared
methods are highlighted in bold, while the second-best
values are underlined. On the COWC dataset, EFSOD
achieves the highest scores across all metrics, with
AP 50 reaching 89.2%, APS at 77.3%, and APM at
84.1%, reflecting its accuracy in object detection tasks.
In terms of recall, AR reaches 79.9%, exceeding
the second-best value by 5%, while ARS reaches
80.1%, highlighting its significant advantage in small
object recall tasks. Additionally, ARM reaches
84.7%, emphasizing its superior performance in object
detection. Since the COWC dataset does not contain
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Table 5. Comparison of EFSOD and typical target detection models in COWC dataset.
Method AP 50 APS APM APL AR ARS ARM ARL

FasterRCNN 0.652 0.476 0.526 - 0.542 0.535 0.632 -
RetinaNet 0.610 0.489 0.588 - 0.502 0.511 0.600 -
CenterNet 0.693 0.575 0.622 - 0.587 0.605 0.669 -
PP-YOLOv2 0.751 0.595 0.731 - 0.691 0.711 0.755 -
AVDNet 0.719 0.598 0.604 - 0.652 0.616 0698 -

TGFSR-VD 0.851 0.714 0.739 - 0.714 0.727 0.779 -
ASAHI 0.866 0.763 0.759 - 0.744 0.701 0.773 -
EFSOD 0.892 0.773 0.841 - 0.799 0.801 0.847 -

Table 6. Comparison of EFSOD and typical target detection models in RSOD dataset.
Method AP 50 APS APM APL AR ARS ARM ARL

FasterRCNN 0.655 0.547 0.625 0.700 0.622 0.555 0.632 0.659
RetinaNet 0.702 0.586 0.645 0.693 0.663 0.566 0.676 0.690
CenterNet 0.711 0.591 0.680 0.720 0.612 0.695 0.709 0.719
PP-YOLOv2 0.817 0.750 0.769 0.798 0.749 0.758 0.790 0.822
AVDNet 0.762 0.602 0.709 0.752 0.630 0.709 0.721 0.759

TGFSR-VD 0.876 0.745 0.774 0.805 0.756 0.759 0.806 0.818
ASAHI 0.882 0.751 0.785 0.811 0.769 0.770 0.808 0.811
EFSOD 0.913 0.758 0.781 0.865 0.808 0.820 0.861 0.877

large objects, the corresponding results are marked
as "-". On the RSOD dataset, EFSOD continues to
perform exceptionally well, achieving AP 50 of 91.3%,
APS of 75.8%, APM of 78.1%, and APL of 86.5%,
further confirming its outstanding performance in
object detection tasks. In terms of recall, AR reaches
80.8%, ARS reaches 82.0%, ARM reaches 86.1%, and
ARL reaches 87.7%, demonstrating EFSOD’s overall
superior capability. The EFSOD network proposed
in this paper achieves the best overall experimental
results in small target detection.

The main reasons are as follows: First, the
proposed Edge-Enhanced Dense Residual Module
effectively extracts edge information of small
objects, facilitating their distinction from the
background and reducing the interference of lighting
and color variations in detection. Second, the
Edge-Enhanced Super-Resolution Reconstruction
Module possesses intense feature extraction and
enhancement capabilities, effectively extracting
features beneficial to object detection tasks. This
module also identifies and leverages the correlation
between super-resolution and object features. Finally,
the Cross-Model Feature Fusion Module in the
object detection network effectively integrates the
extracted super-resolution object features with
object detection features, significantly improving
detection performance. By deeply integrating the

super-resolution reconstruction network with the
object detection network, the EFSOD framework fully
utilizes and efficiently fuses features beneficial to object
detection from the super-resolution network. This
approach offers a novel perspective for small object
recognition based on super-resolution reconstruction,
significantly improving detection accuracy and recall
rates.

4.5 Ablation analysis
To verify the proposed CMFFM and EEDRM
contribution to target detection accuracy, this section
designs four comparative experiments on the baseline
ESRGAN+FRCNN network using two different
datasets, COWC and RSOD. Tables 7 and 8 show the
performance comparison of each module on target
detection.

From the performance shown in Tables 7 and 8, in
the COWC dataset, both the CMFFM and EEDRM
modules contribute significantly to improving the
target detection accuracy of the baseline network
ESRGAN+FRCNN. Regarding various metrics, the
contribution of CMFFM is more significant than that
of EEDRM. Specifically, in terms of accuracy, the most
critical metric, AP 50 improves by 5.8%. In contrast,
the small target detection accuracy, an important
metric in this paper, APS , improves by 9.0%, and
APM improves by 13.0%. There is also a substantial
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Table 7. Ablation experiment of the CMFFM module on the COWC dataset.
Method CMFFM EEDRM AP 50 APS APM APL AR ARS ARM ARL

ESRGAN+FRCNN
× × 0.843 0.709 0.744 - 0.715 0.729 0.786 -
X × 0.875 0.744 0.778 - 0.754 0.761 0.81 -
× X 0.87 0.731 0.783 - 0.756 0.759 0.806 -

EFSOD X X 0.892 0.773 0.841 - 0.799 0.801 0.847 -

Table 8. Ablation experiment of the CMFFM module on the RSOD dataset.
Method CMFFM EEDRM AP 50 APS APM APL AR ARS ARM ARL

ESRGAN+FRCNN
× × 0.859 0.720 0.753 0.799 0.722 0.734 0.781 0.825
X × 0.907 0.750 0.788 0.834 0.753 0.772 0.820 0.865
× X 0.895 0.758 0.781 0.826 0.745 0.761 0.815 0.851

EFSOD X X 0.913 0.758 0.781 0.865 0.808 0.820 0.861 0.877

improvement in recall, with AR increasing by 11.7%,
ARS by 9.8%, and ARM by 7.7%. In the RSOD
dataset, similar to the experimental results in the
COWC dataset, both modules, when used individually,
effectively enhance the target detection performance
compared to the baseline network ESRGAN+FRCNN.
However, fully integrating the edge-enhanced dense
residual block and the cross-model feature fusion
module leads to better performance. Regarding
accuracy, when σ = 0.5, AP 50 increases by 6.3%, APS
by 5.3%, APM by 3.7%, and APLL by 8.3%. In terms
of recall, AR increases by 11.9%, ARS by 11.7%, ARM
by 10.2%, and ARLL by 6.3%.

Introducing the CMFFM module in the target
detection network dramatically enhances the feature
extraction and fusion capabilities, significantly
improving overall performance compared to the
baseline network. The success of this improvement
can be attributed to the effective combination
of two key factors: First, the edge-enhanced
super-resolution reconstruction network effectively
restores high-frequency edge details of the image and
fully exploits the relevant features beneficial for target
detection within the super-resolution reconstruction
network, significantly improving the quality of
super-resolution target features. Second, the CMFFM
module precisely and effectively integrates these
excellent super-resolution target features with target
detection-related features, further enhancing the
performance of the target detection feature extraction
network while maintaining the superior features of
the super-resolution reconstructed image. This fusion
strategy not only helps improve the accuracy of small
target detection but also enhances the robustness
and generalization ability of the network under
challenging conditions such as complex backgrounds

and lighting variations.

5 Conclusion
To address the issue of insufficient feature utilization
in super-resolution object detection networks, we
propose the EFSOD. The core advantage of this
network lies in its ability to fully exploit the consistent
features between the super-resolution reconstruction
network and object detection, providing intense
feature extraction and enhancement capabilities.
The EESRM enhances the edge information of
the reconstructed image, solving the problem of
unclear, small target edges that lead to detection
difficulties, thereby improving the detection accuracy
of small targets. The CMFFM also enables the
effective fusion of the edge-enhanced super-resolution
reconstruction network with the object detection
network. Experimental results show that the EFSOD
network has strong feature extraction capabilities. It
performs well in complex scenes and scenarios with
dense, small target distributions.
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