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Abstract
The unrestricted development and utilization
of marine resources have resulted in a series of
practical problems, such as the destruction of
marine ecology. The wide application of radar,
satellites and other detection equipment has
gradually led to a large variety of large-capacity
marine spatiotemporal trajectory data from a
vast number of sources. In the field of marine
domain awareness, there is an urgent need to
use relevant information technology means to
control and monitor ships and accurately classify
and identify ship behavior patterns through
multisource data fusion analysis. In addition, the
increase in the type and quantity of trajectory
data has produced a corresponding increase in
the complexity and difficulty of data processing
that cannot be adequately addressed by traditional
data mining algorithms. Therefore, this paper
provides a deep learning-based algorithm for the
recognition of four main motion types of the ship
from automatic identification system (AIS) data:
anchoring, mooring, sailing and fishing. A new
method for classifying patterns is presented that
combines the computer vision and time series
domains. Experiments are carried out on a dataset
constructed from the open AIS data of ships in
the coastal waters of the United States, which
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show that the method proposed in this paper
achieves more than 95% recognition accuracy. The
experimental results confirm that the method
proposed in this paper is effective in classifying
ship trajectories using AIS data and that it can
provide efficient technical support for marine
supervision departments.
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1 Introduction
The ocean is the cradle of life, the natural cornucopia
and the main avenue for transportation. It provides
water circulation for life, stores energy for the earth
and offers sufficient space for human beings to
explore nature and promote economic transformation.
Developing, utilizing and managing the ocean has
become an effectiveway for countries to solve problems
related to population expansion, environmental
pollution and resource shortages. Illegal, unreported
and unregulated fishing is one of the most serious
threats to the sustainable development of marine
resources and is capable of causing immeasurable
damage to marine biodiversity and ecosystems.
Marine domain awareness requires the use of data
and information from marine intelligence sources to
continuously monitor and track fisheries, uncover
relevant illegal activities in a timely manner and
effectively curb and combat them.
In recent years, the wide application of automatic
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identification systems (AISs)[1]on ships has gradually
led to a new era in maritime traffic monitoring. AIS
consists of not only a global tracking system but
also navigation equipment that integrates modern
technology for automatic ship-to-shore platform and
ship-to-ship recognition.Through the tracking system,
the ship broadcasts its own dynamic (such as
longitude, latitude, ground speed, ground heading,
navigation status, etc.) and static information (such
as MMSI number, ship size, ship type, etc.), reducing
the risk of collision between maritime ships through
the exchange of ship status information to monitor
their navigational intentions while helping maritime
personnel monitor ship mobility. Although AISs were
originally designed for security purposes, it soon
became obvious that if relevant technical means could
be developed to effectively extract, detect and analyze
relevant information from these data streams to help
the maritime department monitor ships at sea, the
potential of these vast amounts of data would be
intriguing. However, the manual processing of such
large amounts of data is unrealistic, and so despite the
difficulty, AIS data must be analyzed with methods
based on artificial intelligence.

2 Related Work
Trajectory classification is a research field in which
the tracking data of moving objects is analyzed to
create classifiers that can distinguish different motion
patterns. In recent years, the rapid development of
big spatiotemporal ocean data has gradually shifted
the focus of corresponding researchers to the ocean
field. However, due to the limitations of ship AIS
data acquisition, there are few studies on trajectory
classification of ship AIS data. Generally, the research
methods involved at present are mainly divided
into two groups: traditional machine learning-based
methods and deep learning-based methods.

2.1 Research based on traditional machine learning
methods

In some studies, researchers have mainly used
traditional machine learning as the basis for methods
for ship trajectory classification and improved the
experimental results by implementing innovative
and beneficial modifications to these traditional
methods. Liu et al.[2]proposed a ship trajectory
classification algorithm based on the K-nearest
neighbor (KNN) algorithm. The trajectories of the
KNN classification samples are obtained through the
preliminary clustering of ship trajectories, which are
then classified by taking the comprehensive distance

as the distance between trajectories in the KNN
classification. The experimental results show that
this method is highly suitable for inland river ship
trajectory classification. Guan et al. [3]proposed using
the Light Gradient Boosting Machine (LightGBM)
to establish a fishing vessel type recognition model
and extracted more than 60 features from the AIS
data, including speed, heading, and position and
speed change. The accuracy of the model on the
AIS dataset from the north of the South China Sea
in 2018 was 95.68%, which was higher than that of
other advanced algorithms such as XGBoost; Krüger
et al.[4]calculated various ship characteristics through
latitude, longitude, speed and other attributes based
on five relevant AIS datasets, and evaluated the
experimental results by using five classifiers, including
decision tree, fuzzy rules, K-nearest neighbor, neural
network and naive Bayes, three groups of classification
labels and the accuracy of two evaluation criteria.
The experimental results showed that the decision
tree, fuzzy rules and K-nearest neighbor classification
methods had high accuracy, and the classification
results were deeply analyzed and summarized.

The final accuracy of traditional machine learning
methods largely depends on the quality of feature
engineering performed before the classifier, but the
features obtained with feature engineering need to
be extracted manually. Thus, these methods not
only require human experts to design and combine
the features but also require researchers to spend
considerable time and energy extracting them. In
addition, different application scenarios require the
extraction of different effective features to express the
corresponding data. Therefore, methods based on
traditional machine learning are generally suitable for
specific application scenarios and tasks with a small
amount of data.

2.2 Research based on deep learning methods
In recent years, the popularization of deep learning
technology has led to the wide use of convolutional
neural networks (CNNs) and recurrent neural
networks (RNNs) in various research fields. The
former has achieved great success in the field of
computer vision[5]for classifying and recognizing
image data, while the latter has played a more
significant role in the field of time series in the
classification and prediction of sequence data[6].
Saeed et al.[7]proposed a CNNmodel named FishNET
for ship trajectory classification. The model uses
a set of invariant spatiotemporal feature sequences
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extracted from ship AIS trajectory data for training
and was applied to a large, 4-year real fishing vessel
dataset collected in the United States and Denmark to
identify the gill net, purse seine, trawl and longline
fishing behaviors of fishing vessels. Ioannis et
al.[8]proposed a new high-precision AIS message flow
trajectory classification method. By conceptualizing
the ship activity classification problem as an image
classification task and using the VGG16, InceptionV3,
NASNetLarge and DenseNet201 models to address it,
the authors conducted experiments and found that
the VGG16 model achieved the highest classification
accuracy and that the InceptionV3 model achieved
the lowest processing delay. Shen et al.[9]proposed
a method to classify the trajectory activity of the
three primary types of fishing vessels along the coast
of Taiwan by using a multilayer bidirectional LSTM
model. Through experiments, the authors found
that the selection of key features from AIS data can
effectively improve the classification accuracy and
suggested including an RNN model to learn better
spatial representation.
Different from the traditional machine learning
methods, deep learning methods can transform the
original data into more abstract, more complex and
higher-level expressions through nonlinear models
and can learn more complex functions through
sufficient model combinations. Therefore, they
can replace manual feature extraction methods and
automatically learn the features that best reflect
differences from a large amount of data in an
end-to-end manner. In addition, deep learning
methods are suitable for learning tasks with a large
amount of data and have good generalizability with
new data sources and new learning tasks. Therefore,
based on these characteristics, deep learning methods
are ideal for trajectory classification using ship AIS
data.

3 Methodology
The development of artificial intelligence technology
and the proposal of a series of deep learning methods
have provided more possibilities for ship behavior
analysis using big data-based trajectory features. At
present, ship motion trajectory classification methods
based on deep learning are mainly divided into
two domains: the computer-vision domain and the
time-series domain. Methods based on the former
determine the trajectory category of the image by
transforming the time-series trajectory information
into a static trajectory image. This method places

greater emphasis on the geometric information of
ship motion trajectory; however, the ability to
capture ship motion feature information is poor and
the recognition accuracy largely depends on the
distribution of the data and is low for atypical motion
trajectories. Time-series domain-based methods,
meanwhile, directly take the time-series trajectory
information as the input to determine the trajectory
category. These methods place greater emphasis
on changes in the motion state of the ship, but the
classification effect is poor in cases where the motion
characteristics of different types of trajectories are
similar.
To realize the accurate classification and recognition of
ship behavior patterns, this paper considers themotion
state information and the trajectory shape information
generated during ship motion, designs a fusion
model framework combining the computer-vision and
time-series domains, and proposes the corresponding
optimizations and improvements. The overall
framework of this method is shown in Fig.1.below.

Ship behavior

Ship AIS

database

feature selection

exception

handling

data resampling

trajectory

segmentation

Time series domain

model

Computer vision domain

model

Data preprocessing

normalization

processing

Trajectory
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Fusion network model

Figure 1. General frame diagram of the ship motion
trajectory classification method.

3.1 Ship behavior pattern
Considering the limited field types of ship status in the
data set source and that some ship statuses do not have
specific characteristics in the behavior patterns or have
no actual research value, such as the ship grounding
and losing control, this paper mainly realizes the
identification of four different ship behavior patterns
from AIS data[10]:
1) Anchoring: Anchoring is a key operation in ship
navigation, defined as the safe berthing method in
which the combined grasping force of the anchor
and anchor chain is greater than the sum of external
forces, preventing the ship from moving as a result.
Anchoring is often related to the berthing, tide,
loading and unloading, quarantining and sheltering of
ships. During such activities, the ship is anchored
in an offshore anchorage area.The ship tends to
move around the anchor and presents a circular or
semicircular track shape in different directions, as
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shown in Fig.2(a) below, in which the anchor is
approximately located in the middle of the circle. The
circular motion of the ship around the anchor may
be caused by the influence of wind, the tide or ocean
currents. Depending on the ship type, the ground
speed is approximately 0.0-3.0 knots.
2) Mooring: Mooring refers to the process of using
equipment to make the ship stop at the berth. Mooring
is related to permanent structures of fixed vessels, such
as wharves, anchor buoys and mooring buoys. In such
activities, the ship is constrained not only by its anchor
but also, for example, by the mooring buoy. Therefore,
compared with the anchoring pattern, the movement
of the ship is more limited during mooring, and the
ship position is “close” to the mooring equipment, as
shown in Fig.2(b) below. This slight movement arises
due to the influence of wind and ocean currents, and
the ground speed generally does not exceed 1.0 or 2.0
knots.
3) Sailing: A ship is considered to be in sailing when
it is not grounded, anchored or tied to the wharf,
shore or other stationary objects. In such activities,
the trajectory of the ship usually presents as a straight
line, curve or zigzag, as shown in Fig.2(c) below. Ships
in the sailing state are driven not only by equipment
but also by wind or ocean currents. The ground speed
is generally 8.0-20.0 knots.
4) Fishing: Fishing refers to the operation process
generated when a vessel conducts fishery-related
operations. There are many different types of fishing
behavior, including trawling, longline fishing, purse
seine fishing and gillnetting, the most common of
which is trawling. In such activities, the ship generally
does not sail in a straight line; rather, it tends to
change course frequently in the fishing area of interest,
as shown in Fig.2(d) below. The ground speed is
generally approximately 2.5 knots.

(a) anchoring (b) mooring (c) sailing (d) fishing

Figure 2. Trajectories of different ship behavior modes.

Fig.3 shows the distribution of various characteristics
under different behavior modes. This distribution is
calculated according to some AIS data collected by
the source of the corresponding data set in this article
in the past decade. The red solid line represents the
anchoring activity, the yellow solid line represents the

(a) Density probability corresponding to area span

(b) Density probability corresponding to speed

(c) Density probability corresponding to turning range

Figure 3. Distribution of characteristics under different ship
behavior patterns.

mooring activity, the blue solid line represents the
sailing activity, and the green solid line represents the
fishing activity. Since the characteristics of longitude
and latitude do not effectively reflect the characteristics
of these behaviors alone, the maximum span in the
direction of longitude and latitude in the trajectory is
introduced here as a regional span for analysis. From
Figure (a), we can clearly find that the distribution
of anchoring and mooring on the regional span is
much smaller than that of sailing and fishing. At the
same time, the peak of sailing is about 0.34 degrees
while the peak of fishing is about 0.6 degrees, which
demonstrates that the behavior of fishing usually
happens in areas with more fish stocks and a smaller
regional span compared to sailing. The regional
span of mooring is more limited and concentrated
than that of anchoring, which is determined by their
different characteristics. In Figure (b), we can find that
anchoring and mooring show a similar distribution
in terms of speed, which is basically below 0.3 knots,
and the anchoring has a wider speed range than
mooring. The peak of fishing speed is around 0

6



Chinese Journal of Information Fusion

knots while the peak of sailing is about 14 knots
due to the machine break of operation during the
fishing process. Figure (c) reflects the probability
distribution of the change in steering. There seems
to be no particularly obvious difference between the
four behaviors, however, the steering change of sailing
can still be found under careful observation that it is
more concentrated in the range below 10 degrees. And
there are steering situations greater than 200 degrees
in all four behaviors, which is basically in line with the
analysis of their characteristics.

3.2 AIS data preprocessing
The sources of maritime traffic information are
highly varied and include marine radar, base stations
and satellites, which use different technologies to
monitor and track different ships and vessels. AISs
use VHF signals to transmit dynamic, static and
navigation-related ship information between ships,
satellites andmonitoring centers in real time. Themain
information contained in the transmitted messages is
shown in Fig.4. Among them, "Type" refers to the type
of the ship itself, such as a passenger ship, or oil tanker,
while "Status" refers to the current operation state of
the ship, which is also the field to be used later in this
paper, such as sailing, fishing, etc.

Static information Dynamic information Navigation related information 

MMSI identification code

Name ship name

Length ship length

Type ship type 

Width ship width

CallSign ship call sign 

LAT 纬度LAT latitude

LON longitude 

Time time stamp

COG course over ground

SOG speed over ground

Status ship  status 

Draught water consumption

Cargo type of cargo

Destination destination 

ETA
estimated time of 

arrival

Figure 4. Diagram of the AIS message data structure.

As the transmission frequency of ship AIS data
messages depends on the ship’s current speed and
the change of its course, the transmission interval is
approximately 2 seconds to 3 minutes and is affected
by themeasurement error of the relevantmeasurement
equipment. When the object moves to a corner or
stops suddenly, problems such as position uncertainty
and deviation from the trajectory point may arise. In
addition, because the navigation state is manually
set by the crew, it is prone to errors and can even
be manipulated by fishery personnel who tend to
hide their operations to conceal illegal acts. At the
same time, considering the continuity of ship behavior
events in a period of time, we should also consider the
effective track that can show its behavior characteristics
in this period of time as far as possible. According to

the track characteristics of the four behavior modes
mentioned in Section 3.1, the generated data set is
transformed from the track data to the track image
proposed in this paper to help us judge and eliminate
obvious errors or invalid label data. For trained deep
networks, the input of AIS data with sampling rules,
true data and correct labels helps ensure performance
and increases their accuracy and stability. Therefore,
before being input to the model, the data must be
preprocessed using the following steps.
• Feature selection: The AIS dynamic ship information
reflects the activity law in ship movement. Therefore,
this paper selects a vector composed of longitude,
latitude, ground speed and ground course in
the dynamic information as the time series data
representing the motion of the ship with time.
• Exception handling: Exception handling is
conducted for the selected features [11], including
null value exception ( in which the value of the
selected feature is null), and the direct elimination
processing method is adopted; when the change in
velocity between the last two data points is greater
than the set threshold, the point is considered as
an anomalous velocity point and is replaced with
the theoretical value calculated assuming that the
ship moves with a uniform acceleration in a straight
line within this period of time. A similar method is
used to address position abnormalities; when the
position value of the data point at this time exceeds
the elliptical range formed by the data point at the
first and second time points as the focus, the point is
identified as an abnormal position point is replaced
with the midpoint position.
• Data resampling: Considering the relatively slow
change in the position of a ship in a marine
environment, this paper selects 60 seconds as the
unified sampling period; repeated sampling is used to
process data points with a sampling interval greater
than 60 seconds, and the down sampling method is
used for data points with a sampling interval less than
60 seconds.
• Track segmentation: It is generally believed that
switching between two modes in a track will often
cause rapid changes in direction or speed. Therefore,
after resampling the data, we can integrate the changes
in the above two attributes and set a threshold to
approximately classify different behavior modes in
the same track. To maintain the continuous motion
characteristics of the trajectory data and account for the
real-time performance of the actual application scene,
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this paper selects a fixed trajectory length of 64 for
subdividing the trajectory segments. The navigation
status is used as the track category label.
• Normalization: The maximum and minimum
normalization method is used to remove the
dimensions of the input data, improve the accuracy of
the model and increase the convergence speed of the
algorithm.

3.3 Trajectory image processing
Trajectory image processing is a method for
representing the corresponding image of the
preprocessed sequential trajectory segment. This
paper implements an improved version of SMIGL,
originally proposed by Chen et al.[12]to represent
the trajectory image. To visualize and effectively
classify ship motion modes, three key features
(latitude, longitude and ground speed) are captured
to characterize the ship motion track modes.
Suppose Tr = (p1, p2, · · · , pn) represents the moving
track of a ship, where n represents the length of the
track of the number of AIS data points in each track;
Vector pi = (lati, loni, sogi, cogi) represents the vector
composed of the features contained in the ship AIS
data at time i, where lati represents the latitude of the
ship at time i, loni represents the longitude at time
i, sogi represents the ground speed at time i,and cogi
represents the ground course at time i. The following
describes the specific steps for converting each ship
track into a corresponding image:
Step 1: Based on the maximum longitude and latitude
information of each track, calculate the total horizontal
distance and total vertical distance. Then, to better
distinguish the anchoring and mooring behavior
modes, according to the data distribution of the two
behavior modes on the travel distance, determine
the corresponding horizontal distance threshold lon∆

and vertical distance threshold lat∆ according to the
distribution of the travel distance data for the two
behavior modes (make sure the track image is in the
middle of the picture using the same strategy for
the left and right). lonmax and lonmin represent the
maximum and minimum longitudes in Tr, and latmax

and latmin represent the maximum and minimum
latitudes in Tr. Therefore, the calculation formulas for
the corrected total horizontal distance Xdistancetotal
and corrected total vertical distance Y distancetotal of
the ship are as follows:

Xdistance total = lonmax − lonmin + 2× lon∆ (1)
Ydistance total = latmax − latmin + 2× lat∆ (2)

Step 2:Calculate the travel distance of each
pi (i = 1, ..., n) in Tr relative to the minimum
longitude and latitude and then obtain the corrected
horizontal distance relative to the minimum longitude
Xdistancei and the corrected vertical distance relative
to the minimum latitude Y distancei at time i. The
specific formulas are as follows:

Xdistancei = loni − lonmin + lon∆ (3)

Ydistancei = lati − latmin + lat∆ (4)

Step 3: According to the above formulas and to the
predefined image size N ×N (where N is 244 in this
paper), the percentage of the total distance of each pi
from the respective minimum coordinates in the X
direction and Y direction and the exact position of
each pi in the predefined image, respectively, can be
calculated to represent the whole track segment Tr in
the corresponding image. The specific formulas for
calculating the horizontal positionXpixeli and vertical
position Y pixeli in the image are as follows:

Xpixeli = Xdistancei ÷Xdistancemin ×N (5)

Ypixeli = Y distancei ÷ Y distancemin ×N (6)

Step 4: After all pi in Tr are represented in the image
of predefined size, considering that each pixel in the
image has a corresponding RGB pixel value, each pi
exactly corresponds to one pixel in the image, and the
ground speed and RGB pixel value can be represented
in a certain range, allowing the ground speed value
in each pi to be mapped to the corresponding RGB
pixel value. For example, as shown in Fig.5 below, the
speed relationship between each point is reflected by
the size of the pixel values. Finally, the Bresenham line
algorithm [13] is used to connect the continuous pixels
each time with lines of other colors, thus completing
the whole trajectory image processing process.

Color range 

Speed range

Figure 5. Speed color mapping table.

3.4 Double-domain fusion network model
In this paper, a fusionmodel combining the time-series
domain and computer-vision domain is proposed
to classify ship trajectory activity patterns.Through
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the extraction of features from AIS trajectory data
from different angles obtained during ship motion,
the complementary fusion of two different domain
models is used to accurately classify and recognize
ship behavior patterns. The specific fusion network
model structure is shown in Fig.6 below.

First, the preprocessed, fixed-length AIS track segment
is used as the input to the fusion model. Since the
length of the track segment selected in this paper is
64, n = 64 in the figure below. The time-series domain
model is an improved version of the MLSTM-FCN
model proposed by Fazle et al. [14] for multivariate
time variables. We use twoBi-LSTM layers in the upper
branch of the time series-domain model to extract the
temporal characteristics and exchange the dimensions
of the input multivariable AIS data before it enters the
Bi-LSTM layer. N time steps are needed to process M
variables (N > M) in each time step before swapping,
while only M time steps are needed to process N
variables in each time step after the transformation.
Experiments show that data dimension exchange
first can greatly reduce the training time without
reducing model performance. In the lower branch,
a fully convolutional network (FCN) consisting of
five 1D-CNN layers is used to extract spatial features.
Finally, the decision outputs in the time series domain
are obtained through feature fusion and dense layers.
The computer vision-domain model domain needs to
image the ship AIS track segment first, then use the
generated track image as the input, extract the features
of the track image through multilayer 2D-CNN and
MaxPool layers, and use a Dropout layer to improve
the generalizability. Finally, the decision output in the
computer vision domain is achieved through a dense
layer.

After the decision output vectors of the model
in the two domains are obtained separately, the
decision output of the domain fusion network is
obtained by class weighted fusion [15].That is,
after the two decision output vectors are produced,
weights are added, and then the matrix dot product
operation is performed to obtain the final output
vector. The category with the highest probability
in the final vector is the final decision result.
Assuming that the output decision vector of the time
series-domain model is Ps = (Ps1, Ps2, Ps3, Ps4),the
output decision vector of the computer
vision-domain model is Pj = (Pj1, Pj2, Pj3, Pj4),
and Pmn (m = s, j, n = 1, 2, 3, 4) represents the
probability of each ship activity mode (anchoring,
mooring, sailing, and fishing ), the results of the

decision are as follows:

P = Ps ·Ws + Pj ·Wj (7)

where P is the final decision result and Ws =
(Ws1,Ws2,Ws3,Ws4) and Wj = (Wj1,Wj2,Wj3,Wj4)
represent the weight vectors corresponding to the
time-series and computer vision-domain decision
vectors, respectively. The two weights for each activity
mode add to 1, that is, Wsn + Wjn = 1(n =
1, 2, 3, 4)represents anchoring, mooring, sailing, and
fishing respectively, and the specific weight values
of the weight matrix are determined by subsequent
experiments.

Ship trajectory segment
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Figure 6. Double-domain fusion network model structure
diagram.

4 Experimental results and analysis
To verify the effectiveness of the method proposed
in this paper in ship trajectory classification using
AIS data, the marine cadastre data source, jointly
managed by the Bureau of Ocean EnergyManagement
(BOEM) and the National Oceanic and Atmospheric
Administration (NOAA), is adopted. This source
contains the navigation records of all AIS-equipped
ships along the coast of the United States from 2009
to 2021. The experimental dataset of this paper is
constructed by preprocessing the AIS data source,
including 400 trajectory segments of each activity
category, and a training set, validation set and test
set are constructed at a ratio of 6:2:2.

4.1 Experimental environment and evaluation
index

The basic experimental environment used in this paper
is introduced below, in Tab.1. Keras is a high-level
neural network API, written in pure Python and
based on the TensorFlow, Theano and CNTK back-end
development libraries. It has a simple deep network
programming interface, possessing an easy-to-use API,
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complete documents and good expansibility. We use
Keras to design, debug, evaluate, apply and visualize
the deep learning model.

Table 1. Introduction to the experimental environment.

Hardware/software
environment

Detailed
information

Central Processing Unit
(CPU)

Intel Core
i7-6800K,3.40GHz,6
core 12 threads

Graphics Processor Unit
(GPU)

GeForce TITAN
X,GDDR5X,12GB

Computer Memory 32 GB,DDR4
Computer System Ubuntu 16.04, 64 bit
Development Framework Keras 2.3.1
Development Language Python 3.6

Evaluation is an essential step in the experimental
process.To evaluate the performance of each
experimental model in the experimental process, the
feasibility and effectiveness of the model proposed in
this paper are verified. The classification evaluation
indexes selected in this paper are precision, recall
and F1-score. The specific formula is listed below,
where TP represents the number of positive classes
correctly identified as positive classes, FN represents
the number of positive classes incorrectly identified
as negative classes, and FP represents the number
of negative classes incorrectly identified as positive
classes.

precision =
TP

TP + FP (8)

recall =
TP

TP + FN (9)

F1 − score = 2× precision × recall
precision + recall (10)

4.2 Experimental parameter setting
The experimental parameters are divided into
two parts, each set separately: experimental
hyperparameters and network model parameters. In
this part of the experiment, the training batch size
for each model is 8, the number of iterations is 300,
the effective and rapid Adam optimizer is selected,
the basic learning rate is 1E-3, and the learning rate
decay strategy is adopted. After 100 iterations, the
learning rate is automatically reduced by 1/ 3

√
2 to

improve model convergence, and the loss function is
the classified cross-entropy function. In addition, the

class weighting scheme is used to resolve potential
class imbalance in the experiment, and the weighting
operation of the class factor is used to reduce possible
losses in accuracy. The overall hyperparameter
settings are shown in Tab.2 below:

Table 2. Experimental hyperparameter settings.

Hyperparameter name Hyperparameter value

Base learning rate 1E-3
Optimizer Adam
Epoch 300

Batch size 8
Loss Cross entropy

Other strategy Reduce lr, Class weight

The parameter settings for specific layers of the
network model are determined by a controlling
variables strategy. The number of memory units
(8, 16, 32) and the number of layers (1, 2, 3) of
Bi-LSTM are determined through experiments for
the upper branch of the time series network, while
for the lower branch, experiments are conducted to
determine the optimal number of layers (3, 4, 5, 6)
and convolution (64, 128, 256, 512) of the 1D-CNN
in the FCN. The choice of the network model in
the computer-vision domain is mainly based on the
trade-off between the accuracy and ability to perform
real-time classification of the network. The specific
parameters of the double-domain fusion network
model are shown in Tab.3.

4.3 Experimental results and analysis
We sought to verify the structural effectiveness and
superiority of the model proposed in this paper. First,
the effectiveness of the domain fusionmodel is verified
by comparing the double-domain fusion model with
the separate domain models. Second, the superiority
of the fusion model is verified by comparing it with
other representative models that perform similar
functions. The comparative experiment is carried
out on the same experimental data set, the model is
evaluated in terms of the three classification evaluation
indexes proposed in this paper, and the optimal
performance of the model is obtained through a
large number of experiments. Some comparative
experimental results are shown in Tab.4 and Tab.5
below.
From a comparison of the above two tables and
the corresponding confusion matrix, the following
conclusions can be drawn: (1) For both the time-series
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Table 3. Network model parameter settings.

Layer
name

Number,Size Strategy Activation

Bi-LSTM_1 16,/ Return
sequences=true

Sigmoid

Bi-LSTM_2 8,/ / Sigmoid
Conv1D_1 256, 8 Padding=same ReLU
Conv1D_2 512, 5 Padding=same ReLU
Conv1D_3 512, 3 Padding=same ReLU
Conv1D_4 512, 3 Padding=same ReLU
Conv1D_5 256, 3 Padding=same ReLU
GlobalAverage
Pool

/ / /

Concatenate / / /
Dense_1 4,/ / Softmax
Conv2D_1 32, (5,5) Padding=same ReLU
Conv2D_2 64, (5,5) Padding=same ReLU
MaxPool_1 /, (4,4) / /
Conv2D_3128, (5,5) Padding=same ReLU
Conv2D_4256, (5,5) Padding=same ReLU
MaxPool_2 /, (4,4) / /
Dropout_1 / Rate=0.3 /
Conv2D_5128, (5,5) Padding=same ReLU
Conv2D_6 64, (5,5) Padding=same ReLU
MaxPool_2 /, (4,4) / /
Dropout_2 / Rate=0.3 /
Conv2D_7 32, (3,3) Padding=same ReLU
Conv2D_8 32, (3,3) Padding=same ReLU
MaxPool_3 /, (2,2) / /
Flatten / / /
Dens_2 4,/ / Softmax

model and the computer-vision model, there is
a high degree of recognition between the large
categories of sailing and fishing and those of anchoring
and mooring, because from the perspective of the
motion state, the range of position changes and
the overall speed range of a ship in the latter
categories are significantly different from those of the
former. From the perspective of the track images,
precisely because of the corresponding performance
relationship between them and the motion state, there
will be obvious differences among the images. (2)
The time series-domain model proposed in this paper
performs better in the classification of the sailing and
fishing modes because the law of change in the state
of motion of ships at sea is obvious when they are in
thesemodes. For example, for a ship in the sailing state,
the direction of the ship remains basically unchanged,
and the course changes occasionally. However, after

Table 4. Single model experiment results in the time-series
domain.

Ship
activity
class

Precision Recall F1-score

Sailing 97.04±1.26 95.37±1.30 96.14±1.33
Fishing 95.50±1.22 97.02±1.31 96.11±1.41
Anchoring 64.19±2.47 73.64±3.02 68.99±2.32
Mooring 70.21±2.33 59.54±2.12 64.46±2.20
Accuracy / / 82.00±1.35
Macro
avg

81.89±1.67 81.85±1.48 82.02±1.22

Weighted
avg

81.89±1.67 81.85±1.48 82.02±1.22

Table 5. Single model experiment results in the
computer-vision domain.

Ship
activity
class

Precision Recall F1-score

Sailing 95.28±1.14 89.11±0.89 92.13±0.97
Fishing 87.99±1.24 95.56±1.10 91.59±1.21
Anchoring 87.19±1.33 88.58±1.42 87.98±1.27
Mooring 90.50±0.87 87.47±0.86 88.95±0.88
Accuracy / / 90.31±0.94
Macro
avg

90.34±1.05 90.12±1.13 90.14±1.10

Weighted
avg

90.34±1.05 90.12±1.13 90.14±1.10

a course change, the current course will continue to
move forward, and the speed will stabilize within a
certain range. In the fishing state, the ship’s course
and speed will change frequently. They perform
slightly worse than track images, which are better
at capturing changes in location. (3) The computer
vision-domain model proposed in this paper performs
significantly better in the classification of anchoring
and mooring because there are obvious differences in
the trajectory image due to differences in the location
range characteristics between the two states. However,
for the time-series model, since the course and speed
of these two states are also affected by water flow
and wind speed, resulting in irregular changes, and
the overall changes in position are not as intuitive as
images are in the data, it is more difficult to capture
the location range characteristics.

The experiments for the fusion model are described
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below. Because the decision result of the fusion
model is the dot product of the weight matrices of the
decision results of the two domain models, the choice
of weights will also have some influence on the final
decision result. Therefore, the following experiments
are performed to evaluate the weight factors in the
weightmatrixWs separatelywithin [0, 1]; the resulting
accuracy of each type of ship activity is obtained as
shown in Fig.7 below.
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Figure 7. Accuracy for the four types of ship activities
under different weights.

In the above figure, we can see that for both sailing and
fishing, as the weight factor in the weight matrix Ws

gradually increases, the accuracy decreases slightly
first, then rises slightly, and finally continues to
decrease slightly. For both anchoring and mooring,
the accuracy increases sharply and then decreases
slightly. To obtain the best fusion model recognition
result, the weight matrices Ws(0.5, 0.5, 0.5, 0.5) and
Wj(0.5, 0.5, 0.5, 0.5) are chosen in this experiment. The
corresponding weight matrix is applied to the fusion
model, and the experimental results are shown in Tab.6
below.

Table 6. Experimental results for the double-domain fusion
model.

Ship
activity
class

Precision Recall F1-score

Sailing 98.79±1.21 95.60±1.07 97.18±1.12
Fishing 96.02±0.75 99.16±0.84 97.57±0.79
Anchoring 93.76±0.88 87.21±1.12 90.29±1.08
Mooring 88.10±0.96 94.25±0.75 91.16±0.77
Accuracy / / 94.20±0.80
Macro
avg

94.14±0.98 94.15±0.85 94.17±0.82

Weighted
avg

94.14±0.98 94.15±0.85 94.17±0.82

By comparing and analyzing the above experimental
results, we find that (1) the overall accuracy of
the double-domain fusion model is 11.56 percentage
points higher than that of the single time series-domain
model and 3.73 percentage points higher than that of
the single computer vision-domain model. In terms
of the accuracy for each category, the double-domain
fusion model outperforms the single-domain models
to varying degrees except for mooring, for which
the computer vision-domain model performs best.
(2) In terms of recall rate, the double-domain fusion
model also outperforms the individual domainmodels.
In terms of the individual category recall rates, the
fusionmodel outperforms the individualmodels for all
categories to varying degrees (even achieving a 100%
recall rate for fishing) except for anchoring, for which
the computer vision-domain model performed best.
(3) Because the different categories showed different
trends in the above two evaluation indexes, the
F1-score evaluation index is used to comprehensively
assess the three models. The F1-score of each category
in the fusion model is higher than that in the two
individual models, with the fishing behavior showing
the highest score (98.36%) and the anchoring behavior
showing the lowest score (91.37%); all categories
achieved an F1-score of more than 90%. At the
same time, through the feature visualization of some
layers in Fig.8 below, we can observe that the shallow
convolution layer will extract more specific features,
and with the deepening of the convolution layer,
the deep convolution core will adaptively adjust
parameters to learn more abstract features. In
conclusion, the structure of the fusion of the two
domains was sufficiently effective.

Conv2D_2 Conv2D_3 Conv2D_6

Figure 8. ualization under some different convolution
layers.

To verify the superiority of the proposed model,
other representative models that perform similar
functions are selected for comparison experiments on
the same dataset: Fazle et al. proposed a two-channel
classification network combining MLSTM with a full
convolution network for multivariate time variables;
Saeed et al. proposed a classification network for
identifying the behavior of fishing vessels based on
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a set of invariant spatiotemporal feature sequences
extracted from AIS track data; Ioannis et al. proposed
a network for classifying streaming vessel activities
using VGG16 as an image classification task; and
Pu et al. proposed a network based on ResNet50
for classifying the images of tracks. Finally, the
comparative experimental results from the different
models are shown in Tab.7 below.

Table 7. Experimental results for the double-domain fusion
model.

Model Accuracy Precision Recall F1-score

Fazle
et
al[14].

84.23 84.33 84.22 84.19

Saeed
et
al[7].

86.10 86.17 86.10 86.08

Ioannis
et
al[8].

92.07 92.11 92.06 92.05

Pu et
al[16].

89.86 89.88 89.86 89.83

Our
Model.

95.00 95.12 95.00 94.99

According to the results of the above comparison
experiments, the model proposed in this paper
achieves the highest recognition accuracy. For the
proposed ship behavior mode task, converting ship
track data to track images yields better performance
than recognizing ship track data directly as time
series data. However, analysis of a ship’s trajectory
by considering the geometric characteristics of
the trajectory is insufficient; the trajectory motion
characteristics must also be considered, yielding a
better recognition performance and verifying the
superiority of the proposed model in performing this
task.

In addition, through the analysis of some trajectory
data that are not accurately classified by the model,
we find that some anchoring states can be easily
misidentified as mooring in special environmental
situations, for example, the sea surface wind
speed and ocean water speed remain within a
certain range or even unchanged for a long time
in the specified trajectory period, In this special
scenario, relevant environmental parameters under
the current background need to be added to further
distinguish its specific state. Some sailing states

will be misidentified as fishing in complex ship
intersections or geographical environments. This
abnormal adjustment of navigation state caused
by external factors will confuse the model to a
certain extent. In the follow-up research, if there is
corresponding data as support, the ship condition
monitoring will be improved more comprehensively
by introducing additional environmental parameters
and geographical markers into the input parameters
of the model.

5 Conclusion
In this paper, a fusion model combining a time
series-domain model and a computer vision-domain
model is presented for classifying the four main types
of ship motion (anchoring, mooring, sailing and
fishing) usingAIS data. First, the acquiredAIS data are
preprocessed, including feature selection, exception
handling, data resampling, track segmentation, and
normalization processing. Then, the processed AIS
data segments are input into a double-domain fusion
model network. The upper branch of the time
series-domain model captures the characteristics of
the attribute data of the AIS data flow resulting from
temporal changes, and the lower branch captures
the features of the spatial relationship between the
attribute data of the AIS data flow. The fusion of
the two features is used as the input to obtain the
decision vector of the time series domain. In addition,
the AIS data segments are processed by track image
processing to obtain the corresponding track images
as the inputs of the computer vision-domain model,
and a corresponding computer vision-domain decision
vector is obtained. Finally, through the class weighted
fusion strategy, the weighted fusion of the decision
vectors from the two domains is selected to achieve
accurate classification and recognition of ship behavior
patterns. The validity and superiority of the proposed
double-domain fusion model in the classification of
ship motion tracks are verified by corresponding
comparative experiments.
The method proposed in this paper is limited by
the size of the network input data, and it has some
difficulty in classifying and identifying real-time ship
trajectories. In subsequent research, we will attempt to
predict ship trajectories to achieve early identification
and early warning of ship behaviors. In addition,
other, better fusion methods for obtaining the decision
vectors can be tested to achieve better classification
and recognition results for ship tracks. This will
provide solid and reliable technical support for marine
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regulatory authorities and important scientific and
technological support for the realization of a powerful
ocean country.
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