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Abstract
In response to the challenges associated with the
inefficiency and poor quality of 3D path planning
for Unmanned Aerial Systems (UAS) operating
in vast airspace, a novel two-layer path planning
method is proposed based on a divide-and-conquer
methodology. This method segregates the solution
process into two distinct stages: heading planning
and path planning, thereby ensuring the planning
of both efficiency and path quality. Firstly, the path
planning phase is formulated as a multi-objective
optimization problem, taking into account the
environmental constraints of the UAV mission and
path safety. Subsequently, the multi-dimensional
environmental data is transformed into a
two-dimensional probabilistic map. An improved
ant colony algorithm is proposed to efficiently
generate high-quality sets of headings, facilitating
the preliminary heading planning for UAVs. Then,
the three-dimensional environment of the heading
regions is extracted, and an improved Dung Beetle
algorithm with multiple strategies is proposed
to optimize the three-dimensional path in the
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secondary layer accurately. The efficacy and quality
of the proposed path planning methodology are
substantiated through comprehensive simulation
analysis.
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1 Introduction
With high maneuverability, strong concealment
abilities, and resistance to interference, the UAV has
emerged as a critical military tool for performing
diverse tasks such as reconnaissance, airstrikes, and
electronic warfare [1]. Effective path planning
based on macro environmental information is pivotal
in strategizing air defense force deployments and
seizing tactical advantages [2]. Confronted with
challenges from extensive airspace and complex
environments leading to inefficient and suboptimal
trajectory planning [3], efficient path planning has
become a pressing technological need to address.
Path planning can be divided into global path
planning, local path planning, and mixed path
planning. Global path planning aims to apply
planning algorithms to find a collision-free, safe,
and short path from the starting point to the
endpoint for the UAV within the constraints of the
known environment [4]. This paper focuses on the
comprehensive impact of a complex environment on
mission performance and flight safety, which belongs
to the scope of global path planning. Currently,
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existing global path planning algorithms can be
roughly categorized into four groups: algorithms
based on graph theory, fluid/potential field algorithms,
swarm intelligence algorithms, and neural network
methods. Graph theory methods mainly include the
Dijkstra algorithm [5, 6], the A* algorithm [7, 8],
and fast search random tree algorithm (RRT*) [9,
10]. Graph search is the most effective direct search
method for solving the shortest path in a static
road network. However, as the graph expands
and dimensions increase, computational efficiency
decreases rapidly. Fluid/potential field algorithms,
such as artificial potential field [11, 12] and Interfered
Fluid Dynamical System (IFDS) [13, 14] can generate
a smooth virtual field based on the position of UAVs
and obstacle distribution. These algorithms offer clear
advantages in smooth path planning control and are
widely applied. Swarm intelligence algorithms are
self-organizing, adaptive, and self-learning. They
can effectively solve UAV path planning, such as the
Gray Wolf algorithm [15], Sand Cat algorithm [16],
Particle Swarm Optimization algorithm [17], and
Dung Beetle Optimization (DBO) [18]. Because
of the heuristic search and positive feedback of
information, Ant Colony Optimization (ACO) is
more suitable for solving simple graph path search
problems [19]. DBO is extensively used in 3D path
planning due to its robust global search capability [20–
22]. Neural networks possess strong nonlinear
learning abilities and demonstrate good path-planning
capabilities in complex environments [23–25]. In
Reference [23], residual convolutional neural networks
were used to solve the real-time path planning
problem. Literature [24] proposed an improved TD3
algorithm to train UAVs to reach targets safely and
quickly in multi-obstacle environments. However,
the performance of neural networks heavily relies on
adequate data and appropriate training, particularly in
complex path-planning tasks that demand substantial
computational resources. Moreover, in unfamiliar
environments, neural networks may have limited
generalization abilities require necessitate additional
retraining to adapt to new environments.

The vast area increases the solution space for path
planning, making it challenging to balance path
exploration and convergence. The quality of the path
is not guaranteed, and planning times are extended.
Furthermore, in the military environment, focusing
solely on the flight safety of UAVs is insufficient.
Environmental factors such as terrain, visibility, and
wind speed significantly impact the effectiveness of

reconnaissance and penetration missions. To enhance
operational efficiency and path safety, three crucial
questions are identified for path planning in aerial
environments: "Where can I go?" "Where should I
go?" and "How should I get there?" [26]. Inspired
by the divide-and-conquer concept, a new two-layer
path planningmethod is proposed. Firstly, considering
the influence of multi-dimensional environmental
information on path planning, an adaptive 2D
probabilistic map construction method is proposed
to answer the question of "where to go". Secondly,
an improved ant colony algorithm is proposed to
guide UAVs in course sequence planning in 2D
maps, and a series of sub-regions with high heading
selection probability are obtained, which answers the
question "where should go". Finally, the distribution
information of obstacles in the heading area is
analyzed, and the path optimizationmodel is designed
according to the maneuvering constraints of UAVs,
which realizes the accurate trajectory optimization in
3D space and answers the question of "how to get
there". The proposed two-layer path planning model
focuses on different information in distinct layers,
enhancing the efficiency and quality of path planning.

The main contributions of the paper are as follows.
(1) Based on the divide and conquer concept,
traditional path planning is segmented into heading
planning and path optimization. The 3D path
planning is carried out under the spatial constraints
of the global heading planning results, which
reduces the search space, ensuring the efficiency
and quality of path planning. (2) A heading
sequence planning model in large airspace is designed.
An adaptive two-dimensional probabilistic map
construction method based on multi-dimensional
environment information is proposed, and the ant
colony algorithm is improved to achieve efficient
course planning in large airspace. (3) A trajectory
optimization model in local airspace is designed. A
multi-strategy Dung Beetle algorithm is proposed to
enhance the efficiency and quality of path optimization
in 3D space.

The remainder of this paper is organized as follows.
Section 2 briefly introduces the relevant theories;
Section 3 introduces the method proposed in this
paper. Section 4 shows the simulation experiments
and discussion. Section 5 presents the conclusions of
this study.
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2 Related Work
2.1 Ant colony optimization
Ant colony optimization (ACO) [27] is a bionic
algorithm according to the law of the overall foraging
behavior of the ant colony: the individuals in the
ant colony will leave a chemical substance called
"pheromone" on the walking path, and update the
pheromone on each path as shown in Eq.(1):

τKP (t+ n) = (1− ρ)× τKP (t) + ∆τKP (t) (1)

where ρ ∈ (0, 1) is the global pheromone volatilization
coefficient. ∆τKP (t) is the positive change of the
pheromone on the pathKP in the current iteration, as
shown in Eq.(2).

∆τKP (t) =

m∑
A=1

∆τAKP (t) (2)

where ∆τAKP (t) is the concentration of left pheromones
by ant A on pathKP . If ant A has not passed the path
KP , the value is 0.
Other ant colonies will calculate the node transition
probability based on Eq.(3) when making route
selection.

PAK =


τK(t)αξKP (t)

β∑
c∈allowA

τK(t)αξKC(t)β
, c ∈ allowA

0, c /∈ allowA
(3)

where ξ is the heuristic information, represents the
degree of transition expectation of ant A from nodeK
to node P , α is the pheromone concentration factor, β
is the expected heuristic factor. After ant A completes
one iteration, the route from the starting node to the
target node is a feasible solution. Ant colony algorithm
is constructed by pheromone positive feedback effect
and heuristic function, and has strong robustness and
adaptability.

2.1.1 Graph Theory-Based Path Search
Particle Swarm Optimization (PSO), Genetic
Algorithm (GA) and ACO are classical methods
of path search. By comparing the performance
of path planning based on different algorithms in
raster map, the algorithm more suitable for graph
theory is selected. Specifically, the static simulation
environment (20 x 20) is designed, and the starting
point and ending point of the target are known in the
environment. PSO, GA and ACO are used for shortest
path planning. The parameters of ACO are set as

Figure 1. Path planning results of different algorithms.

follows: the number of ants M = 10, the maximum
number of iterations Nmax = 50, information heuristic
operator α = 1, expectation heuristic factor β = 5,
pheromone intensity Q = 5, pheromone residue
operator ρ = 0.7. The parameters of PSO are set as
follows: particle size S = 20, number of iterations
Gmax = 50, inertia weight operators w = 0.5,
acceleration operators c1 = c1 = 1, r1 = r2 = 0.3. The
parameters of GA are set as follows: population size
NP = 20, iteration times Gmax = 50, crossover rate
pc = 0.7, mutation rate Pm = 0.05.
The path planning results based on PSO, GA and ACO
after 50 iterations are shown in the Figure 1. According
to Figure 1, the path obtained by PSO occupies 38
grids and is turned 16 times. The path obtained by GA
algorithmoccupies 42 grids and is turned 18 times. The
path obtained by ACO algorithm occupies 36 grids and
is turned 7 times. The planning results show that ACO
is better than PSO and GA under the same number of
iterations, so it is more suitable for solving the path
planning problem. The selection operator in GA can
ensure that all the selected individuals are excellent,
but themutation operator and crossover operators only
introduce new individuals, and their operations cannot
guarantee whether the new individuals are excellent.
If the newly generated individuals are not sufficiently
excellent, the introduction of new individuals will
become an interference factor, which will slow down
the search speed of GA. For PSO, the biggest problem
in the application of graph theory path planning is
that there is no unified prior knowledge of parameter
setting (such as inertia weight, acceleration coefficient)
and application background, resulting in unstable
algorithm performance. ACO is also a type of
feedback random search algorithm, but it relies on
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Figure 2. The framework of the two-layer path planning.

the pheromone (based on fitness function) left by
ants for optimization. The initialization setting of the
pheromone and the selection probability are closely
related to the length of the path. This means that a
shorter path attracts more ants. At the same time,
the amount of residual pheromone is greater, which
speeds up the optimization process. Therefore, ACO
is chosen as the basic method to solve the problem of
searching paths on graphs.

2.2 Dung Beetle Optimizer
Dung Beetle Optimizer (DBO) is a novel swarm
intelligence algorithm that updates and optimizes the
position of dung beetles by simulating four actions:
ball rolling, breeding, foraging, and stealing.
(1) Ball-rolling dung beetle. When dung beetles move
forwardwithout obstacles, the position of dung beetles
is updated as shown in Eq.(4). When dung beetles
encounter obstacles, the tangential function is used to
simulate the dancing behavior. The position updating
formula is as follows Eq.(5).

xt+1
i = xti + λ · k · xt−1i + b ·

∣∣xti − xworst∣∣ (4)

xt+1
i = xti + tan(θ)

∣∣xti − xt−1i

∣∣ (5)

where xti represents the position information of the
i − th dung beetle during the t − th iteration. λ
is a natural coefficient assigned to 1 or -1. k is the
random deflection coefficient of [0, 1]. b is the random
coefficient and xworst is the position of the worst
individual.
(2) Breeding. After the spawning area is determined
based on Eq.(6), dung beetles will reproduce, and
the position of the offspring dynamically changes, as

shown in Eq.(7).

Lb∗ = max {xlbest · (1−R), Lb}
Ub∗ = min {xlbest · (1 +R), Ub}

(6)

xt+1
i = xlbest + b1 ×

(
xti − Lb∗

)
+ b2 ×

(
xti − Ub∗

)
(7)

where xlbest represents the current local optimal
position. R = 1 − t

tmax
, tmax denotes the maximum

number of iterations, t is the current number of
iterations, Lb and Ub represent the lower and upper
bounds of the spawning area, b1 and b2 are two
independent random vectors with a size of 1×D.
(3) The feeding area of dung beetles is determined
based on Eq.(8). At this time, the position of dung
beetles is updated as shown in Eq.(9).

Lb∗ = max {xgbest · (1−R), Lb}
Ub∗ = min {xgbest · (1 +R), Ub}

(8)

xt+1
i = xti + C1 ×

(
xti − Lb∗

)
+ C2 ×

(
xti − Ub∗

) (9)

where xgbest represents the global optimal position; C1

is a D-dimensional random vector following a normal
distribution; C2 is the random vector within the range
of (0, 1).
(4) Stealing. The position of the thieving dung beetle
is updated as follows:

xt+1
i = xgbest + S × g ×

((
xti − xgbest

)
+
∣∣xti − xlbest∣∣)

(10)

where S is a constant value. g is a random vector
subject to normal distribution with the size of 1×D.
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3 Methodology
3.1 The framework of the two-layer path planning
Facing the large airspace and complex interaction
of environmental factors, planning a path directly
from the overall three-dimensional environmental
information poses challenges such as low efficiency
and poor quality. The flowchart of the two-layer path
planning proposed in this paper is shown in Figure 2.
The basic idea is to analyze the influence of multiple
environmental factors on the heading, construct an
adaptive two-dimensional selection probability map,
and then propose an improved ant colony algorithm
to carry out the first layer of coarse-grained heading
sequence planning. This process aims to identify
regions conducive to task execution. Subsequently,
the spatial distribution of obstacles in the subregions is
considered, and trajectory optimization is performed
in the 3D space.
Heading planning and path planning are conducted
within distinct layers of a unified framework, each
with its specific focus. The heading planning phase
prioritizes the assessment of the multi-dimensional
environmental factors affecting the global path,
thereby facilitating a coarse-grained heading planning
approach. Conversely, path optimization aims to
enhance the smoothness of the path while minimizing
the path length, all while ensuring flight safety in
accordance with heading space constraints and the
maneuvering conditions applicable to unmanned
aerial vehicles (UAVs). Path optimization is to improve
path smoothness, flight safety and shorten path
length with the maneuvering constraint conditions of
UAV. However, they are closely related to each other.
Trend planning provides a general framework and
macroscopic direction guidance for path planning,
while path planning is a fine design based on the
existing heading to ensure that the UAV flight not
only meets the predetermined macroscopic path,
but also meets various constraints and performance
requirements in the actual flight.

3.2 Construction of adaptive 2D probability map
3.2.1 Adaptive spatial decomposition strategy
1) The coordinate system is built with the target
as the center, and the distance between the initial
position of the UAV and the target is the far boundary.
Extraction of terrain, wind speed, and visibility within
the airspace. Due to the wide range of airspace, an
adaptive spatial distribution decomposition of airspace
based on obstructive factors is proposed. Among
them, the obstacle factor is the environmental factor

Figure 3. Spatial decomposition based on obstacle ring.

Figure 4. Connectivity relationship of sub regions.

that causes the UAV’s flight direction to be impossible
and the heading direction must be changed [28]. In
this paper, elevation greater than 5200 m, visibility
less than 0.8 km, and wind speed greater than 25
m/s, are considered as obstruction factors. As shown
in Figure 3(a), there are two obstacle factors in the
airspace, which is divided into three-ring layers.

2) To reduce the evaluation errors among sub-regions,
each ring layer is divided into 32, 16, and 8 sub-regions
from outer to inner layers. As illustrated in Figure 3(b),
the first layer (o-R1) of the ring region is divided into
eight sub-regions. The second layer of the ring region
(R2-R1) is divided into 16 sub-regions. The third layer
(R3-R2) is divided into 32 sub-regions.

3) Connectivity of subregions. The region(i, j)
represents the relative position between sub-regions,
indicating that the current sub-region is located in the
j-th discrete region of the i-th ring layer. There are
only three choices from the current sub-region to the
next sub-region. The connectivity of sub-regions is
illustrated in Figure 4. If the numbers of sub-regions in
two adjacent layers are the same, the next possible
sub-regions are shown in Figure 4(a). If the
numbers of sub-regions in two adjacent layers are
different, the next sub-regions are demonstrated in
Figure 4(b). Therefore, the mathematical description
is shown in Eq.(11). There is no connectivity
between the innermost sub-regions. The ring layers
are unidirectionally connected, which can only be
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connected from the outer ring to the inner ring.

next =


[(i+ 1, j − 1), (i+ 1, j + 1), (i, j)],

if num(i) = num(i+ 1)

[(i+ 1, j − 1), (i+ 1, j + 1), (i,
⌈
j
2

⌉
)],

if num(i) 6= num(i+ 1)

(11)

where num(Li+1) are the total number of neutron
regions in Li and Li+1 layer respectively, n− 1, n+ 1
are num(Li)-ary operation, ⌈n2 ⌉ is a ceiling operation.

3.2.2 Calculation of heading selection probability
This paper primarily considers the impact of altitude,
visibility, and wind speed on UAV reconnaissance
missions , followed by evaluating flight selection
possibilities in each sub-region.
(1) Most UAVs adopt low-altitude penetration tactics,
so the terrain elevation has a decisive effect on the
heading. The lower the ground elevation, the stronger
the shielding ability, and the greater the selection
possibility Pe.
(2) When the visibility is below 1.22 km, the clarity
of vision is poor, which seriously threatens the flight
safety of the UAV, and its flight direction selection is
limited. When the visibility is between 1.22 km and
6 km, it significantly affects the clarity of vision and
the degree of radar attenuation. When the visibility
exceeds 6 km, the possibility Pv of choosing the
direction is higher.
(3) With the increase in wind speed, the control
performance and maneuvering stability of the UAV
deteriorate. Therefore, when selecting the flight
direction, it often avoids regions with high wind
speeds. When the wind speed is less than 1.5 m/s,
it does not affect the UAV’s flight, and the selection
possibility is high. Wind speed starts to impact
operational performance in the range of 1.5 m/s to
30 m/s, and the selection possibility decreases as wind
speed increases. When the wind speed exceeds 30 m/s,
it becomes unsafe to fly, and the selection possibility
Pw is low.
Combined with the grading standards of terrain and
meteorology, this paper makes a fuzzy representation
of environmental factors, as shown in Table 1.
Then the calculation formula of the heading selection
probability is shown in Eq.(12), where S′(i,j), S(i,j)
represent the barrier area and total area of the

Table 1. Classification of heading selection probability.

Environmental
factor 0.8 0.6 0.4 0.2

Altitude(m) 600 600-2700 2700-4800 4800
Visibility(Km) 6 2.5-6 1.5-2.5 1.5

wind speed(m/s) 1.5 1.5-10 10-20 20

subregion (i, j) respectively.

P 1
cs =

S′(i,j)

S(i,j)
(0.4× Pe + 0.3× Pv + 0.3× Pw) (12)

3.3 Heading sequence planning based on IACO
The specific steps for searching the heading sequences
in airspace based on the IACO are as follows:
(1) Initial ant colony parameters: colony number
M , maximum number of iterations Tmax, pheromone
concentration factor α, heuristic function factor β,
pheromone volatilization coefficient ρ.
(2) Set the initial pheromone concentration τ to be
uniform within each subregion and place all ants at
the initial position of the drone as a starting point.
(3) According to the information in the 2D probability
map, the transfer probability of ant A from subregion
i to subregion j is calculated, as shown in Eq(3).
(4) After all ants complete traversal of all feasible
heading sequences, the pheromone on each subregion
needs to be updated, as shown by the Eqs.(17-19). If
ant A does not pass the subregion sequence I ,j, the
value is 0.
(5) If the current number of iterations reaches the
upper limit, the search terminates. If it has not reached
the limit, it proceeds to step (2) to continue iterating.

3.3.1 Heading planning objective function
The course of UAV is described by selecting
the sub-region sequence set, course =
{region1, · · · , regionN}.
The quality of feasible solution is evaluated from
sequence length, possibility, and tortuosity. The length
of the sequence is not only limited by the flight range of
UAV, but also affects the flight time; a shorter sequence
length results in a shorter flight time, which is crucial
for completing the flight task efficiently. A highermean
probability of the sequence reduces the risk to the
UAV. The sequence’s tortuosity should be as smooth
as possible due to flight maneuverability constraints.
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Figure 5. Schematic of path safety.

We propose that the direction sequence quality be
evaluated according to Eq.(13).

Jcourse = wPLPL(course) + wPcsPcs(course)

+ wPθPθ(course)
(13)

where PL(course), Pcs(course), Pθ(course) ∈ (0, 1)
represent the length ratio, mean probability, tortuosity
of sequence respectively. The calculation formulas
are as shown in (14). And wPL , wPcs , wPθ are the
corresponding weights.

PL(course) =
Lmax − Lcourse
Lmax − Lmin

Pcs(course) =
CScourse

N

Pθ(course) =
θmax − θcourse

θmax

(14)

where Lcourse represents total length of sequence sets,
Lmin is the straight-line distance from the flight start
point to the end point, Lmax = Lmin + 2πLmin.
CScourse represents total probability of sequence sets,
N is the number of sub-regions in the course sequence
set. θmax is a constant, representing the maximum
allowable direction tortuosity of UAV.

3.3.2 IACO
When the flight environment is complex, ACO is
challengeddue to the large search spacewhen selecting
the next region, leading to extended processing time
and subpar real-time performance. To address this
issue, an improved ant colony algorithm (IACO)
is proposed. (1) The new heuristic function is
critical in inspiring ants to select nodes, directly
affecting the solution quality. This new heuristic
information considers the heading selection possibility

of sub-regions and the distance between the sub-region
and the flight destination. This allows for selecting
sub-regions beneficial to the flight task, layer by layer.

ηij =
(
w1Pcsij + w2Pdij

) (15)
where Pcsij is the selection possibility of sub-region
(i, j), and Pdij is the distance between the center of the
sub-region (i, j) and the flight end point, Pcsij , Pdij ∈
(0, 1), w1 and w2 are weights of two heuristic factors,
and w1 + w2 = 1. The calculation of Pdij is shown in
(16).

Pdij =
Lmin − dij
Lmin + δ

(16)

When the flight start point and end point are known,
Lmin is a constant, and dij represents the distance
between selected sub-region and flight end point.
According to Eq.(16), the closer the last selected
sub-region is to the flight endpoint, the greater the
probability of selecting the sub-region, which reduces
the search range and improves convergence speed.
(2) To solve the problem that the global pheromone
update rule based on positive feedback cannot guide
ants to search for the optimal solution in time, a new
pheromone update strategy based on positive and
negative feedback is constructed.
1) For ants searching for feasible solutions from the
start to the end, the pheromones are updated based
on positive feedback, as shown in Eqs. (17) and (18).

τij(t+ 1) = (1− ρ)τij(t) + ρ∆τij(t) (17)

∆τij(t) = Q (Jij)
Jij
Jbest (18)

where Jbest is the quality evaluation value of the
optimal sequence of current iteration. Compared with
the traditional ACO, the search scope of ants in IACO is
more concentrated in the neighborhood of the optimal
heading sequence to achieve global optimization.
2) For ants that do not find a feasible solution,
pheromone concentrations in corresponding
subregions are updated based on negative feedback,
as shown in Eq (19) .

τij(t+ 1) = (1− ρ)τij(t)− ρ · Pdij (19)
where Pdij represents the distance between the last
selected sub-region traversed by the deadlock ant and
the flight end point. The attenuation of pheromone
concentration is related to Pdij , which can not only
avoid local optimization, but also avoid blind updating
of global pheromone.
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3.4 Path planning of 3D based on AMDBO
3.4.1 Objective function of 3D path planning
(1) The objective function of 3D path planning
is similar to that of heading planning, as both
have specific requirements for path length and
smoothness. The difference lies in the calculation
method. Moreover, flight path planning also takes
into account the safety of UAVs.

F = ω1Fl + λ1ω2Fe + λ2ω3Fs (20)

where, Fl, Fe, Fs are the three cost functions, ω1, ω2,
ω3 are the corresponding weight coefficients, λ1, λ2
are the scaling factors. The smaller the value of the
objective function, the better the quality of the path.
1) Path length

Fl =

n∑
i=1

√
(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2

(21)

where n represents the number of track points, and
(xi, yi, zi) represents the position of track point Pi.
2) Path smoothness The 3D path design must meet its
maximum climb angle and climb rate limits to ensure
the curvature of the path and avoid sharp changes
in direction and height fluctuations. li represents the
vector between two track points. Eqs.(22) and (23)
respectively represent the yaw angle ϕi and the pitch
angle φi. The cost function of path smoothness can be
defined as Eq.(24).

ϕi = arccos

(
li · li+1

‖li‖ × ‖li+1‖

)
(22)

φi = arctan

(
zi+1 − zi√

(xi+1 − xi)2 + (yi+1 − yi)2

)
(23)

Fe =
n−2∑
i=1

ϕi +
n−1∑
i=1

(φi − φi−1) (24)

3) Path safety In order to ensure the safe flight of UAVs,
a safety-oriented mechanism must be incorporated
into the path planning process. As shown in Figure 5,
there is an obstacle K in the airspace, whose central
coordinate isOk and radius isRk. The vertical distance
dk between the flight node of the UAV and the obstacle

Figure 6. The influence of three main parameters.

should be greater than the safety distance threshold
S = 800 m.

Fs =


0, dk ≥ S
S−dk
S , Rk < dk < S

∞, dk < Rk

(25)

(2) constraint condition In order to achieve the
feasibility of 3D path planning, constraints such as
the flight performance of UAV must be considered,
and the objective function exceeding the constraints
should be punished with a penalty coefficient Pf .
1) Maximum pitch angle. The pitch angle represents
the angle of rotation around the X-axis. Constraining
the angle change in the vertical directionwhen theUAV
moves between adjacent nodes is crucial to prevent
potential damage or crashes.

0 ≤ φi ≤ φmax (26)

2) Maximum yaw angle. The yaw angle of the UAV
involves its lateral rotation around the vertical axis
(y-axis). The change in yaw angle must be strictly
controlled to ensure that it stays within a safe range
and prevents flight instability.

0 ≤ ϕi ≤ ϕmax (27)

3) Flight altitude constraints. In order to ensure safe
flight, the UAV should have a certain safe distance from
the ground.

hmin + hf ≤ hi ≤ hmax + hf (28)
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Figure 7. Heading planning results in M1.

3.4.2 AMDBO
(1)Initialization strategy based on Tent Chaos When
dealing with complex optimization problems, the
original DBO randomly generates a population for
initialization. However, this approach may lead to low
population diversity, uneven population distribution,
and rapid convergence to local optimal solutions.
Tent Chaotic mapping offers better uniformity and
correlation. Therefore, we utilize it as a new
initialization method to enhance the population
diversity of DBO. The formula is presented in Eq.(29).

xi+1 =

{
xk
α , 0 < xk ≤ α
(1−xk)
(1−α) , α < xk ≤ 1

(29)

(2)Reverse learning strategy
Since the global search ability of reproduction and
stealing behavior decreases with the increase of
iterations, a random reverse learning strategy is
introduced to enhance the global search ability of these
two behaviors.

xtr = lb+ ub− rd× xti

xti =

{
xti, f(xti) < f(xtr)

xtr, f(xtr) < f(xti)

(30)

where, xtr is the reverse solution, lb and ub are
D-dimensional vectors representing the lower and
upper bounds of each dimension, and rd is the
D-dimensional randomvector of (0, 1), xti is the current
feasible solution. (3) Adaptive population variation
strategies In the original DBO, the ratio of the four
behaviors in the population is not specified, and
each individual can only perform one behavior. This
limitation may lead to an inadequate search in the
solution space or slow convergence. To address
this issue, this paper proposes an adaptive behavior
variation strategy.

Figure 8. Heading planning results in M2.

1) Behavior variation strategy is based on the number
of iterations. In this paper, the iteration number is
used to simulate time, and the behavior variation of
dung beetles is carried out every M iterations. This
process changes the current behavior into the following
behavior, allowing each dung beetle to perform four
action behaviors. This approach maximizes the
advantages of different behaviors and enhances the
optimization ability.

2) Behavior variation strategy based on population
similarity. Cosine similarity is introduced to measure
population similarity, as shown in Eq.(31).

Diver =
1

N

N∑
i=1

∑d
j=1 xi,j(t)xglbest,j(t)√∑d

j=1 x
2
i,j(t)

√∑d
j=1 x

2
glbest,j(t)

(31)

When the value is less than or greater than 0.5,
individuals engaging in reproduction and foraging
behaviors will transition into rolling ball behaviors.
This transformation enhances the algorithm’s global
search capability, promoting species diversity. After
finding the new best individual or reaching the
iteration threshold of the variant individual, the
variant individual will return to the original behavior
and continue searching.

4 Experiments and analysis
In this section, we evaluate the performance of the
proposed method. The structure of this section is
as follows: we verify the effectiveness of the IACO
in Section 4.1, discuss the optimization ability of
AMDBO in Section 4.2, and analyze a two-layer path
planningmodel in a simulated situational environment
in Section 4.3.
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4.1 Effectiveness analysis of IACO
4.1.1 Parameter setting
The setting of hyperparameters significantly impacts
on the performance of evolutionary algorithms. Since
there are no theoretical methods to determine the
best parameter combination, hyperparameters must
be fine-tuned and optimized through experiments
to ensure the algorithm can find high-quality
solutions efficiently [19]. In the ACO, pheromone
and heuristic information play crucial roles in ant
selection. Therefore, we focus on three key parameters:
pheromone important parameter α, heuristic factor
important parameter β, pheromone evaporation
coefficient ρ. The other initial parameters are: the
total number of ants is 50, the maximum number
of iterations is set to 100, and pheromone increase
intensity coefficient Q = 20.
This paper analyzes the influence of different values
of α ∈ {1, 1.5, 2, 2.5, 3}, ρ ∈ {0.1, 0.2, 0.3, 0.5, 0.8},
and β ∈ {1, 3, 5, 7, 9} on the convergence results. Set
a set of default values: α = 2, β = 3, ρ = 0.2.
When analyzing the values of multiple parameters
using the control variable method, one parameter’s
value is changed at a time while keeping the other
parameters at their default values. To enhance
the algorithm’s robustness, the selected parameter
combinations from each group are simulated in
20 random two-dimensional probability maps, and
the average convergence values are compared and
analyzed. The experimental results are shown in
Figure 6.
It can be seen from the results in Figure 5 that when
α = 2, β = 5, ρ = 0.3, the average convergence value
reaches the maximum value, and the influence of α
on the average convergence result fluctuates the most.
Therefore, the combination of α = 2, β = 5, ρ = 0.3 is
adopted in the subsequent experiments in this paper.

4.1.2 Contrastive analysis
In order to further verify the effectiveness of heading
planning based on IACO, the heading sequence is
planned in the same 2D probability map (M1 and
M2) based on D*, ACO, and GA. Figure 6 and
Figure 7 display the planning results in M1 and M2,
respectively.
In Figure 7, the heading sequence sets of ACO and
IACO exhibit high similarity. The results of D* and
the other three methods show the most significant
difference. In Figure 8, the difference between the
heading sequence sets of different methods is more

Figure 9. Convergence curves of three algorithms.

Table 2. Evaluation indexes of heading sequence.

Methods ACO GA IACO D*

M1
HL 1402 1329 1161 1615
HT 0.375 0.592 0.322 0.977
HP 0.614 0.625 0.614 0.568

M2
HL 5108 5717 4298 6787
HT 1.008 1.283 0.842 1.255
HP 0.417 0.458 0.411 0.458

significant than in M1, with the overall distribution
ranging from 0° to 180° and 180° to 360°. The similarity
between ACO and IACO is higher in the 8 ring layers
near the target. The heading sequences obtained by
GA and D* also align consistently within the 8 ring
layers.

In this paper, the quality of the heading sequence is
evaluated based on the length (HL), tortuous degree
(HT), and selection possibility (HP/) of the heading
sequence. The evaluation results of the heading
sequence in Figure 7 and Figure 8 are presented in
Table 2. It can be seen that the heading quality obtained
by the four different algorithms inM2 is lower than that
obtained in M1. The sequence length and sequence
tortuous degree based on D* are the maximum values
in the two maps, and the choice possibilities in the
set of sub-regions vary widely. This result indicates
that the heading sequence based on D* is trapped in
a local optimum. IACO achieves the shortest length,
the smallest tortuous degree, the largest average choice
possibility in the two probabilitymaps, and the highest
comprehensive quality.

In addition, the convergence of GA, ACO, and IACO
in the two maps is compared, as shown in Figure 9.
The convergence quality and convergence speed based
on the three algorithms in M2 are not as good as in
M1. The convergence rate of GA is slow, and the
convergence value of GA in M2 remains stable at a
low level, indicating that GA also gets trapped in
local optima. The main reason is that the mutation
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Table 3. Test function information.

Function Dimensionality Search space Theoretical value
F1(x) =

∑n
i=1 x

2
i 30 [-100, 100] 0

F2(x) =
∑n−1

i=1

[
100

(
xi+1 − x2i

)2
+ (xi − 1)2

]
30 [-30, 30] 0

F3(x) =
∑n

i=1−xi sin
(√
|xi|
)

30 [-500, 500] -12569.5
F4(x) = 1

4000

∑n
i=1 x

2
i −

∏n
i=1 cos

(
xi√
i

)
+ 1 30 [-600, 600] 0

F5(x) =
[

1
500 +

∑25
j=1

1
j+

∑2
i=1(xi−aij)

6

]−1
2 [-65.536, 65.536] 1

F6(x) = 4x21 − 2.1x41 + 1
3x

6
1 + x1x2 − 4x22 + 4x42 2 [-5, 5] 1.0316285

Table 4. Comparison of test function experiment results.

F Performance index DBO SSA IGWO AMDBO

F1

AVE 1.59E-109 1.63E-57 3.27E-29 3.67E-149
BEST 7.35E-159 1.25E-146 1.68E-35 3.82E-196
STD 7.68E-124 7.48E-63 9.34E-27 3.18E-147

F2

AVE 1.30E-03 1.42E-03 1.17E-03 7.48E-04
BEST 4.05E-05 4.29E-04 1.68E-03 9.61E-05
STD 1.10E-03 2.16E-03 1.84E-03 5.25E-04

F3

AVE -9.19E+03 -8.57E+03 -7.38E+03 -1.17E+04
BEST -1.23E+04 -9.64E+03 -1.07E+04 -1.26E+04
STD 1.95E+03 5.21E+02 1.62E+03 9.93E+02

F4

AVE 1.15E-13 0.00E+00 3.87E-03 0.00E+00
BEST 0.00E+00 0.00E+00 0.00E+00 0.00E+00
STD 6.27E-13 0.00E+00 6.41E-03 0.00E+00

F5

AVE 1.30E+00 5.03E+00 9.98E-01 1.16E+00
BEST 9.98E-01 9.98E-01 9.98E-01 9.98E-01
STD 6.97E-01 5.17E+00 1.80E-16 4.58E-01

F6

AVE -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00
BEST -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00
STD 4.85E-16 5.46E-16 8.14E-16 3.92E-16

Table 5. Comparison of test function experiment results.

F Performance index DBO1 DBO2 DBO3 AMDBO

F2

AVE 0.001158 0.000597 0.000885 0.001214
BEST 0.000125 8.40E-05 5.26E-05 0.000194
STD 0.001005 0.000548 0.000647 0.000936

F4

AVE 0.000784 0.000837 0.000553 0.000921
BEST 0.000307 0.000307 0.000307 0.000307
STD 0.000412 0.00039 0.000354 0.000498

F6

AVE -1.03163 -1.03163 -1.03163 -1.03163
BEST -1.03163 -1.03163 -1.03163 -1.03163
STD 6.45E-16 1.10E-15 5.61E-16 5.98E-16

and crossover operators in GA cannot guarantee the
quality of new individuals, thereby slowing down

the optimization process. In comparison, ACO and
IACO exhibit faster convergence speeds and higher
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Figure 10. Comparison of iterative convergence curves.

quality. This result shows that ACO and IACO are
more suitable for solving graph search problems.
The convergence performance based on IACO in the
two maps is the best, converging to 0.815 and 0.755 in
the 8th and 11th iterations, respectively. The results
show that the heading planning based on the IACO can
provide reliable decision support for the subsequent
3D path planning.

4.2 Effectiveness analysis of AMDBO
4.2.1 Test analysis based on benchmark functions
Compared with heading prediction in a 2D map,
the algorithm’s global search capability and search
efficiency are more critical for the precise planning
of a 3D path. DBO, Improved Grey Wolf Optimizer
(IGWO), and Sparrow Search Algorithm (SSA) are
comparisons to verify the optimization performance
of AMDBO. Six functions with different optimal
characteristics are compared, and their specific details
are presented in Table 3. F1 and F2 are single-peak
reference functions that are used to evaluate the
algorithm’s single-objective solving capability. F3-F4
represent multi-modal reference functions, while
F5-F6 are mixed reference functions that assess the
algorithm’s ability to escape local optima.
(1) Performance analysis In order to enhance the
reliability of the experimental results, this paper

adopts a consistent experimental setting by fixing
the population size of each algorithm at 30 and the
number of iterations at 500. Thirty independent
experiments are performed on each function to obtain
the target solution under each run. The average value
(AVE), best value (BEST), and standard deviation
(STD) are then calculated. These values serve as
indicators to evaluate the reliability and stability of
the optimization algorithm. Table 4 displays the test
results of the four optimization algorithms on the
six test functions. The AVE, BEST, and STD in F1
based on AMDBO are superior to the other three
algorithms. When compared with the test results of F2,
it is evident that the BEST of AMDBO is 57.76% lower
than that of DBO, but the AVE and STD of AMDBO
are 73.80% and 109.52% higher than those of DBO,
respectively. Regarding the overall performance of the
two single-peak functions, the overall performance of
AMDBO is better than that of other three algorithms.
The STD of AMDBO is slightly lower than that of
SSA on F4. However, the AVE and the BEST of
AMDBO are the highest, and the accuracy is greater
than that of DBO and IGWO in F3 and F4. In F5
and F6, the best values of the four algorithms can
achieve the theoretical optimal solution. Although
the AVE and STD of AMDBO are slightly lower than
IGWO on F5, they are superior to SSA and DBO.
Additionally, the STD of AMDBO in F6 outperforms
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Figure 11. Environmental information.

Figure 12. Environmental information of subregions.

the other three algorithms. Figure 10 illustrates the
average convergence curves of 4 algorithms in 30
independent tests across 6 test functions. The figures
demonstrate that AMDBO achieves a higher objective
function value within the same number of iterations
during single-objective optimization. It exhibits the
fastest optimization speed and the highest convergence
accuracy. AMDBO can swiftly escape local optimal
solutions in multi-objective optimization, leading to
faster convergence with fewer iterations. To sum
up, the AVE and BEST tested by AMDBO on the
test functions are mostly better than the other three
algorithms. With the same number of iterations, the

optimization accuracy of AMDBO is higher. Most
test results of the DBO algorithm are better or even
superior to the SSA and IGWO, but worse than
AMDBO.

4.2.2 Ablation Study
AMDBO introduces three improvement strategies to
enhance the DBO algorithm. By implementing these
strategies, three different algorithms derive through
individual enhancements to DBO. The algorithms
are as follows: 1) DBO1, which incorporates the
Tent Chaos Initialization strategy. 2) DBO2, which
integrates the reverse learning strategy of breeding
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Figure 13. Heading sequence planning in 2D probability map.

Figure 14. Path planning based on AMDBO.

Figure 15. Path planning in 3D map based on other meathods.
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and stealing. 3) DBO3, which includes the adaptive
mutation strategy. These four algorithms are evaluated
on test functions , and the AVE, BEST and STD of each
algorithm are calculated after 30 independent runs.
The experimental results are presented in Table 5.
In summary, the average optimization accuracy of a
single improved strategy is higher than that of DBO.
However, its variance is worse than that of DBO in
test functions, indicating that the stability of a single
improved strategy is insufficient. ComparedwithDBO,
the performance indicators of AMDBO are improved,
indicating that the comprehensive improvement of the
three strategies is effective.

4.3 Effectiveness analysis of path planning model
4.3.1 Simulation scene test
Taking the endpoint as the center of the circle and
the distance between the starting point (-674,156)
and the endpoint as the radius, the environmental
information such as elevation, visibility, wind speed,
and obstruction factors in this vast airspace is
simulated, as shown in Figure 11. Based on the
environmental information mentioned above, the
flight path of the UAV is planned.
According to the spatial distribution of obstacle
factors in Figure 11(d), the airspace is adaptively
decomposed into 80 km, 200 km, 310 km, 460
km, 540 km, and 700 km. The environmental
situation information in each sub-area is shown in
Figure 12. Comparing it with the actual scene grid
information in Figure 11(a-c), it can be observed
that the decomposition method accurately reflects
the changing trend of environmental information
while reducing the number of subregions. The
results indicate that the adaptive spatial decomposition
method effectively addresses the issue of sparse
environmental information.
Based on Eq.(12), the 2D probability map is
constructed, as shown in Figure 13(a). The IACO is
used to search the heading sequence, and the result is
shown in Figure 13(b). The flight direction gradually
changed from 292.5° to 225°-270°. The average choice
possibility of the route is 0.46, and the minimum value
is 0.32, indicating that flight safety is relatively reliable.
The tortuous degree of the heading sequence is 0.52,
and the length is 1075.1 km, which is relatively smooth
and short.
TheAMBDO is used to plan a 3Dpath in regionswhere
the heading sequence is located. The results are shown
in Figure 14. The length of the 3D path is 4536 km, the

Figure 16. Comparison of iterative convergence curves.

Table 6. Evaluation indicators of 3D path.

Indicators AMDBO DBO Proposed method

L (Km) 4825 4536 3753
H (m) 4466 4843 4674

T 16 42.2 7.9
Df (Km) 2.14 1.13 2.23

average height is 4674 m, and the average tortuosity is
7.9. The 3D path is relatively smooth, and obstructions
can be avoided.

4.3.2 Contrastive analysis
In order to verify the advantages of the two-layer path
planning model proposed in this paper, the AMDBO
is used to plan the path directly in 3D space. The
planning results are shown in Figure 15. It is evident
from Figure 13 that feasible paths are successfully
planned using the three methods. The paths generated
byDBO are distributed in regionswith elevated terrain.
To ensure a safe distance from the ground, the resulting
paths are at a higher altitude and exhibit a greater
tortuous degree. The other two methods exhibit a
similar path trajectory, opting to first navigate towards
lower-lying areas. In this paper, path quality is
evaluated based on path length (L), average flight
height (H), tortuosity (T), and minimum distance
from obstacles (Df). The evaluation results for the
three methods are presented in Table 6. The path
generated by DBO is shorter than that of AMDBO,
but it exhibits high tortuosity. The path produced
by AMDBO has a lower average height, enhancing
its ability for concealed flight, but it has a longer
path length. The proposed method demonstrates
the shortest path length and tortuosity, with a flight
altitude comparable to other methods, resulting in the
highest overall quality.
In addition, the convergence curves of the two models
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are compared, as shown in Figure 16. The DBO jumps
out of the local solution twice and finally converges
to 2091 in the 574th iteration. Although the objective
function value of AMDBO is higher than that of DBO
in the 1-73 iterations, its convergence rate is faster, and
the convergence value is lower than that of DBO. The
initial value of the proposed method is close to the
convergence value of AMDBO and converges to 1007
at the 81st iteration. Compared with AMDBO and
DBO, the convergence speed of the proposed method
is increased by 75% and 85.89%, respectively, and the
convergence values decreased by 31.87% and 52.05%,
respectively.
Based on the above analysis, the two-layer path
planning framework proposed in this paper can not
only fully consider the impact of the environment on
the UAV mission but also carry out fine path planning
combined with the maneuvering performance of the
UAV. Simultaneously, the environmental information
of large airspace is analyzed layer by layer from
fine-grained to coarse-grained to fine-grained. This
effectively reduces the computational complexity and
the execution efficiency of the optimization algorithm,
thus improving the efficiency and quality of the flight
path planning.

5 Conclusion
Based on the adaptive 2D probability map, the
IACO, and the AMDBO, this paper constructs a
two-layer path planning model to realize the path
planning for UAVs in vast airspace environments.
The effectiveness of the proposed model is examined
through comparative analyses in three aspects. (1)
The IACO demonstrates superior convergence quality
and speed compared to ACO, GA, and D* in the 2D
probability map for heading planning, facilitating
reliable decision-making for subsequent 3D path
planning. (2) Compared with the optimization results
of DBO, SSA, and IGWO in multi-type functions, the
AMDBO proposed in this paper demonstrates strong
global search ability and search efficiency. It provides
theoretical support for the precise planning of 3Dpaths
for UAVs in vast airspace. (3) Comparing the planning
results of AMDBO, DBO, the proposed method under
the same simulation scenario, the proposed method
shows a 75% and 85.89% increase in convergence speed
and a 31.87% and 52.05% decrease in convergence
values, respectively. These results indicate that the
two-layer path planning model can effectively reduce
computational complexity and optimize algorithm
efficiency.

This paper focuses on studying the global
path-planning method of UAVs based on macroscopic
modal constraints. However, it faces challenges when
it comes to environments with dense and highly
dynamic obstacles. Future research will further study
the online path planning for UAVs in such complex
environments.
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