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Abstract

This study employs Response Surface Methodology
(RSM) to model and optimize earthquake-induced
ground movements in gravelly geohazard-prone
environments. RSM efficiently evaluates the
interactions of seismic parameters, including
soil type, fault distance, and peak ground
acceleration (PGA), reducing computational
and experimental efforts. A dataset of 234
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entries encompassing 11 seismic and soil stress
variables was curated and analyzed, yielding
a high-precision predictive model with an R?
of 0.9997. The resulting closed-form equation
facilitates accurate risk assessment, structural safety
optimization, and seismic resilience planning. By
identifying critical thresholds and nonlinear
relationships, ¥ RSM supports cost-effective
mitigation strategies, infrastructure design, and
retrofitting in earthquake-prone regions.
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1 Introduction

Earthquakes can trigger a variety of environmental
geohazards, presenting significant challenges to
both human populations and ecosystems [1]. Some
of the environmental geohazards associated with
earthquakes have been researched and explored
in previous projects. = Ground shaking during
earthquakes can destabilize slopes, leading to
landslides. The rapid movement of soil and rock
downhill can pose significant hazards to communities,
infrastructure, and transportation routes. In areas with
water-saturated, loose soils, the intense shaking from
earthquakes can cause the ground to lose strength and
behave like a liquid [2]. This phenomenon, known
as liquefaction, can result in the sinking, tilting, or
lateral spreading of structures and infrastructure.
Underwater earthquakes, particularly those occurring
along subduction zones, can trigger tsunamis [3].
These massive sea waves can cause devastating
impacts on coastal areas, leading to widespread
flooding and destruction. Seismic activity along fault
lines can cause visible displacement of the ground
surface, resulting in ground rupture [3]. This can
disrupt infrastructure, alter landscapes, and pose
hazards to human safety. Intense ground shaking can
lead to increased soil erosion, particularly in hilly or
mountainous regions. This erosion can have long-term
impacts on ecosystems and agricultural land [4].
Earthquakes can alter the flow of groundwater,
leading to changes in aquifer systems, the emergence
of new springs, or the disruption of existing water
sources [5]. Earthquakes can cause the displacement
of natural features such as river courses, lakes, and
wetlands, leading to changes in local ecosystems
and potential hazards to human settlements [5].
Understanding and mitigating these environmental
geohazards is crucial for both disaster preparedness
and post-earthquake recovery efforts. This involves
comprehensive hazard mapping, land use planning,
infrastructure design, and the implementation of early
warning systems. This helps mitigate the impacts
of earthquakes on the environment and human
populations [6]. However, ground movements are
associated with earthquake events.

Ground movement encompasses various phenomena
related to the Earth’s surface dynamics. Seismic
activity refers to the displacement of the Earth’s surface
caused by events such as earthquakes or volcanic
eruptions [5]. These movements significantly impact
the landscape and pose threats to human life and
property. Also, soil movement, which is a factor

in earthquake studies, can refer to the shifting of
soil and sediments due to natural processes like
erosion, landslides, or the movement of glaciers [6].
Human activities such as construction, mining, and
deforestation can also cause significant soil movement.
Tectonic movement is one other factor associated
closely to earthquake events and it refers to the
movement of the Earth’s tectonic plates, which can
cause geological events such as the formation of
mountains, rift valleys, and earthquakes [7]. In civil
engineering and urban planning, ‘ground movement’
refers to the shifting and settling of the ground
over time. This phenomenon affects the stability of
buildings, roads, and other infrastructure. It can
also pertain to the movement of vehicles, pedestrians,
and goods within a given area [8]. The specific
context determines the precise meaning of ‘ground
movement’. Under seismic activity, ground movement
refers to the shaking, shifting, and deformation of the
Earth’s surface. This is caused by the release of energy
from within the Earth, typically due to the movement
of tectonic plates along faults. This movement can
manifest in several ways according to previous studies.
These are compressional waves that cause oscillatory
motion in the direction of wave propagation [5]. They
are the fastest seismic waves and are capable of causing
the ground to compress and expand in the direction
the wave is traveling. Secondly, these are shear waves
that cause vibrations perpendicular to the direction of
wave travel. S waves can cause the ground to move
up and down or side to side [2]. Surface waves are
slower-moving seismic waves that travel along the
Earth’s surface, causing the ground to shake in a rolling
or swaying motion, similar to ocean waves.The ground
movement generated by these seismic waves can have
a range of effects. The primary effect of ground
shaking is the vibration of buildings, bridges, and
other structures, which can lead to structural damage
or collapse [1]. In areas with loose, water-saturated
soils, seismic waves can cause the ground to behave
like a liquid, leading to the loss of soil strength and
the sinking or tilting of structures. Seismic activity
can trigger landslides by destabilizing slopes, leading
to the rapid movement of large amounts of soil
and rock [7]. Along active faults, seismic activity
can cause the ground to crack and shift, resulting
in visible surface ruptures [11]. Seismic waves
can cause permanent horizontal or vertical ground
displacement, altering the landscape and damaging
infrastructure. Understanding and mitigating the
effects of ground movement under seismic activity is
crucial for designing earthquake-resistant buildings
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and infrastructure, as well as for developing effective
emergency response and recovery plans [10].

Earthquake-induced ground movement, also known
as seismic ground motion, refers to the oscillatory
and translational displacement of the Earth’s surface
during an earthquake [2]. This ground movement
results from the propagation of seismic waves through
the Earth due to the sudden release of energy along
faults. Seismic ground motion has several significant
effects, as documented in previous studies. Along
active faults, the movement caused by an earthquake
results in visible ground surface displacement, leading
to surface ruptures or fault movements [4]. Following
a major earthquake, aftershocks can further contribute
to ground movement, causing additional damage to
already compromised structures [8]. Understanding
earthquake-induced ground movement is essential
for assessing seismic hazards and designing
earthquake-resistant structures and infrastructure [9].
Engineers and seismologists characterize ground
motion using seismic instruments and conduct
seismic hazard assessments to inform building codes,
land use planning, and emergency preparedness in
earthquake-prone regions.

2 Review of relevant studies and governing
equations

Liu et al. [1] examined three Probabilistic
Displacement Models (PDMs) alongside 11 additional
models to analyze earthquake-induced landslides
(ELHA) in a region impacted by the 1994 Mw 6.7
Northridge earthquake. The findings indicate that
PDMs employing pulse-like ground motions (PLGM)
require fewer ground motion data, yet exhibit greater
precision in landslip prediction. The study utilized the
ELHA approach to examine a particular region along
the Sichuan-Tibet Railway. The findings indicated that
PLGM (Probabilistic Landslide Generation Model)
accurately forecasted a higher number of landslide
occurrences. This underscores the importance of
conducting early investigations and implementing
protective measures. Liu et al. [2] introduced four
predictive displacement models (PDMs) that take
into account pulse-like ground movements (PLGMs)
for both strike-slip and non-strike-slip occurrences.
The results indicated that PP models exhibit
higher accuracy in non-strike-slip events, but their
effectiveness may be disregarded in strike-slip events.
These findings are relevant for assessing the hazard of
earthquake-induced landslides. Another, Dupuis et
al. [3] created a machine learning algorithm to assess

the accuracy of earthquake ground-motion records in
New Zealand. The model, which underwent training
using 1096 sample records, successfully reproduced
manual quality classifications for three engineering
applications. The system is capable of processing
records with one, two, or three components, and offers
versatility in evaluating record quality according to
various criteria. A total of 43,398 ground motions from
GeoNet were utilized in the application of the model
for the creation of a new curated database. Otarola
et al. [4] presented a simulation-based methodology
that aims to measure the influence of the length of
ground motion caused by earthquakes on the direct
economic losses of a portfolio of buildings. The
framework encompasses three different building
typologies that represent certain vulnerability classes
in Southern Italy. These typologies include non-ductile
moment-resisting reinforced concrete (RC) infilled
frames, as well as ductile moment-resisting RC
infilled and bare frames. The analysis involves
conducting event-based probabilistic seismic hazard
analysis and deriving fragility models for each type
of building. The study rigorously evaluated the
portfolio loss exceedance curves and predicted yearly
losses calculated for each combination of exposure,
hazard, and vulnerability models. The influence of the
time period on estimations of loss can be substantial,
with differences becoming more pronounced as
the distance between the defect and the portfolio
increases. Also, Armstrong et al. [5] identified
the optimal ground motion intensity measures
(IMs) for accurately forecasting earthquake loading
levels in seismic hazard analysis (SHA). The Arias
intensity (AI) model was determined to be the most
effective predictor of dam deformations based on the
findings of nonlinear deformation analysis (NDA)
conducted on two embankment dams. Nevertheless,
it was discovered that pseudo-spectral acceleration
(PSA)-based intensity measures (IMs) were less
efficient. Chen et al. [6] presented a methodology
for analyzing earthquake-triggered landslides caused
by pulse-like ground motion (PLGM) through
the use of discontinuous deformation analysis
(DDA). It delineates two perplexing occurrences:
extensive landslides in regions with low Peak Ground
Acceleration (PGA) and collapsed slopes in regions
with high PGA. The paper examines the behavior of
a symmetrical slope model in the presence of two
earthquakes and concludes that PLGM (Probabilistic
Limit Equilibrium Method) has the potential to
induce landslides in places close to the fault line
during an earthquake. The proposed mechanism
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examines the tensile and shear strengths of slopes,
elucidating the phenomena of landslip initiation
during the Kumamoto earthquake in 2016 and the
Hokkaido earthquake in 2018. In other studies,
Haciefendioglu et al. [7] employed a deep learning
algorithm to recognize areas of ground failure caused
by the earthquake and identify structures that were
partially damaged in the Palu earthquake region of
Indonesia in 2018. The dataset comprises 392 photos
depicting ground failure caused by earthquakes and
223 images showing places that have been affected.
The investigation demonstrates that deep learning
approaches based on object detection may efficiently
identify the consequences of ground collapse caused
by earthquakes and recognize damaged structures.
Li et al. [8] introduced a spatial division technique
and a zoning casualty prediction technique utilizing
support vector regression (SVR) for areas affected
by earthquakes. The process involves assessing
significant factors affecting the number of fatalities in
seismic events, dividing the region into zones based
on risk levels, and creating a zoning support vector
regression model (Z-SVR) with the most effective
parameters. The model surpasses existing machine
learning techniques and has the ability to improve the
accuracy of casualty prediction, which is essential for
emergency response and rescue operations. Gitis et
al. [9] presented two machine learning techniques for
predicting seismic hazards: geographical prediction
of the highest potential earthquake magnitudes and
spatial-temporal prediction of intense earthquakes.
The initial approach employs regression to estimate
interval expert assessments, formalize knowledge,
and generate spatial forecast maps. The second
approach utilizes historical data to pinpoint regions
prone to significant seismic activity. The testing
conducted in the Mediterranean and Californian
regions demonstrated a commendable level of
forecast accuracy. Liu et al. [10] developed new
machine learning models for subduction earthquake
zones by utilizing the NGA-Sub ground motion
database. The models rely on various characteristics,
including yield coefficient, initial fundamental
period, earthquake magnitude, peak ground velocity,
and pseudo-spectral acceleration. Five machine
learning models are created utilizing contemporary
machine learning techniques, which include ridge
regression, random forest, gradient boosting decision
tree, support vector regression, and residual neural
network. These models surpass standard models in
terms of predictive accuracy, ability to detect patterns,
and efficiency in terms of computer resources required

for training. Additionally, they improve the handling
of epistemic uncertainty when predicting D, due to the
limited availability of reliable models for subduction
zone tectonic settings. Noman et al. [11] examined
the evaluation of seismic risks in the construction
of machine foundations and highlighted important
areas for further research. The text explores the
various aspects that affect evaluation, the difficulties
encountered, and the consequences of dynamic
loads and soil-structure interaction. Primary areas of
research involve enhancing seismic hazard assessment
approaches by numerical modeling techniques and
undertaking extensive experimental investigations to
validate these models and comprehend the behavior
of machine foundations under seismic loads. Other
studies, Harirchian et al. [12] employed four Machine
Learning (ML) methodologies, namely Support
Vector Regression, Stochastic Gradient Descent,
Random Forest, and Linear Regression, to generate
fragility curves that represent the likelihood of
collapse based on Peak Ground Acceleration. The
study utilized data collected on-site from 646 masonry
walls in Malawi and evaluates the effectiveness and
precision of each machine learning approach. The
Random Forest (RF) algorithm demonstrates superior
efficiency by achieving the lowest values for both
the Mean Absolute Percentage Error (MAPE) and
Root Mean Square Error (RMSE). This underscores
the potential of machine learning techniques in
producing precise fragility curves. Bouckovalas et
al. [13] used an analytical methodology to forecast
the long-term establishment of foundations when
they are exposed to seismic vibrations. Centrifuge
tests are used to assess the validity. The analyses
demonstrated a strong correlation between the
predicted and measured responses. Additionally, it is
observed that partial drainage can take place during
high-frequency dynamic loadings, which has a major
impact on settlements and excess pore pressures. Xie
et al. [14] examined the advancements and difficulties
encountered in the field of machine learning (ML)
as applied to earthquake engineering. The specific
areas of attention include seismic hazard analysis,
system identification, damage detection, fragility
evaluation, and structural control. The text provides
case stories and addresses research challenges.
Machine Learning (ML) is regarded as a potential
technology for addressing earthquake engineering
difficulties. However, additional research is required
to expedite its implementation. Matsagar [15]
provided an overview of earthquake engineering and
technology, including many specialized areas, current
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methodologies, and recent advancements. The subject
matter encompasses seismology, plate tectonics,
and the factors that contribute to earthquakes in
the Himalayan subduction zone. The conversation
transitions to the field of geotechnical and structural
earthquake engineering, specifically focusing
on seismic soil-structure interaction (SSI). The
discussion focused on infrastructure resilience and the
development of a seismic design philosophy through
performance-based research. This study discussed
advanced devices for modifying dynamic responses,
such as damping devices, as well as methods for
controlling the structure. Emphasis is placed on
future research for students and researchers. Previous
studies have modeled this problem applying machine
learning such as ensemble techniques, which are
only applicable electronically. However, the present
research paper has tried to apply a symbolic regression
such as the Response Surface Methodology (RSM),
which proposes a closed-form equation with which
the model can be applied both electronically and
manually.

3 Methodology

3.1 Field data collection

A dataset comprising 234 records was globally
compiled from post-earthquake observations, focusing
on suspected liquefaction sites characterized by
a gravelly soil profile, as documented in prior
literature [16]. Each record includes diverse data
points, which are the input variables such as the
earthquake’s moment magnitude (Mw) represented
by Xi, epicenter distance (R) denoted as X, in
kilometers, bracketed duration (t) indicated by X3
in seconds, gravel content (G) as X5 in percentage,
fines content (F) denoted by X¢ in percentage, average
particle size (D50) represented by X7 in millimeters,
overburden stress-corrected dynamic penetration test
blow count (N’120 Blows) indicated by Xg, vertical
effective overburden stress (0'v) represented by Xy in
kilopascals (kPa), depth to the water table (Dw) as
X10 in meters, thickness of the impermeable capping
layer (Hn) denoted by X1; in meters, and thickness of
the unsaturated zone between the groundwater table
and capping layer (Dn) as X2 in meters. The output
is the peak ground acceleration (PGA) measured in
gravitational units (g) and represented as X4. The
statistical characteristics and the Pearson correlation
matrix for the dataset are succinctly conducted and
summarized.
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Figure 2. The RSM 3D surface framework.

3.2 The theoretical framework of the RSM

Response Surface Methodology (RSM) is a collection
of mathematical and statistical techniques used for
modeling and analyzing the relationships between
multiple variables and the response of a system [17].
The RSM flow chart of modeling optimization and the
3D surface framework are represented in Figures 1
and 2. It is commonly applied in scientific and
engineering fields, particularly in the optimization of
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complex processes, product development, and quality
improvement. RSM is often used to explore and
optimize the response of a system within a specific
region of the design space. RSM often begins with
the design of experiments to systematically collect
data on the response of a system as a function of
multiple input variables [18]. These experiments
are designed to efficiently explore the design space
and capture the relationships between inputs and
outputs. Using regression analysis and other statistical
techniques, mathematical models are developed to
represent the relationship between the input variables
and the system’s response. These models may
include linear, quadratic, and interaction terms to
capture the behavior of the system. Once the
models are developed, optimization techniques are
employed to identify the optimal settings for the
input variables that lead to the desired response of
the system [19]. This involves finding the input
combinations that maximize or minimize the response
based on specific criteria. The models developed
using RSM are validated to ensure their accuracy and
reliability. This may involve conducting additional
experiments to confirm the predicted responses
based on the optimized input variables. RSM often
involves the graphical representation of response
surfaces, contour plots, and other visual tools to
help understand the relationships between the input
variables and the system’s response [20]. Applications
of RSM can be found in various fields, including
chemical engineering, pharmaceuticals, food science,
agriculture, manufacturing, and product development.
It is a powerful tool for efficiently optimizing
processes and products, reducing experimentation
costs, and gaining a deeper understanding of complex
systems [18]. Response Surface Methodology (RSM)
utilizes mathematical models to characterize and
optimize the behavior of complex systems. These
models can be classified based on their structure
and the nature of the relationships they represent.
The linear RSM models describe the relationship
between the input variables and the response as a
linear function. A simple linear model may include
terms for each input variable, while a multiple
linear regression model can include interaction terms
as well. However, linear models may not always
capture the full complexity of a system’s behavior [17].
The Quadratic RSMmodels extend linear models by
including squared terms for the input variables. This
allows for the representation of nonlinear relationships
between variables and the response. Quadratic models
are particularly useful for capturing curvature in the

response surface. Interaction Models: Interaction
models include terms that represent the interaction
effects between input variables [20]. These terms
capture the combined effect of two or more variables
on the response, allowing for the representation of
non-additive relationships. The full cubic RSMmodels
go beyond quadratic models by including cubic terms
for the input variables. These models can capture
more complex nonlinear behavior, including inflection
points and more pronounced curvatures in the
response surface. In addition to the aforementioned
models, RSM can incorporate higher-order terms
to capture even more complex relationships [19].
This may include models with terms representing
higher powers of the input variables, allowing for the
representation of highly nonlinear behavior. In cases
where the number of input variables is large, fractional
factorial designs can be used to construct reduced
models that capture the most important effects. These
models provide a more efficient way to explore the
design space and identify key factors. The selection of
the appropriate model type in RSM depends on the
nature of the system being studied, the complexity
of the relationships, and the available experimental
data. Model selection is typically guided by statistical
criteria, such as goodness of fit, predictive capability,
and the trade-off between model complexity and
interpretability [21]. Once a model is selected, it can
be used for optimization and prediction within the
specified experimental region.

In Response Surface Methodology (RSM), the
mathematical formulation involves developing
equations to model the relationship between the
input variables and the response of a system. The
most common form of the mathematical equation
used in RSM is the response surface model. This can
take different forms based on the complexity of the
relationships being studied. Here are the general
forms of the mathematical equations used in RSM:
Linear Model: The general form of a linear model in
RSM with two input variables (X; and X3) can be
expressed as [20]:

Y = fBo+ 1 X1+ B2 X2+ € (1)

where Y represents the response variable, 3 is the
intercept, 31 and [ are the coefficients for the first and
second input variables, X; and X5, and ¢ represents
the error term. Quadratic Model: A quadratic model
extends the linear model by including squared terms
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Table 1. Fit Statistics.

Std. Dev. Mean C.V.% R?

Adjusted R? Predicted R? Adeq Precision

0.117 0.3535 33.1 0.9915

0.9846

0.9997 11.1577

for the input variables, and can be expressed as:

Y = By + f1X1 + BoXo + B11 X7 + Ba2 X3

+ B2 X1 X2 +¢€ (2)
where 311 and [22 represent the coefficients for the
squared terms of X; and X5, and 12 represents the
coefficient for the interaction term. Interaction Model:
An interaction model includes terms that represent the
interaction effects between input variables, and can be
expressed as:

Y = Bo + B1 X1 + BaXo + B2 X1 X + ¢ (3)
where (15 represents the coefficient for the interaction
term. Cubic Model: A cubic model extends the
quadratic model by including cubic terms for the input
variables, and can be expressed as:

Y = By + f1.X1 + BoXo + P11 X7 + B X3

+ B X1 X+ S X} + Ba X5+ (4)
In this equation, £111 and S22 represent the coefficients
for the cubic terms of X; and X,. The general
response surface model encompasses higher-order
terms and can be expressed as a more complex
equation that includes linear, quadratic, cubic, and
possibly higher-order terms, as well as interaction
terms [21]. In the above equations, the 3 coefficients
represent the parameters to be estimated from the

experimental data, and ¢ represents the error term.

These equations are derived through regression
analysis based on the experimental data collected
using designed experiments [22]. The selection of
the appropriate model is based on the nature of the
relationships between the input variables and the
response, and is guided by statistical criteria and the
complexity of the system under study. However, the
general equation for a response surface model (RSM)
can be expressed as:

Y = &H—Z(&Xi)—i—Z(ﬁsziz‘)-i-Z(ﬁinij)+€ (5)

where Y is the predicted response variable, 3 is the
model intercept, 3;, Bii, Bij, etc., are the coefficients
for the linear, quadratic, and interaction terms,
respectively, X;, X;;, X;;, etc., are the independent

10

variables (factors) at different levels and ¢ is the
error term. In this equation, the model can include
both linear and nonlinear terms to capture the
relationship between the independent variables and
the response [21]. The coefficients are estimated
through methods such as least squares regression,
and the model can be used to analyze and optimize
processes in fields such as engineering, chemistry, and
manufacturing.

4 Results and Analysis

4.1 Discussion

As presented in Table 1, apositive predicted R? of
0.9997 implies that the overall mean may not be a
better predictor of the response than the current
model. In some cases, a higher-order model may
also predict better. Adequate precision measures the
signal-to-noise ratio. A ratio greater than 4 is desirable.
This shows the PGA model’s ability to navigate the
design space for the design of earthquake-induced
ground movement events across the world. Adequate
precision and navigation of design space are concepts
commonly encountered in the context of experimental
design and optimization. Adequate precision refers
to the level of accuracy and reliability in the
measurements and predictions obtained from a given
experimental or predictive model. In the context
of experimental design, adequate precision implies
that the experimental setup and the associated
statistical analysis are capable of providing results
that are sufficiently accurate and consistent to draw
valid conclusions. For predictive models, adequate
precision indicates that the model’s predictions are
reliable and provide meaningful insights on the
design space navigation. Design space refers to
the range of input variables or parameters that
can be manipulated within a given system or
process. Navigation of design space involves exploring
and understanding the relationships between input
variables and their effects on the output or response
of interest. It often involves the use of techniques
such as response surface methodology, design of
experiments, optimization algorithms, and sensitivity
analysis to systematically explore the design space,
identify influential factors, and optimize the system’s
performance. In practice, achieving adequate precision
and effectively navigating the design space are critical
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for conducting meaningful experiments, developing
accurate predictive models, and optimizing processes
or products in various fields such as engineering,
manufacturing, and scientific research. These concepts
are fundamental to the successful implementation of
methodologies aimed at understanding and improving
complex systems. The present model’s adequate
precision ratio is 11.158, which indicates an adequate
signal. This model, however, can be used to navigate
the design space.
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Figure 3. Normal RSM plot of residuals.

In the context of a response surface model (RSM),
a normal plot of residuals presented in Figure 3 is
a graphical tool used to assess the assumption of
normality for the residuals of the model. The normal
plot, also known as a normal probability plot, is
a diagnostic tool that helps to determine whether
the residuals follow a normal distribution, which
is a key assumption for many statistical analyses.
Interpreting a normal plot of residuals for an RSM
model involves examining how the points on the
plot align with the diagonal line, which represents
a theoretical normal distribution. If the points on the
normal plot approximately form a straight line that
closely follows the diagonal line, it suggests that the
residuals are approximately normally distributed as
shown. This alignment indicates that the normality
assumption in the prediction of the PGA is reasonable,
supporting the validity of the statistical inferences
drawn from the model. But if the points on the normal
plot had deviated substantially from the diagonal
line, showing a pronounced curvature or systematic
departure from linearity, it may indicate non-normality
in the residuals. This could imply issues such as
skewness, heavy tails, or other departures from the
normal distribution. Additionally, the normal plot

can reveal information about the presence of outliers
or heavy tails in the residuals. Outliers may appear
as points that deviate significantly from the expected
pattern on the plot, providing insights into potential
influential observations. Ultimately, the normal plot
of residuals serves as a visual aid for assessing the
distributional assumptions of the residuals in an RSM
model. Deviations from the expected pattern in
the plot can prompt further investigation into the
adequacy of the model and potential improvements,
such as exploring alternative modeling techniques or
identifying influential data points.

Residuals vs. Predicted

k ground leration (PGA), X4

peak ground acceleration ( )'_14 00,

Color points by value of d LI

peak ground acceleration (PGA), X‘E . 9 m

0.07 [0 084 3 s
Q{‘Z.OO* - om [%] -

5] ]
=l n ogm &
E "o = =
o o
o0 Lol ﬁﬁ'@% 3 "
Q. =)
2 Wi, T
E = 1] D|:|
=]
n " & .
‘_'>\ 2" e s a
—2.00 ] -
g =
Q
=t
e
F4.00
T T T T I T
0.2 0 0.2 0.4 0.6 0.8
Predicted
Figure 4. RSM plot of residuals versus predicted PGA
values.

The plot of residuals versus predicted values illustrated
in Figure 4 in a response surface model (RSM) is a
diagnostic tool used to assess the appropriateness of
the model and to detect potential patterns or trends
in the residuals. Ideally, the plot should exhibit
a random scatter of points around the horizontal
line at zero. This indicates that the residuals are
not systematically related to the predicted values,
suggesting that the model’s assumptions are being
met. If the plot shows discernible patterns, such
as a systematic increase or decrease in the residuals
as the predicted values change, it may indicate
potential issues with the model. For example, if
the residuals tend to increase or decrease as the
predicted values increase, this could suggest that the
model is missing important terms or has a non-linear
relationship with the response. Patterns in the
spread of residuals at different predicted values can
also be indicative of heteroscedasticity, where the
variability of the residuals changes across the range
of predicted values. This can be a concern as it
violates the assumption of homoscedasticity, which
assumes that the variance of the residuals is constant
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across the range of predicted values. The plot can
also help identify potential outliers or influential
data points that have a large impact on the model’s
performance. Outliers may appear as points that
deviate significantly from the expected random scatter,
potentially warranting further investigation. Overall,
the plot of residuals versus predicted values serves as a
valuable diagnostic tool for assessing the adequacy of
the RSM model. It helps in identifying potential model
misspecification, non-linearity, heteroscedasticity, and
influential observations. In summary, the plot of
residuals versus predicted values provides insights
into the performance and appropriateness of the RSM
model, helping to identify areas where the model may
need improvement or where further investigation is
warranted.

Residuals vs. Run
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Figure 5. RSM plot of residuals versus field run of PGA
values.

The plot of residuals versus experimental run values
presented in Figure 5 in a response surface model
(RSM) is a diagnostic tool used to assess the quality
and appropriateness of the model. It helps in
identifying potential patterns or trends in the residuals
with respect to the experimental run values. Ideally,
the plot should exhibit a random scatter of points
around the horizontal line at zero. This indicates
that the residuals are not systematically related to
the experimental run values, suggesting that the
model’s assumptions are being met. If the plot shows
discernible patterns, such as a systematic increase
or decrease in the residuals as the experimental run
values change, it may indicate potential issues with
the model. For example, if the residuals tend to
increase or decrease as the experimental run values
increase, this could suggest that the model is missing
important terms or has a non-linear relationship with
the response. Patterns in the spread of residuals at
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different experimental run values can also be indicative
of heteroscedasticity, where the variability of the
residuals changes across the range of experimental
run values [23]. This can be a concern as it violates
the assumption of homoscedasticity, which assumes
that the variance of the residuals is constant across
the range of experimental run values. The plot
can help identify potential outliers or influential
data points that have a large impact on the model’s
performance. Outliers may appear as points that
deviate significantly from the expected random scatter,
warranting further investigation. Overall, the plot of
residuals versus experimental run values serves as a
valuable diagnostic tool for assessing the adequacy of
the RSM model. It helps in identifying potential model
misspecification, non-linearity, heteroscedasticity, and
influential observations. In summary, the plot of
residuals versus experimental run values provides
insights into the performance and appropriateness of
the RSM model, helping to identify areas where the
model may need improvement or further investigation.

Cook's Distance
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Figure 6. RSM plot of Cook’s distance on PGA prediction.

In the context of a response surface model (RSM),
Cook’s distance illustrated in Figure 6 is a measure
used to identify influential data points that have
a disproportionately large impact on the estimated
coefficients of the model. It is a useful diagnostic
tool for detecting influential observations, which, if
left unaddressed, can significantly affect the model’s
tit and predictions. Observations with large Cook’s
distances are considered influential, meaning they
have a strong influence on the model’s coefficients. In
the plot, influential points are typically represented
by data points with high Cook’s distances, often
plotted above a certain threshold line. Large Cook’s
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distances indicate that certain observations may
substantially affect the model’s fit and predictions.
These observations may have a notable impact on
the estimated coefficients and can potentially distort
the overall model performance. When reviewing the
plot of Cook’s distance, researchers can use it as a
guide for deciding whether to take corrective actions,
such as potentially removing influential observations,
transforming variables, or considering alternative
modeling approaches to address the impact of these
points. Interpretation of Cook’s distance should take
into account the specific context of the data and
the goals of the analysis. In some cases, influential
observations may be an essential part of the dataset,
and removing them may not be appropriate without
careful consideration of the underlying reasons for
their influence. In summary, the plot of Cook’s
distance in an RSM model provides valuable insights
into influential observations that may have a significant
impact on the model’s coefficients and predictive
performance. It serves as a diagnostic tool to guide
decisions related to model adjustments and the
treatment of influential data points.

Box-Cox Plot for Power Transforms
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Figure 7. RSM plot of Box-Cox plot for Power Transforms in
PGA prediction.

The Box-Cox plot presented in Figure 7 is a
diagnostic tool used to identify an appropriate power
transformation for the PGA (response variable) in this
response surface model (RSM) or any other statistical
model. The goal of the Box-Cox transformation is to
stabilize the variance and make the data more closely
approximate a normal distribution, thus meeting
the assumptions of many statistical models. In a
Box-Cox plot, the x-axis represents the values of
lambda (\), which is the power parameter used
in the Box-Cox transformation. Lambda values are
typically plotted within a range, often from -2 to

2, representing different potential transformations.
On the y-axis, the plot typically displays a measure
of the transformed data’s normality, such as the
log-likelihood function or another suitable metric. This
allows you to assess how well the data conforms to
normality under different transformation scenarios.
The goal of the Box-Cox plot illustrated in Figure 7
is to identify the lambda value that maximizes the
normality of the transformed data. This is often
indicated by the lambda value that corresponds
to the peak or plateau in the plot (see Figure 8),
where the transformed data best approximates a
normal distribution. When interpreting the Box-Cox
plot, you should look for the lambda value that
provides the best improvement in normality. A
lambda of 0 represents a log transformation, and
as the lambda value deviates from 0, it represents
different power transformations. The plot helps in
visualizing the impact of these transformations on the
normality of the data. Once an appropriate lambda
value is identified from the Box-Cox plot, the RSM
model can be re-estimated using the transformed
response variable. This can lead to improved model
performance, especially if the original data exhibited
issues such as heteroscedasticity or non-normality. In
summary, the Box-Cox plot for power transform in an
RSM model is used to identify an appropriate power
transformation for the response variable, with the aim
of improving the normality and variance properties of
the data, thus enhancing the model’s performance.

Predicted vs. Actual
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Figure 8. RSM plot of predicted versus actual PGA values.

The Figure 8 displays an RSM plot of predicted versus
actual Peak Ground Acceleration (PGA) values, where
color points represent the magnitude of PGA from
0.07 to 0.84. Key observations and analysis are as
follows: The data points are scattered around the
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diagonal reference line, indicating that the model
has a reasonable alignment between predicted and
actual PGA values. The closer the points are to
this line, the more accurate the predictions. In the
lower and middle ranges of PGA (blue to green
points), the predictions generally cluster near the
diagonal, demonstrating better accuracy. However,
for higher PGA values (yellow to red points), the
data points show more deviation, indicating potential
prediction errors or model limitations in capturing
extreme values. Deviations from the reference line,
particularly in high-PGA regions, may point to the
need for further model improvement or feature
enhancement to handle higher magnitude predictions.
The color gradient shows a gradual transition across
the predicted and actual axes, suggesting a continuous
relationship between the predicted and actual PGA
values without abrupt shifts. Some points, particularly
in the higher PGA range (red points), are far from the
diagonal, indicating instances where the model may
have overestimated or underestimated PGA. This plot
suggests that while the model performs reasonably
well for moderate PGA values, further refinement or
additional features may be required to enhance its
performance for extreme PGA predictions.
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Figure 9. RSM plot of residuals versus moment magnitude
for PGA prediction.

In a response surface model (RSM), a plot of predicted
versus actual values illustrated in Figure 8 is a useful
diagnostic tool for evaluating the model’s predictive
performance and identifying potential discrepancies
between the predicted values generated by the model
and the actual observed values from the data. In
an ideal situation, the predicted versus actual values
plot would show a strong linear relationship, with
the points falling close to the 45-degree line (y =
x). This would indicate that the model’s predictions
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Leverage vs. Run
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Figure 10. RSM plot of leverage versus run in PGA

prediction.

DFFITS vs. Run
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Figure 11. RSM plot of DFFITS versus run in PGA
prediction.

DFBETAS for Intercept vs. Run
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Figure 12. RSM plot of DFBETAS for intercept versus run in
PGA prediction.

closely match the actual observed values. If the
points on the plot deviate systematically from the
45-degree line, it suggests that the model may have
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Figure 13. RSM plot of the desirability of optimized PGA values from 100 solutions.

biases or shortcomings in its predictive capabilities.
For example, if the model consistently underestimates
or overestimates the actual values across a range of
predictions, this could indicate a systematic issue. The
spread of the points around the 45-degree line can
also provide insights into the variability of the model’s
predictions. If the spread of points widens or narrows
as the actual values increase, it may suggest issues with
heteroscedasticity, where the variance of the errors
is not consistent across the range of predictions, as
shown in Figures 9, 10, 11, 12 and 13. The plot can help
identify outliers or influential points that may have a
large impact on the model’s predictive performance.
Outliers may appear as points that deviate significantly
from the expected pattern on the plot. Overall, the
plot of predicted versus actual values serves as a
valuable diagnostic tool for assessing the accuracy and
reliability of the RSM model’s predictions. It helps in
identifying potential model misspecification, biases,
heteroscedasticity, and influential observations. In
summary, the plot of predicted versus actual values
in an RSM model provides insights into the model’s
predictive performance, highlighting areas where the
model’s predictions align well with the actual data and
areas where improvements may be necessary.

4.2 Novelty and practical relevance

The RSM research model demonstrates novelty
through its ability to comprehensively explore the
relationships between multiple independent variables
and response variables within complex systems, such
as predicting Peak Ground Acceleration (PGA). By
employing a structured experimental design combined
with regression techniques, it offers a versatile
platform for optimizing outcomes and understanding
intricate interactions among parameters. A significant
aspect of its practical relevance is its potential
for real-world problem-solving in geotechnical and
seismic applications. The model allows researchers
and engineers to develop predictive frameworks
capable of improving structural resilience by accurately
forecasting seismic behaviors. The capacity of RSM to
visualize trends, optimize operating conditions, and
provide solutions with minimized experimentation
makes it a valuable tool for resource-efficient analysis.
Additionally, integrating desirability functions enables
multi-objective optimization, allowing stakeholders
to balance competing performance criteria such as
cost, safety, and sustainability. This versatility makes
the RSM model an innovative and indispensable
approach to enhancing decision-making processes
in infrastructure development and geophysical flow

15



Sustainable Intelligent Infrastructure

IECE

predictions.

5 Conclusion

In this research work, forecasting earthquake-induced
ground movement under seismic activity using the
symbolic machine learning technique known as the
Response Surface Methodology (RSM) has been
studied through data curation, sorting and regression
analysis. The learning ability of the symbolic machine
learning techniques to propose closed-form equations
has been utilized in this research protocol. A
global data representative for earthquake-induced
ground movements leading to debris flows and other
geohazards and geophysical flow events across the
world of 234 entries was collected and deployed
in the exercise. The earthquake-induced ground
movement related parameters that were studied are the
earthquake’s moment magnitude (Mw) represented
by Xi, epicenter distance (R) denoted as X, in
kilometers, bracketed duration (t) indicated by X3
in seconds, gravel content (G) as X5 in percentage,
fines content (F) denoted by X¢ in percentage, average
particle size (D50) represented by X7 in millimeters,
overburden stress-corrected dynamic penetration test
blow count (N’120 Blows) indicated by Xg, vertical
effective overburden stress (0'v) represented by Xy in
kilopascals (kPa), depth to the water table (Dw) as
X10 in meters, thickness of the impermeable capping
layer (Hn) denoted by X1; in meters, and thickness of
the unsaturated zone between the groundwater table
and capping layer (Dn) as X, in meters. At the end
of the intelligent learning exercise, the following are
concluded:

o Different from what has been studied in previous
research projects, the parameters were rearranged
to achieve the focus of this research paper, which is
to study the peak ground movement as the model
output.

e The RSM produced graphical surface
configurations which show the behavior of
the studied ground movement with respect to the
behavior of the input soil parameters.

e The RSM produced 100 solutions from where
the desirability of optimized PGA values was
proposed.

Overall, the RSM has proposed a symbolic model
with a coefficient of determination of 0.9997 and an
adequate precision of 11.1577. The proposed model
can design the earthquake-induced ground movement
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across lands prone to earthquakes with a high degree
of accuracy and precision.
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