
IECE Transactions on Advanced Computing and Systems
http://dx.doi.org/10.62762/TACS.2024.521915

RESEARCH ARTICLE

ViTDroid and Hybrid Models for Effective Android and
IoT Malware Detection

Inam Ullah Khan 1, Asim Zeb2,*, Taj Rahman1, Fida Muhammad Khan 1, Zeeshan Ali
Haider 1 and Hazrat Bilal 3,4

1Department of Computer Science, Qurtuba University of Science & Information Technology, 25000 Peshawar, Pakistan
2Department of Computer Science, Abbottabad University of Science and Technology, Abbottabad 22010, Pakistan
3College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
4College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China

Abstract
This paper introduces ViTDroid, a novel hybrid
model that combines Vision Transformers (ViTs)
and recurrent neural networks (RNNs) to enhance
Android and IoT malware detection. ViTDroid
addresses critical challenges by leveraging ViTs
to capture global spatial dependencies and RNNs
(LSTM and GRU) to model temporal patterns,
enabling comprehensive analysis of complex
malware behaviors. Additionally, the model
integrates explainability tools, such as LIME and
SHAP, to enhance transparency and trustworthiness,
essential for real-world cybersecurity applications.
The study evaluates ViTDroid’s performance
against conventional models, including RNN,
LSTM, and GRU, using accuracy, precision, recall,
and F1 score as evaluation metrics. Results
demonstrate that ViTDroid achieves superior
performance with an accuracy of 99.1% for Android

Academic Editor:
Deepak Adhikari

Submitted: 06 December 2024
Accepted: 10 March 2025
Published: 29 March 2025

Vol. 1, No. 1, 2025.
10.62762/TACS.2024.521915

*Corresponding author:
�Asim Zeb
asimzeb1@gmail.com

malware and 98% for IoT malware. Precision and
recall values reach 0.99 and 0.98, respectively, for
Android, and 0.97 and 0.98 for IoT, with F1 scores
of 0.99 for Android and 0.97 for IoT. These findings
underscore ViTDroid’s potential as a robust,
efficient, and explainable solution to combat
evolving threats in mobile and IoT ecosystems,
paving the way for future advancements in malware
detection systems.

Keywords: Android malware, IoT malware, RNN, LSTM,
GRU, ViTDroid, hybrid models, malware detection, deep
learning.

1 Introduction
The rise of Android and IoT devices has brought
transformative technological benefits, but also
heightened cybersecurity risks, with sophisticated
threats like polymorphic and metamorphic malware
bypassing traditional defenses. Vision Transformers
(ViTs), initially developed for computer vision, have
recently shown promise in malware detection by
capturing global dependencies in opcode sequences

Citation
Khan, U. I., Zeb, A., Rahman, T., Khan, F. M., Haider, Z. A., & Bilal, H.
(2025). ViTDroid and Hybrid Models for Effective Android and IoT
Malware Detection. IECE Transactions on Advanced Computing and
Systems, 1(1), 32–47.

© 2025 by the Authors. Published by Institute of
Emerging and Computer Engineers. This is an open
access article under the CC BY license (https://creati
vecommons.org/licenses/by/4.0/).

32

http://dx.doi.org/10.62762/TACS.2024.521915
http://crossmark.crossref.org/dialog/?doi=10.62762/TACS.2024.521915&domain=pdf
https://orcid.org/0009-0008-6558-4402
https://orcid.org/0009-0004-6504-9056
https://orcid.org/0009-0009-5431-7488
https://orcid.org/0000-0002-7328-3705
https://orcid.org/0000-0002-3768-0666
http://dx.doi.org/10.62762/TACS.2024.521915
mailto:asimzeb1@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


IECE Transactions on Advanced Computing and Systems

through self-attention mechanisms.
Unlike CNNs, which focus on local features, ViTs excel
in identifying long-range relationships within data,
making them particularly effective for detecting subtle,
malicious patterns. Recent advancements integrate
ViTs with recurrent models like LSTM and GRU to
enhance temporal dependency modeling, offering a
robust solution for evolving malware threats.
This study introduces ViTDroid, a hybrid model
combining ViTs and RNNs, achieving high accuracy
for Android and IoT malware detection. Additionally,
explainability tools like LIME and SHAP ensure
transparency, making ViTDroid a trustworthy
and advanced solution for modern cybersecurity
challenges.
The rapid advancement of mobile and IoT devices has
profoundly impacted both personal lives and business
operations, revolutionizing human interaction
with technology. However, this progress has also
introduced significant and often uncontained risks to
cybersecurity. In particular, smartphones, especially
portable handheld communication devices running
operating systems like Android, have become
ubiquitous, making the need for robust security
measures more critical than ever [1, 2]. Although
present smartphone users are more than 6.5 billion
and projecting that IoT devices will be more than
75 billion by 2025, the severity and vulnerability of
cybersecurity threats linked to these technologies is
growing rapidly. Many of these devices are targeted
by well-crafted malware to take advantage of the
weaknesses of both the software and the physical
hardware of the devices. As the most popular OS on
which many devices are produced, Android-based
devices are invaders exposed to every type of malware,
from Trojans to ransomware [3]. Consequently, the
Internet of Things – connected devices ranging from
household to industrial equipment- lack sufficient
safeguards; these devices can be hacked to threaten
privacy and disrupt networks [4].
Vision Transformers (ViTs) are advanced deep
learning models designed to capture global
dependencies in data using self-attention mechanisms.
Unlike traditional convolutional neural networks
(CNNs), which focus on local features, ViTs analyze
malware opcode sequences as image-like patches,
enabling effective detection of subtle and distributed
malicious behaviors. Explainable AI (XAI), on the
other hand, focuses on making machine learning
models interpretable and trustworthy. Tools such

as LIME (Local Interpretable Model-Agnostic
Explanations) and SHAP (SHapley Additive
exPlanations) identify specific features or patterns
influencing the model’s predictions. In the context of
cybersecurity, XAI enhances the usability of models by
enabling experts to understand and validate outputs,
ensuring reliable and transparent decision-making.

Most conventional tools for identifying malware
include signature detection, when the system searches
for already known malware patterns. These
approaches, though viable for identifying recognized
threats, are not helpful when it comes to emerging
threats. Polymorphic malware, the kind of threat that
changes its appearance to avoid identification, and
metamorphic malware, which can rewrite its code
entirely, are threats to which signature-based systems
cannot respond [5]. Heuristic-based methods, which
work by analyzing the behavior of applications or
files in an attempt to determine whether it comprises
threats, provide some enhancement but still suffer
from several difficulties in sensing the more persistent
new generation of malware that is designed to look
like normal user activities or that employ techniques
that would try to dodge detection [6]. Therefore,
an increasing interest has appeared in using ML
and DL approaches for malware detection. All of
these methods are well suited to the modern threat
landscape because they can learn from large data sets,
incorporate newly discovered threats, and recognize
subtle patterns that may be missed by traditional
methods [7].

Numerous machine learning approaches, deep
learning models– including RNNs, LSTM, and GRU,
have been used often to identify malware, especially
within sequential data sources like system calls,
APIs, and network traffic logs. RNNs, which are
the basic structures of deep learning for sequence
learning based on time series analysis, should directly
apply to tasks such as malware behavior detection
because the order and time interval of actions are
important for the task [8, 11]. However, the problem
with such RNNs is that they are prone to vanishing
gradients, making it hard for them to learn from
very long sequences, particularly for complicated
malware[9]. This is a major drawback when using
RNNs to perform inference as an input item can only
influence distant targets, not the entire sequence. This
issue is overcome in LSTM networks as they have
memory cells in which they can store information
into longer times, making them appropriate for
long-range dependencies in a sequence[10, 12]. GRUs,

33



IECE Transactions on Advanced Computing and Systems

another type of RNN, present fewer parameters than
LSTMs but are known to provide nearly the same
performance in capturing temporal relations. These
sequence-based models have been demonstrated
to be useful in detecting malware by patterns of
behavior that stretch over a long time range, for
example, intrusion of APIs or network traffic that is
anomalous over time. RNNs, GRUs, and LSTMs work
well with sequential data, whereas more complex,
multiple-dimensional data like images, graphs, or
well-structured sensor data, which is more common
in today’s mobile and IoT devices, are better handled
in this architecture. This is where Vision Transformers
(ViTs) come into play La-Vie. Originally designed
for computer vision problems, ViTs defined high
performance in terms of transforming the data
through spatial and contextual relationships through
the attention mechanism [13, 14]. Such versatility of
the self-attention mechanism implemented by ViTs
enables them to ignore the spatial relationships of
features and focus on the critical features present
within input data this results in the model’s capability
to identify various patterns and outliers within
data. Recent work has also extended the scope of
ViTs beyond conventional image recognition-related
tasks and provided evidence that it can be used for
time-series analysis and potentially designing anomaly
detectors. In this work, we investigate the performance
of not only deep machine learning models but also
ViTDroid, a Vision Transformer model for malware
detection, in parallel to conventional models such as
RNN, GRU, and LSTM. As a result of incorporating
Vision Transformers in both time and space detection,
ViTDroid provides a comprehensive way of precisely
detecting a range of malicious software for Android
and IoT devices. First, as mentioned above, while
there are several traditional sequence-based models
for learning, such as LSTMs, for detecting malware
with sequential behavior patterns, the proposed
ViTDroid, on top of maintaining these features further
comes equipped with attention capabilities, which
can explore contextual relationships in the data,
which is highly important for detecting seemingly
less differentiated yet actually extremely significant
patterns of behavior in malware.

Besides the detection capabilities of these models, this
research proposed the approach of the explainability
of machine learning in cybersecurity applications
[15]. A sophisticated model like ViTDroid, built using
deep learning and attention mechanisms, is often
called a ‘black box,’ implying that it is difficult to

explain the inner computations by which it made a
particular decision. In cybersecurity, where decisions
have to be trustworthy and timely, opacity about
how such a model came to its prediction can be an
inhibitive factor. This is especially so given the serious
consequences that may come with either incorrect
identification of malware or failure to identify the
malware. This is why techniques of explaining how
and why particular predictions were made, known
as Explainable AI (XAI), are crucial. Here, in this
study, we want to test the efficiency and applicability
of ViTDroid and other models that may be developed
or proposed andconsider the possibility of explaining
such models and making model interpretability more
comprehensible to cybersecurity experts.

Since the threats are constantly changing in nature the
detection systems should also be capable of detecting
both known and unknown threats. Lastly, with the
proposed Vision Transformers in ViTDroid, themerger
of Vision Transformers and sequence-based models
is a good direction for future Malware detection
systems. This research offers inspirational results
of the extensive analysis of the performance of the
range of deep learning models for Android and IoT
malware classification. It opens the perspective to
develop new advanced hybrids of the deep learning
models to enhance the detection rate and counteract
the increasing threats of current cyber attacks [16][17].
Lastly, incorporating explainable AI techniques adds
more onus to making these models useful in real-life
cybersecurity settings, making it possible to get better
and more transparent malware detection models.

The overall findings of this research demonstrate that
the availability of high-level data machine learning
and deep learning models, including ViTDroid, can
improve the sphere of malware detection for both
mobile and IoT platforms. This is because ViTDroid
harnesses the power of Vision Transformers and at
the same time benefits from conventional models like
LSTM in detecting patterns in data that are used
in presenting advanced malware threats. The work
also focuses on the interpretability of the model to
guarantee its efficacy in practical cybersecurity use
when deployed by such systems. As the threat
landscape advances, resources such as ViTDroid may
serve as the main vehicle for defining the future
of detection technologies and malware prevention
architectures.

• This work proposes a superposition of Vision
Transformers (ViTs) input/recurrent Recurrent

34



IECE Transactions on Advanced Computing and Systems

Neural Networks (RNNs- LSTM/GRU) to take
both spatial and temporal relations in opcode
sequences that will improve the accuracy of the
Android and IoT malware discovery.

• Ensemble learning techniques (boosting and
bagging) are integrated into the ViTDroid
model to improve its robustness and accuracy,
addressing issues of data imbalance and detecting
previously unseen malware attacks.

• Advanced attention mechanisms and
model-agnostic interpretability tools (LIME
and SHAP) are incorporated to make the
malware detection model more transparent,
allowing experts to understand and trust the
model’s predictions.

2 Background
The morphological changes observed in mobile
devices and IoT system malware further complicate
the detection and protection of these malware,
especially in the context of smart cities. The
evolution of inadvertent complex malware variants
undermines conventional cybersecurity strategies,
therefore proposing incorporating deep learning
technologies. This chapter provides an overview of the
background of some of the important areas pertinent
to the study: the malware detection methods, the use
of deep learning models such as Vision Transformers
(ViT), and a hybrid model implementation to boost
the detection of malware, as well as the approaches
of making untangled and more robust models in the
framework of Android and IoT malware.

2.1 In Mobile and IoT Devices Malware Detection
Malware in mobile and IoT has emerged as a new
threat to cybersecurity mainly because these devices
are increasingly used in sensitive areas [18–20, 31].
Subsequently, smartphones, especially those with
the Android platform, have become the largest
opportunities for attackers, given their ubiquity,
availability, and versatility. Traditional malware
detection methods, such as signature-based and
heuristic approaches, struggle with modern threats
like polymorphic and metamorphic malware, which
evade detection through obfuscation and dynamic
changes. While machine learning models like RNNs,
LSTMs, and GRUs improve sequential data analysis
[21], they often fail to capture global dependencies
and lack explainability, limiting their effectiveness.
The number of apps and user actions is continually
growing, which, along with other factors, forms an

unbounded space for activity, against which it is
challenging to defend using traditional approaches
based on signatures [22].

Like PCs, IoT devices used today in smart cities
for infrastructure monitoring, utility management,
and other improvements in people’s daily lives are
also easily infected by malware. These devices
are resource-constrained, often have weak security
controls in place, and are members of large complex
networks that are challenging to monitor [23]. These
devices’ flaws can be used to launchDistributed Denial
of Service (DDoS) attacks, data theft, or incapacitating
essential services such as healthcare and traffic systems
[24]. Traditional malware detection techniques, such
as signature-based detection, work by recognizing
known signatures of malware. Although helpful
for inherent attacks, these techniques fail to identify
zero-day attacks, polymorphic malware, or a new
breed of viruses [25]. For this reason, new techniques
to detect these malware classifications that can be
applied effectively to future threats are also required.
This is true for most ML and DLmodels that can easily
capture data patterns related to malicious activity even
if the threats are unknown or in a new variant [26].

2.2 Vision Transformers (ViTs) and Their
Application to Malware Detection

Designed to focus on vision, Vision Transformers (or
ViTs) are a relatively new addition to deep learners
and have demonstrated impressive performance in
image classification. The idea that forms the basis for
ViTs is to partition an image into smaller segments and
process each segment or patch as an individual token.
Making tokens of ViTs attend to each other across
space also helps ViTs model long-range dependencies
in data; it suggests that ViTs are particularly suitable
for tasks where the global context is crucial, such
as object recognition in images. ViTs have recently
been applied to the field of malware detection
since they provide the opportunity to capture global
dependencies in sequential data, such as opcode
sequences originating from Android and IoT malware.
Unlike the original Convolutional Neural Networks
(CNNs), which extract local spatial features by
convolutions, ViTs regard the whole input data as
a sequence and the interaction between all patches
(or tokens) simultaneously. This allows ViTs to
analyze local dependencies in the data and index
important patterns of malicious behavior that might
go unnoticed at the granular level [27, 28]. This
article shows that ViTs have one crucial benefit over

35



IECE Transactions on Advanced Computing and Systems

other architectures—their ability to capture long-range
dependencies. As seen regarding malware analysis,
malicious activities usually extend through several
instructions, and identifying such activities means
recognizing the interactions between far opcodes.
Unlike most embeddings that operate on a single
opcode, ViTs work on a sequence of all or at least a
subset of them, allowing ViTs to detect trop global
that characterizes malware behavior [29]. Some recent
works have shown that ViTs are more effective than
the traditional CNN-based counterparts in certain
malware detection [35] tasks because of their better
ability to capture these relations [30]. Nevertheless,
ViTs have come across some issues when working with
sequential data, and more specifically, with opcode
sequences. ViTs can capture global dependencies but
do not capture temporal dependencies between the
opcodes, which this problem heavily relies on due to
sequential processing performed by malware. This
has been done due to the limitations of the ViTs and
the subsequent investigation of more powerful models,
such as Recurrent Neural Networks (RNNs), that are
effective for sequential data.

2.3 Hybrid Models
Further, the RNN utilizes the ViTs to identify the
presence of malware or not. The integration of
Vision Transformers (ViTs) and Recurrent Neural
Networks (RNNs), namely Long Short-Term Memory
(LSTM) networks and Gated Recurrent Units (GRUs),
becomes a natural solution to avoid the problems
that occur with each model. Although ViTs consider
global patterns of the data, RNN memorizes previous
inputs’ information, which makes them suitable for
understanding the sequence of indices in the malware
operation.

LSTMs are a subtype of RNN machines that
perform exceptionally well with long-term sequence
dependencies. Gating mechanisms help to protect
from the vanishing gradient problem, which tends
to happen if traditional RNNs are used with long
sequences by allowing the model to decide which
information to remember and which to forget at
each step. This makes LSTMs suitable for analyzing
dependencies on the timelines of actions in malware
samples, given that the temporal order of operations
defines malicious behavior. LSTMs are similar to
GRUs but allow the data to be updated at each
time step, which makes them more computationally
extensive but, at the same time, they can get at least as
many parameters capturing long-range dependencies

in sequential data. The further hybrid models can
describe the malware’s behavior better, Created with
ViTs that deal with global dependencies and LSTMs or
GRUs that address sequential ones. It combines this to
enhance the effectiveness of the tuple detection model
as themodel needs to consider the order inwhich these
operations are called when determining the general
structure of the malware.
Recent works show that the integration of ViT
and RNN has been pioneered in many fields and
domains, ranging from time series to natural language
processing domains where both spatial and temporal
information are essential. In malware detection
this approach has proved effective, enabling models
to be developed that capture the richness and the
multifaceted nature of malware.

2.4 Ensemble Learning for Malware Detection
Ensemble learning is one of the strong concepts in
machine learning in which different models are used
jointly to enhance the characteristics of the decision.
Finally in ensemble methods such as bagging and
boosting different individual models are built using
different sections of the data or else the same section
of data is used by building them using different
algorithms and the final decision is constructed from
the individual model’s decisions. The strength of
ensemble methods is that they lessen the problem of
overfitting and increase the model generalization since
a number of models are used. Smoothingmethods like
Ada Boosting and Gradient boosting are used where
the learning algorithm builds a sequence of models
each demonstrating different errors. This they achieve
at the expense of a slight slowdown in computational
speed and the emergence of higher order polynomials,
and a strong learner that can perform well even on
complex and noisy data. The rgenetic algorithm
[36, 37], involve the construction of a set of models
trained on different subsets of the data, and making
a decision based on the response of all of the models.
Both techniques are more suitable for dealing with
imbalanced datasets frequently used in malicious code
detection when the number of normal samples is
significantly greater than that of malicious samples.
Specifically to the detection of malware, the ensemble
learning method proposed in this paper can enhance
the performance of each component model which
is easily affected by variance and bias when they
face complex and unbalanced datasets. As the name
suggests ensemble methods can also improve the
models’ resistance to adversarial attacks or previously

36



IECE Transactions on Advanced Computing and Systems

unknown strains of malware. In the proposed
ViTDroid model, the idea of ensemble learning can
be implemented on top of the hybrid ViT-RNN model
to enhance the malware detection result’s reliability
and accuracy.

2.5 Explainability in Malware Detection
Interpretability in the context of a Machine learning
model means how easily the decisions made by a
model can be explained. In the case of cybersecurity,
the crucial steps of identifying that certain software is
either malicious or benign are taken by automated
systems, thus the respective decisions need to be
explainable. This is especially truewhen deep learning
models ViTs and hybrid models are used as most of
them are considered "Black Box" models it is difficult
to understand their internal mapping mechanisms.

As for this issue, several approaches have beenmade to
enhance the interpretability of deep learning models.
Some of them include attention mechanisms, for
instance, enabling the models to give priority to
portions of the input data, which are most important
in making the forecast. In malware detection, attention
mechanisms can identify which areas of the opcode
sequence are more indicative of malicious activity,
thus making the model’s decision-making more
interpretable.

Furthermore, non-specific interpretation techniques,
such as LIME (Local Interpretable Model-Agnostic
Explanations) or SHAP (Shapley Additive
exPlanations) can generate explanations for the
predictions made by a diverse model. LIME relies on
the concept of substituting a complex model with a
simpler model, to explain the predictions made for
an individual instance while SHAP uses concepts
of cooperative game theory to explain the level of
contribution provided by each feature to the final
prediction. These tools enable a user to know why
a particular sample has been categorized as either
malicious or benign, which is helpful in trust and
validation in cyber-security applications [38, 39].

Complementing the ViTDroid model with attention
mechanisms and interpretability tools, this research
improves the model’s trustworthiness and supports
the safe utilization of the model’s predictions by
cybersecurity professionals.

2.6 Data Augmentation and Transfer Learning for
Coping with Data Poverty

A major limitation typical of developing machine
learning models for malware detection [32–34] is the
availability of labeled data, particularly for new or
relatively rare types of malware. This problem can be
solved to a certain extent using a data augmentation
technique which makes the amount and the variety
of data in the training set larger artificially. As
mentioned before, common augmentation in image
classification includes rotation, scaling, and flipping
among them. When dealing with opcode sequences
data augmentation can be performed by changing the
structure as well as the sequence of opcodes but still
pointing toward an evil purpose. This helps the model
to generalize more and hence be made more immune
to other unseen samples.
Another powerful technique that also corrects the
existence of scarce labeled data is known as transfer
learning. When deep learningmodels are trained from
scratch, they requiremore datasets and a longer time to
obtain the result; conversely, pre-trained deep learning
models also make use of learned features from related
tasks or domains. In malware detection, transfer
learning [40–42] has been found effective when the
original models from related large datasets from
other environments or any general image classification
datasets have been used. This enables the model
to harness the knowledge that is embedded in the
pre-trained model even under conditions where the
only available data is labeled.

3 Proposed Architecture
In this section, we present the architecture of
ViTDroid, an advanced deep-learning model designed
for Android and IoT malware detection, as shown
in Figure 1. The proposed model integrates Vision
Transformers (ViTs) with hybrid architectures to
enhance its ability to detect and classify malicious
behavior in opcode sequences and system calls. This
chapter details the key components of ViTDroid,
including the input representation, model architecture,
hybrid components, training process, and the
techniques used to enhance detection accuracy,
explainability, and robustness.

3.1 Overview of ViTDroid Architecture
ViTDroid is designed to address the limitations of
traditional machine learning models in malware
detection by leveraging the power of Vision
Transformers for capturing global dependencies

37



IECE Transactions on Advanced Computing and Systems

Figure 1. Proposed architecture.

within opcode sequences. The architecture of
ViTDroid combines the strengths of ViTs with
Recurrent Neural Networks (RNNs), such as Long
Short-Term Memory (LSTM) networks or Gated
Recurrent Units (GRUs), to model both the spatial
and temporal dynamics of malware execution.
ViTDroid combines Vision Transformers (ViTs)
and recurrent neural networks (RNNs) to enhance
malware detection by leveraging both spatial and
temporal dependencies. Malware opcode sequences
are tokenized into patches and processed by the
Vision Transformer module to capture global
dependencies through self-attention mechanisms.
The RNN module, using LSTM or GRU, analyzes
sequential relationships to identify temporal patterns
of malicious activity. Outputs from these modules are
integrated using ensemble techniques like boosting
and bagging to improve robustness and accuracy.
Additionally, explainability tools such as LIME and
SHAP enhance transparency by highlighting features
that influence predictions, ensuring trust and usability
in cybersecurity applications.

At a high level, the ViTDroid architecture consists of
several components:

• Input Representation: Before they are fed
into the deep learning model the raw opcode
sequences extracted from a set of Android and
IoT malware samples are preprocessed and
transformed. The second step is the opcode
sequence to be tokenized, followed by the division
of opcode sequences into segments or patches
in the form of input to the Vision Transformer
module.

• Vision Transformer Module: The basis for
ViTDroid is the Vision Transformer that treats the
input opcode sequences as image-like patches as
well as maintaining global dependencies across
the entire sequence.

• Hybrid RNN Module: To capture temporal
dependencies within the opcode sequences,
ViTDroid employs a recurrent module
(LSTM/GRU) that captures the sequential
interdependencies between opcodes.

38



IECE Transactions on Advanced Computing and Systems

• Ensemble Learning: To enhance the accuracy
and the optimum robustness, ensemble learning
is used on the output of the Vision Transformer
and the RNN module.

• Explainability Layer: ViTDroid also includes the
understanding of attention and the use of LIME
and SHAP for making the predictions transparent.

3.2 Input Representation: Opcode Sequences as
Patches

To fit the input data into the Vision Transformer, the
raw opcode sequences are transformed into patches
similar to the image ones. Each opcode is taken as
a feature and a window of a fixed size is applied by
sliding it over the sequence to produce patches. These
patches are then inserted into the fixed length vectors
using the embedding layer showing the model what
to learn in terms of opcode sequences features.
This conversion allows the Vision Transformer to
learn over opcode sequences similar to how it learns
over an image where patches are local fragments
of the sequence and learn dependencies over the
entire sequence by attending to distinct patches
simultaneously. It is specifically beneficial for malware
detection since the model can gain both the detailed
local structures (local opcodes) and the global context
(coarse patterns across opcodes) in the malware
execution sequence.

3.3 Vision Transformer Module: Global
Dependency Capture

The Vision Transformer (ViT) module is the central
module of the ViTDroid. In ViTs, the patches focused
on capturing global dependencies in the input data
which is important in observing the behavior of
malware across different instructions or opcodes. It
is well known that convolutions are used to learn
local features in a standard convolutional model, but
this hinders the performance of learning long-range
dependencies. To this, end, ViTs do not process the
sequence one element at a time; rather, the whole
sequence’s interaction is captured.
When it comes to ViTDroid, the ViT module learns
dependencies across the entire sequence acting on the
embedded opcode patches in parallel. This makes
it possible for the model to identify other obscure
characteristics that reveal the violation of malicious
behavior not defined by the local level Opcode. For
the same reason, the self-attention mechanism used in
ViTmodels enables an adjustment of weights by which

the data will be weighted in a way that is beneficial
to focus on important patches while disregarding less
relevant ones.

3.4 Hybrid RNN Module: Temporal Dependency
Modeling

Although ViTs are excellent in modeling dependencies
across the entire globe, malware can have intricate
temporal patterns, and any reordering of opcodes that
a malware might induce is crucial to identifying its
misbehavior. To overcome this, in ViTDroid, there
is a combined module, where there is Recurrent
Neural Network (RNN) – Long Short-Term Memory
(LSTM) or Gated Recurrent Units (GRU). These
above-described RNN variants are built to handle
sequential data and learn temporal patterns by
having a memory of earlier inputs. Malware
detection requires both spatial analysis of opcode
relationships and temporal analysis of sequential
behaviors. Vision Transformers (ViTs) capture global
spatial dependencies, identifying subtle malicious
patterns, while RNNs like LSTM and GRU excel at
modeling temporal relationships critical for detecting
chronological malware behaviors. ViTDroid combines
these strengths, enabling comprehensive detection
of complex malware by addressing both spatial and
temporal challenges effectively.

3.5 Ensemble Learning: Improving Accuracy and
Stability

In a bid to enhance the distinct and consistent
outcomes of ViTDroid, boosting and bagging are
combined learning methods that are integrated
alongside the tool. Voting operates by taking
several models and using them in an ensemble,
as the inconsistency and prejudice problems hurt
performance. In ViTDroid, such techniques as
Gradient Boosting or AdaBoost are used, where in
the process of learning several models are trained, and
each subsequent one is aimed at improving results on
the problems that failed the previous model. This aids
in modifying the model to extremely function better
in response to sophistical and noisy data inputs.
Further, some modifications like bagging techniques
like Random Forests may be applied for parallel use
with Vision Transformer and RNN sub-modules. The
results are combined by training several models on
various portions of the data and then making the
consolidated prediction. This ensemble approach
decreases the probability of over-fitting and increases
the likelihood for ViTDroid to perform well on

39



IECE Transactions on Advanced Computing and Systems

completely unseen cases, thus making the method
more resistant to adversarial attacks and other
modifications of the used samples of malware.

3.6 Explainability Layer: Enhancing Model
Transparency

Cybersecurity is a domain where it is very important
to know how a given model decides that a sample is
malicious or benign, especially in the case of inspecting
the samples that are classified as malware. To promote
transparency of the results, ViTDroid has components
of explainability that make the public trust in the
output. These mechanisms are used to focus on the
specific sections of the opcode sequence which might
have a strong bearing on the model’s decision. This
made it more convenient to shift the focus of security
analysts on the special opcodes or patterns that led to
the detection of malware reducing the interpretative
part of the model.
To improve the general interpretability ViTDroid
uses post hoc interpretability tools such as LIME
and SHAP. These tools help to determine how
important each given feature contributes to the model
in question (in this case, each opcode or patch).
Thus, the applications of these tools, ViTDroid can
help the security professionals with understandable
standpoints on why such behaviors are malicious, so
that those security professionals can make the right
decision on the suspicion.

3.7 Training Process: Data Augmentation and
Transfer Learning

To demonstrate that ViTDroid achieves good
performance on practical datasets the training is done
using modern approaches such as data augmentation
and transfer learning. Data augmentation is used
because, for malware detection, there are few samples
available that are labeled for training. Thus, by
creating the new training samples based on the
transformations (for example the permutation of
the opcodes order) the model can generalize upon
the new, unseen types of malware and does not get
overtrained on certain variants.
Transfer learning is also used to use models ready
on related tasks, for example, image classification or
malware detection in other contexts. This approach
helps ViTDroid leverage the knowledge embedded in
pre-trained models, and perform feature extraction
to the particular task of Android and IoT malware
classification. The process of transfer learning is most
useful when training with a relatively small number of

labeled inputs because the model itself can learn more
quickly from small sets.

4 Experiments and Results
In this section we outline the experiments conducted,
the evaluation metrics used, and the datasets
employed to test the ViTDroid model for detecting
malware on Android and IoT devices. For this
purpose, all our experiments are designed to
analyze the number of detections of the ViTDroid
architecture regarding the high accuracy, robustness,
and explainability of the results. We evaluate ViTDroid
against conventional malware detection models and
establish the contribution of several developments
including Vision Transformers, hybrid Recurrent
Neural Networks, and Ensemble learning.

4.1 Experimental Setup
To assess the performance of ViTDroid we used a set
of Android and IoT malware samples and the main
focus was on smart city IoT devices. The datasets
were then cleaned and tokenized to ensure opcode
sequences were converted into image patches for the
Vision Transformer module. Furthermore, the same
sample of malware was split into training and test data
sets to measure its generalization capability.
We trained and tested fusing hardware and
software environments into one training and testing
environment. The experiments were performed
on a machine installed with an NVIDIA GPU,
which provided resources for training complicated
deep-learning models. The model was reproducibly
built and experimented on with the help of established
deep learning frameworks such as TensorFlow and
PyTorch.

4.2 Datasets
To assess the execution of ViTDroid, two separate sets
of malware were used, the first set was from Android
malware, and the second set was from IoT malware.
We chose these datasets to prove that the model works
universally focusing on the Android domain and IoT
devices in smart cities at that.

4.2.1 Android Malware Dataset
The dataset of Android malware used in this work
is a collection of the APK samples of the malevolent
applications, taken from authoritative stores or
received from well-known malware archives. Android
malware in the dataset comes from different families
depending on the type of behavior and these include;

40



IECE Transactions on Advanced Computing and Systems

trojans, ransomware, spyware, adware, and other
malicious apps.
The key components of the Android malware dataset
include:
• Opcode Sequences: These sequences are

obtained from the bytecode of APK files which
gives the sequence of instructions carried out by
the Android app. It is important to note that each
opcode is associated with a single operation in
the functioning of the Android application.

• System Call Traces: It must be noted that there
are also records of system calls invoked by the
malware at runtime within the dataset. It is also
able to record such interaction that includes file
reading, network calls, and system resource use
by the app.

The opcode sequences extracted from the programs
were first tokenized and transformed into patches
of fixed size and fed into the Vision Transformer
model. The samples within the current dataset
were categorized into two classes: malicious and
benign thus offering the ground truth for training and
evaluation.

4.2.2 IoT Malware Dataset
The IoT malware dataset comprises samples gathered
from simulated smart city IoT devices in the real world.
These devices include environmental sensors, smart
meters, surveillance cameras, and industrial control
systems. Since IoT devices are connected and hence
are very vulnerable to attackers & have poor security
the dataset included all the centrality of IoT malware.
The key components of the IoT malware dataset
include:
• Opcode Sequences: Like the Android dataset,

the IoT malware dataset holds the execution
traces of malware samples with vulnerability
exploitation in IoT devices. These traces reflect
the minor tasks performed by the nasty payloads
as soon as they penetrate a device.

• System Call Traces: Besides opcode sequences,
system call traces were also collected to analyze
how malware triggers the underlying operating
system of IoT devices. These traces offer an
understanding of malware conduct including
data leaking, elevation of access privileges, or
unauthorized management of IoT.

• Dataset Limitations: The datasets used,

comprising Android and IoT malware samples,
have limitations that may impact generalizability.
While diverse malware types are included, they
may not fully represent emerging threats. The
IoT dataset, partially generated in simulations,
may lack real-world complexity. Balanced
class distributions simplify training but do not
reflect real-world imbalances, and potential
geographical or contextual biases may limit
broader applicability. Future work should
expand dataset diversity, include real-world
IoT samples, and evaluate performance on
imbalanced and region-specific datasets to
improve robustness and adaptability.

The IoT malware dataset was also preprocessed in
the same way as the Droid with the use of opcode
sequences and system calls to patches which will be
input to ViTDroid. To maintain balanced data, equal
numbers of benign and malicious samples were taken.

4.2.3 Data Preprocessing
The preprocessing steps for both datasets are as
follows:
1. Opcode Sequence Tokenization: In both the

Android and the IoT datasets, the transformations
are raw opcodes which were further split to
contain single opcodes. These sequences were
then split into patches (e.g., 100 opcodes, a patch
size) to form Vision Transformer input tokens.

2. Normalization and Feature Scaling: To balance
the equal usage of all the features included in the
opcode sequences, the process was normalized.
This entails normalizing each feature (opcode) by
constraining it between certain values such as 0-1
to enhance the performance and stability of the
learning algorithm.

3. Patch Embedding: Finally, after tokenization,
each of the patches was fed into the embedding
layer where tokens are mapped to a complete
value to vectors. These vectors are the "features" of
each patch, which shall be perceived by the Vision
Transformer to identify global relations.

4. Label Encoding: Both samples of Android
and IoT groups were given a tag of being
either malicious or benign. These labels were
pre-determined as 0, for benign, and 1 for the
malignant labels for use in classification tasks in
the model.

5. Data Augmentation: Due to the dearth of

41



IECE Transactions on Advanced Computing and Systems

Table 1. Dataset description.
Dataset Malware Families Number of Samples Malicious / Benign Split
Android Malware Trojans, Ransomware, Adware, etc. 10,000 50% Malicious, 50% Benign
IoT Malware DoS, Botnet, Data Theft, etc. 8,000 50% Malicious, 50% Benign

labeled data in some instances data augmentation
prepossessing techniques were used to expand
the size of the training data set. Some of
such manipulations were random patch rotations,
scaling, and other similar operations to produce
more training samples while maintaining the
malware characteristics.

6. Train-Test Split: The obtained dataset was
randomly divided into two groups: the first part
was used for training, and the second part was
used for testing. In the present study, 80% of
samples were practiced while 20% were utilized
for evaluating the performance of the model. This
makes sure that themodel can generalize from the
training data andhence offers an accuratemeasure
of the model’s performance.

4.2.4 Dataset Description
To configure the real and close-to-perfect realistic
datasets, two of them were selected which are more
reflective of real-life threat scenarios that can spectate
in Android malware and IoT-based smart city attacks,
as shown in Table 1. The nature of malware families
and attacks guarantees that various conditions will
be encountered throughout the test hence is model is
more applicable to more real-life cases compared to
others.

4.3 Android Malware Detection Results Random
Neural Network Long Short-Term Memory
Recursive Neural Network Gated Recurrent
Unit

In this section we describe the performance of the
ViTDroid model by testing various Recurrent Neural
Network (RNN) configurations on the Android
malware dataset. As these following experiments
focus on judging each RNN variant’s capability of
mining the temporal characteristics of opcodes in
Android malware,
The performance metrics for each model are
summarized as follows:
• RNN: In the automated analysis of Android

executing detected malware, standard RNN had
above 95% accuracy. While RNNs can model
temporal dependencies within the data they face

problems with long-term dependencies that arise
with problems such as vanishing gradient make
it less suitable for tackling more complex tasks.

Figure 2. Performance of the LSTM model.

Dependencies that arise with problems such as
vanishing gradient make it less suitable for tackling
more complex tasks.

Figure 3. Accuracy of the RNN model.

4.4 RNNModel
As can be seen in Figure 3, the training accuracy
and test accuracy for the RNN model of opcode
patterns demonstrates that the RNN achieves a
training accuracy of 97%, meaning it has learned the
input-opcode pairs effectively. The test accuracy stands
at 95% and thus, we infer that the model has good
generalization capability but maps a slight loss in
terms of accuracy on unseen data sets. The difference
between training and test accuracy is rather small; the
model is not overfitting, but at the same time, it is not
underfitting. In general, the performance of the RNN
is satisfactory but there is still room for improvement to
increase the robustness of the approach for new types
of malware.

4.5 LSTMModel Performance
The graph on the LSTMmodel shows that the training
phase and testing phase show a high level of accuracy,

42



IECE Transactions on Advanced Computing and Systems

as shown in Figure 2. The model is also achieving an
average training accuracy which is rising slowly and
steadily and has reached 98%which demonstrates that
the LSTM is learning to identify the op-code sequences
of Android malware constantly.
Training accuracy is pretty high, equal to 97%, while
the test one is lower 96%, still, which is very good for
most cases and means that the model is very good in
generalized to the new data. The differences between
the training and test accuracy are not high meaning
the LSTM model is fitting the data appropriately and
isn’t overfitting samples it hasn’t Seen.

Figure 4. Performance of the GRU model.

This makes the LSTM architecture specifically
appropriate for use in malware detection problems
given that the ability to detect long-term dependencies
and sequential patterns is of paramount importance.

4.6 GRUModel Performanc
As can be seen in Figure 4, the plot for the training
accuracy of the GRU model also demonstrates that the
specific metric is gradually growing and reaches the
value of around 98%, whichmeans that theGRUmodel
is capable of discovering the patterns hidden in the
opcode sequences from Android malware. This is due
to the training being able to carry out the details of the
sequence dependencies properly during the training
phase.
The test accuracy of the GRUmodel converges at 0.96A
like the LSTM model. The minor gap between the
training and test accuracy indicates that similar to the
LSTM model, the GRU model is equally capable of
performing well on unseen data without having to
overfit the model. The final GRU model is comparable
to LSTM in terms of mean accuracy but is less
parameterized and therefore much more efficient to
compute.

4.7 All Model Comparison
In the case of comparing RNN, LSTM, and GRU
models for Android malware detection, all have fared

Table 2. Training accuracy and testing accuracy on the three
baseline models.

Model Training Accuracy Test Accuracy
RNN 97% 95%
LSTM 98% 96%
GRU 98% 96%

reasonably well in context with the training accuracy
where 97% was achieved for RNN and 98% for LSTM
as well as GRU models. However, when measured
in test accuracy, RNN produced 95% whereas LSTM
and GRU models produced 96% each. This makes
us conclude that although the RNN facilitates good
performance for the training data, it does slightly
struggle in extension with other unseen data probably
because the facility to capture long-term dependencies
is weaker as empathized for LSTM and GRU. The
performance of LSTM and GRU were comparable,
although LSTM incurred slightly more computational
cost; thus, GRU is preferable in practical scenarios. In
total, based on the presented results, LSTM and GRU
perform more generally than other examined RNN
models with GRU being more efficient.

4.8 Model Comparison: IoT Malware Detection
The results of the comparative analysis of RNN,
GRU, LSTM, and ViTDroid are shown in the Table
2 and Figure 5, which demonstrates the IoT malware
identification score for the offered methods. In the
presented experiments, LSTM and ViTDroid showed
the highest results with 98.85% accuracy for LSTM
and 98% for ViTDroid. The next was GRU with 95% of
accuracy and RNNwith 94.50%. Once again, ViTDroid
had the best values for precision (0.97) and recall
(0.98), and the performance of GRU and LSTM was
similar. LSTM and ViTDroid emerged as the best out
of all and ViTDroid was particularly good concerning
both the precision and recall of the overall results
and hence, could be effectively used for IoT malware
identification.

Figure 5. Model comparison: IoT malware detection.

43



IECE Transactions on Advanced Computing and Systems

Table 3. Performance metrics for Android and IoT malware
detection.

Model Domain Accuracy Precision Recall
RNN Android 95% 0.94 0.95
GRU Android 96% 0.96 0.96
LSTM Android 96% 0.97 0.96
ViTDroid Android 99.10% 0.99 0.98
RNN IoT 94.50% 0.93 0.94
GRU IoT 95% 0.95 0.94
LSTM IoT 98.85% 0.98 0.99
ViTDroid IoT 98% 0.97 0.98

4.8.1 Hybrid technique IoT
The hybrid technique of IoT malware detection
attained a high accuracy of 98.85%. While judging
the output of the proposed hybrid model, which
is the combination of Vision Transformers (ViTs)
for feature extraction and LSTM/GRU for sequential
effects, the detection performance is enhanced. Such
high accuracy proves the effectiveness of integration of
variousmachine learningmethods to promote not only
the ability to detect IoT malware but also to identify
new, previously unseen types of such malware.

4.8.2 Model Accuracy Comparison: Android vs. IoT
Malware

Figure 6. Comparison: Android vs. IoT malware.

As can be seen in Table 3 and Figure 6, the
comparison of the model accuracy of Android and
IoT malware detection proves that ViTDroid was the
best-performing algorithm with an accuracy rate of
99.1% for Android malware and 98% for IoT malware.
Similarly, LSTM also gave improved results: 98% for
Android and 98.85% for IoT. GRU got 96% for Android
and 95% for IoT and RNN got 95% for Android and
94.50% for IoT. In aggregate, Android models were
somewhatmore accurate than IoTmodels, which could
be a result of the fact that IoTmalware is typicallymore
nuanced. However, in both domains, ViTDroid and
LSTM showed the best results.

4.9 Additional Metrics for Real-World Deployment
To evaluate the practicality of ViTDroid for real-world
deployment, additional metrics such as model
complexity, computational efficiency, and inference
time were assessed. ViTDroid’s hybrid design,
combining Vision Transformers and RNNs, has higher
complexity compared to standalone models like LSTM
or GRU. While its training time (18 minutes per
epoch) exceeds that of simpler models (e.g., RNN
at 10 minutes per epoch), the added accuracy and
robustness justify this overhead. Inference time,
critical for real-time detection, was 3.5 ms/sample
for ViTDroid, slightly higher than LSTM (2.5
ms/sample) or GRU (2.3 ms/sample). Despite these
computational demands, ViTDroid’s superior accuracy
and explainability make it a strong candidate for
deployment in critical security applications.

5 Conclusion
The analysis presented in this work highlights the use
of realisticmachine-learningmethods for the discovery
of malware in both Android and IoT platforms.
Experimental results show that ViTDroid has the best
accuracy of the Android and IoT malware samples
that we tested. It achieved above 99.1% accuracy for
Android malware detection and 98% for IoT and has
excellent success in capturing both the spatial and
temporal features inherent to the malware. LSTM
was also used in this work and gave similar results
to LSTM, while GRU and RNN were slightly lower
in terms of accuracy and generalization. The study
shows that it is advantageous to determine the best
features of different model constructions and use all
or a few of them at once. Although Android models
were marginally better than IoT models it was very
close, this shows that the samemodels are as efficiently
applicable to different kinds of malware. The focus
of this research is on the possibility of improving the
performance ofmalware detection using a combination
of models like ViTDroid and LSTM. Future work
should also focus on real-time deployment and testing
of ViTDroid in dynamic environments to assess its
performance under realistic conditions. By addressing
these areas, the next generation of malware detection
systems can become more accurate, efficient, and
scalable, ensuring robust cybersecurity for evolving
threats.

Data Availability Statement

Data will be made available on request.

44



IECE Transactions on Advanced Computing and Systems

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate

Not applicable.

References
[1] Sutter, T., Kehrer, T., Rennhard, M., Tellenbach, B., &

Klein, J. (2024). Dynamic security analysis on android:
A systematic literature review. IEEE Access. [CrossRef]

[2] Khokhlov, I., & Reznik, L. (2017, April). Data security
evaluation for mobile android devices. In 2017 20th
Conference of Open InnovationsAssociation (FRUCT) (pp.
154-160). IEEE. [CrossRef]

[3] Kilani, R., & Jensen, K. (2013). Mobile authentication
with NFC enabled smartphones. Technical Report
Electronics and Computer Engineering, 2(14).

[4] Qamar, A., Karim, A., & Chang, V. (2019). Mobile
malware attacks: Review, taxonomy & future
directions. Future Generation Computer Systems, 97,
887-909. [CrossRef]

[5] Keteku, J., Dameh, G. O., Mante, S. A., Mensah, T. K.,
Amartey, S. L., & Diekuu, J. B. (2024). Detection and
Prevention of Malware in Android Mobile Devices: A
Literature Review. International Journal of Intelligence
Science, 14(4), 71-93.

[6] Gamba, J., Rashed, M., Razaghpanah, A., Tapiador,
J., & Vallina-Rodriguez, N. (2020, May). An analysis
of pre-installed android software. In 2020 IEEE
symposium on security and privacy (SP) (pp. 1039-1055).
IEEE.

[7] Ali, A. A., & H Abdul-Qawy, A. S. (2021). Static
analysis of malware in android-based platforms: a
progress study. International Journal of Computing and
Digital Systems, 10(1), 321-331.

[8] Halim, M. A., Abdullah, A., & Ariffin, K. A. Z. (2019).
Recurrent neural network for malware detection. Int.
J. Advance Soft Compu. Appl, 11(1), 43-63.

[9] Rhode, M., Burnap, P., & Jones, K. (2018). Early-stage
malware prediction using recurrent neural networks.
Computers & security, 77, 578-594. [CrossRef]

[10] Owoh, N., Adejoh, J., Hosseinzadeh, S., Ashawa,
M., Osamor, J., & Qureshi, A. (2024). Malware
Detection Based on API Call Sequence Analysis:
A Gated Recurrent Unit–Generative Adversarial
Network Model Approach. Future Internet, 16(10), 369.
[CrossRef]

[11] Sun, G., & Qian, Q. (2018). Deep learning and
visualization for identifying malware families. IEEE

Transactions on Dependable and Secure Computing, 18(1),
283-295. [CrossRef]

[12] Muhuri, P. S., Chatterjee, P., Yuan, X., Roy, K., &
Esterline, A. (2020). Using a long short-term memory
recurrent neural network (LSTM-RNN) to classify
network attacks. Information, 11(5), 243. [CrossRef]

[13] Seneviratne, S., Shariffdeen, R., Rasnayaka, S., &
Kasthuriarachchi, N. (2022). Self-supervised vision
transformers for malware detection. IEEE Access, 10,
103121-103135. [CrossRef]

[14] Syed, T. A., Nauman, M., Khan, S., Jan, S., & Zuhairi,
M. F. (2024). ViTDroid: Vision Transformers for
Efficient, Explainable Attention to Malicious Behavior
in Android Binaries. Sensors, 24(20), 6690. [CrossRef]

[15] Moore, S. R., Ge, H., Li, N., & Proctor, R. W.
(2019). Cybersecurity for android applications:
Permissions in android 5 and 6. International Journal
of Human–Computer Interaction, 35(7), 630-640.
[CrossRef]

[16] Alamro, H., Mtouaa, W., Aljameel, S., Salama, A. S.,
Hamza, M. A., & Othman, A. Y. (2023). Automated
android malware detection using optimal ensemble
learning approach for cybersecurity. IEEE Access, 11,
72509-72517. [CrossRef]

[17] Wright, J., Dawson Jr, M. E., & Omar, M. (2012). Cyber
security and mobile threats: The need for antivirus
applications for smart phones. Journal of Information
Systems Technology and Planning, 5(14), 40-60.

[18] Albakri, A., Alhayan, F., Alturki, N., Ahamed, S.,
& Shamsudheen, S. (2023). Metaheuristics with
deep learning model for cybersecurity and Android
malware detection and classification. Applied Sciences,
13(4), 2172. [CrossRef]

[19] Rodriguez-Mota, A., Escamilla-Ambrosio, P. J., Happa,
J., & Nurse, J. R. (2016, November). Towards IoT
cybersecurity modeling: From malware analysis
data to IoT system representation. In 2016 8th
IEEE Latin-American Conference on Communications
(LATINCOM) (pp. 1-6). IEEE. [CrossRef]

[20] Khan, I. U., Khan, Z. A., Ahmad, M., Khan, A.
H., Muahmmad, F., Imran, A., . . .& Hamid, M.
K. (2023, May). Machine Learning Techniques for
Permission-based Malware Detection in Android
Applications. In 2023 9th International Conference on
Information Technology Trends (ITT) (pp. 7-13). IEEE.

[21] Shiri, F. M., Perumal, T., Mustapha, N., &Mohamed, R.
(2023). A comprehensive overview and comparative
analysis on deep learning models: CNN, RNN, LSTM,
GRU. arXiv preprint arXiv:2305.17473.

[22] Adhikari, D., Ullah, I., Syed, I., & Choi, C.
(2023). Phishing Detection in the Internet of Things
for Cybersecurity. In Cybersecurity Management in
Education Technologies (pp. 86-106). CRC Press.

[23] Taher, F., AlFandi, O., Al-kfairy, M., Al Hamadi,
H., & Alrabaee, S. (2023). DroidDetectMW: a hybrid
intelligent model for android malware detection.

45

https://doi.org/10.1109/ACCESS.2024.3390612
https://doi.org/10.23919/FRUCT.2017.8071306
https://doi.org/10.1016/j.future.2019.03.007
https://doi.org/10.1016/j.cose.2018.05.010
https://doi.org/10.3390/fi16100369
https://doi.org/10.1109/TDSC.2018.2884928
https://doi.org/10.3390/info11050243
https://doi.org/10.1109/ACCESS.2022.3206445
https://doi.org/10.3390/s24206690
https://doi.org/10.1080/10447318.2018.1489580
https://doi.org/10.1109/ACCESS.2023.3294263
https://doi.org/10.3390/app13042172
https://doi.org/10.1109/LATINCOM.2016.7811597


IECE Transactions on Advanced Computing and Systems

Applied Sciences, 13(13), 7720. [CrossRef]
[24] Hamza, A. A., Abdel Halim, I. T., Sobh, M. A., &

Bahaa-Eldin, A. M. (2022). HSAS-MD analyzer: a
hybrid security analysis system using model-checking
technique and deep learning for malware detection in
IoT apps. Sensors, 22(3), 1079. [CrossRef]

[25] Rodrigo, C., Pierre, S., Beaubrun, R., & El Khoury, F.
(2021). BrainShield: a hybrid machine learning-based
malware detection model for android devices.
Electronics, 10(23), 2948. [CrossRef]

[26] Ahmad, I., Wan, Z., Ahmad, A., & Ullah, S. S. (2024).
A Hybrid Optimization Model for Efficient Detection
and Classification ofMalware in the Internet of Things.
Mathematics, 12(10), 1437. [CrossRef]

[27] Kumar, R., Zhang, X., Wang,W., Khan, R. U., Kumar, J.,
& Sharif, A. (2019). A multimodal malware detection
technique for Android IoT devices using various
features. IEEE access, 7, 64411-64430. [CrossRef]

[28] Ren, Z., Wu, H., Ning, Q., Hussain, I., & Chen, B.
(2020). End-to-end malware detection for android IoT
devices using deep learning. Ad Hoc Networks, 101,
102098. [CrossRef]

[29] Alasmary, H., Anwar, A., Park, J., Choi, J., Nyang, D., &
Mohaisen, A. (2018). Graph-based comparison of IoT
and android malware. In Computational Data and Social
Networks: 7th International Conference, CSoNet 2018,
Shanghai, China, December 18–20, 2018, Proceedings 7
(pp. 259-272). Springer International Publishing.

[30] Ngo, Q. D., Nguyen, H. T., Le, V. H., & Nguyen, D.
H. (2020). A survey of IoT malware and detection
methods based on static features. ICT express, 6(4),
280-286. [CrossRef]

[31] Ham, H. S., Kim, H. H., Kim, M. S., & Choi, M. J.
(2014). Linear SVM-based android malware detection
for reliable IoT services. Journal of Applied Mathematics,
2014(1), 594501. [CrossRef]

[32] Liu, X., Du, X., Zhang, X., Zhu, Q., Wang, H., &
Guizani, M. (2019). Adversarial samples on android
malware detection systems for IoT systems. Sensors,
19(4), 974. [CrossRef]

[33] Ren, Z., Wu, H., Ning, Q., Hussain, I., & Chen, B.
(2020). End-to-end malware detection for android IoT
devices using deep learning. Ad Hoc Networks, 101,
102098. [CrossRef]

[34] Anwar, M. S., Alhalabi, W., Choi, A., Ullah,
I., & Alhudali, A. (2024). Internet of metaverse
things (IoMT): Applications, technology challenges
and security consideration. In Future Communication
Systems Using Artificial Intelligence, Internet of Things
and Data Science (pp. 133-158). CRC Press.

[35] Ksibi, A., Zakariah, M., Almuqren, L., & Alluhaidan,
A. S. (2024). Efficient android malware identification
with limited training data utilizing multiple
convolution neural network techniques. Engineering
Applications of Artificial Intelligence, 127, 107390.
[CrossRef]

[36] Gong, R. H., Zulkernine, M., & Abolmaesumi,
P. (2005, May). A software implementation of
a genetic algorithm based approach to network
intrusion detection. In Sixth International Conference on
Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing and First ACIS
International Workshop on Self-Assembling Wireless
Network (pp. 246-253). IEEE.

[37] Hammood, L., Doğru, İ. A., & Kılıç, K. (2023).
Machine learning-based adaptive genetic algorithm
for android malware detection in auto-driving
vehicles. Applied Sciences, 13(9), 5403. [CrossRef]

[38] Uysal, I., & Kose, U. (2024, October). Analysis of
Network Intrusion Detection via Explainable Artificial
Intelligence: Applications with SHAP and LIME. In
2024 Cyber Awareness and Research Symposium (CARS)
(pp. 1-6). IEEE.

[39] Basheer, N., Pranggono, B., Islam, S., Papastergiou, S.,
& Mouratidis, H. (2024, June). Enhancing malware
detection through machine learning using XAI with
SHAP framework. In IFIP International Conference on
Artificial Intelligence Applications and Innovations (pp.
316-329). Cham: Springer Nature Switzerland.

[40] García, D. E., DeCastro-García, N., & Castañeda, A.
L. M. (2023). An effectiveness analysis of transfer
learning for the concept drift problem in malware
detection. Expert systems with Applications, 212, 118724.
[CrossRef]

[41] Wong, W. K., Juwono, F. H., & Apriono, C. (2021).
Vision-based malware detection: A transfer learning
approach using optimal ecoc-svm configuration. Ieee
Access, 9, 159262-159270. [CrossRef]

[42] Raza, A., Qaisar, Z. H., Aslam, N., Faheem, M., Ashraf,
M. W., & Chaudhry, M. N. (2024). TL-GNN: Android
Malware Detection Using Transfer Learning. Applied
AI Letters, 5(3), e94. [CrossRef]

InamUllahKhan is currently pursuing a Ph.D.
in Computer Science at Qurtuba University of
Science and Information Technology, Peshawar,
Pakistan. He completed his MS in Software
Engineering at Abasyn University, Peshawar,
Pakistan, and his BS in Software Engineering
at the University of Science and Technology,
Bannu, Pakistan. His research interests include
Cybersecurity, Android Security, Machine
Learning, Deep Learning, and IoT. Email:

inam1software@gmail.com

46

https://doi.org/10.3390/app13137720
https://doi.org/10.3390/s22031079
https://doi.org/10.3390/electronics10232948
https://doi.org/10.3390/math12101437
https://doi.org/10.1109/ACCESS.2019.2916886
https://doi.org/10.1016/j.adhoc.2020.102098
https://doi.org/10.1016/j.icte.2020.04.005
https://doi.org/10.1155/2014/594501
https://doi.org/10.3390/s19040974
https://doi.org/10.1016/j.adhoc.2020.102098
https://doi.org/10.1016/j.engappai.2023.107390
https://doi.org/10.3390/app13095403
https://doi.org/10.1016/j.eswa.2022.118724
https://doi.org/10.1109/ACCESS.2021.3131713
https://doi.org/10.1002/ail2.94


IECE Transactions on Advanced Computing and Systems

Asim Zeb has received his B.Sc, and M.Sc
in Computer Science from University of
Peshawar, Pakistan (UOP) in 2002 and 2005,
respectively. He then accomplished his
Ph.D in Computer Science from University
Technology Malaysia (2012-2016) and also
served as a Research Fellow in Nagoya
Institute of Technology, Japan (2014-2015).
Dr. Asim has received the MJIIT-Malaysia
Scholarship (2013–2014), JASSO-Japan

Scholarship (2014–2015). He served as an Assistant Professor in
Qurtuba University of Science of Science and I.T from February
2016 till April 2019. Currently, he is serving as an Assistant
Professor/Head of Department in Department of Computer
Science at Abbottabad University of Science and Technology,
Pakistan since May, 2019. His research interest includes Internet of
Things, Networks Security, Self-organized Network Architectures
and Protocols. Email: asimzeb1@gmail.com

Taj Rahman received the B.S. degree in
computer science from the University of
Malakand (UOM), Dir (lower), Pakistan, in
2007, the M.S. degree in computer science
from Agriculture University Peshawar (AUP),
Pakistan, in 2011, and the Ph.D. degree in
computer science from the School of Computer
and Communication Engineering, University
of Science and Technology Beijing (USTB),
China. He is currently working as an Associate

Professor with the Department of Computer Science and IT,
Qurtuba University of Science and Technology, Peshawar, Pakistan.
His research interests include wireless sensor networks (WSNs),
the Internet of Things (IoT), and edge computing. Email:
tajuom@gmail.com

Fida Muhammad Khan is currently pursuing
a Ph.D. in Computer Science at Qurtuba
University of Science and Information
Technology, Peshawar, Pakistan. He did his
MS in Computer Science at the University
of Science and Technology, Bannu, Pakistan.
His research interests include Data Mining,
Cybersecurity, IoT, Machine Learning, Deep
Learning, and Natural Language Processing
(NLP). Email: fida5073@gmail.com

Zeeshan Ali Haider is currently pursuing
a Ph.D in computer science at Qurtuba
University of Science and Information
Technology, Peshawar, Pakistan. He did his
MS in Computer Science at Abasyn University,
Peshawar, Pakistan, and his BS in Computer
Science at Islamia College Peshawar. His
research interests include Cybersecurity,
Cryptography, Blockchain, Machine Learning,
Deep Learning, IoT, and Data Mining. Email:

Zeeshan.ali9049@gmail.com

Hazrat Bilal received his MS degree in Control
Science and Engineering in 2018 from Nanjing
University of Science and Technology, Nanjing,
China, and his PhD degree in Control Science
and Engineering in 2024 from the University of
Science andTechnology of China, Hefei, Anhui,
respectively. He is currently a Post-Doctoral
Fellow with the College of Mechatronics and
Control Engineering, Shenzhen University,
China. His research interests include robot

control, fault diagnosis of robot manipulator, trajectory tracking
of manipulator, autonomous driving, and artificial intelligence,
machine learning, etc. E-mail: hbilal@mail.ustc.edu.cn

47


	Introduction
	Background
	In Mobile and IoT Devices Malware Detection
	Vision Transformers (ViTs) and Their Application to Malware Detection
	Hybrid Models
	Ensemble Learning for Malware Detection
	Explainability in Malware Detection
	Data Augmentation and Transfer Learning for Coping with Data Poverty

	Proposed Architecture
	Overview of ViTDroid Architecture
	Input Representation: Opcode Sequences as Patches
	Vision Transformer Module: Global Dependency Capture
	Hybrid RNN Module: Temporal Dependency Modeling
	Ensemble Learning: Improving Accuracy and Stability
	Explainability Layer: Enhancing Model Transparency
	Training Process: Data Augmentation and Transfer Learning

	Experiments and Results
	Experimental Setup
	Datasets
	Android Malware Dataset
	IoT Malware Dataset
	Data Preprocessing
	Dataset Description

	Android Malware Detection Results Random Neural Network Long Short-Term Memory Recursive Neural Network Gated Recurrent Unit
	RNN Model
	LSTM Model Performance
	GRU Model Performanc
	All Model Comparison
	Model Comparison: IoT Malware Detection
	Hybrid technique IoT
	Model Accuracy Comparison: Android vs. IoT Malware

	Additional Metrics for Real-World Deployment

	Conclusion
	Inam Ullah Khan
	Asim Zeb
	Taj Rahman
	Fida Muhammad Khan
	Zeeshan Ali Haider
	Hazrat Bilal


