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Abstract
Recently, the primary reason for blindness in
adults has been diabetic retinopathy (DR) disease.
Therefore, there is an increasing demand for a
real-time efficient classification and detection
system for diabetic retinopathy (DR) to overcome
fast-growing disease (DR). We introduced a novel
deep hybrid model for auto-mated diabetic
retinopathy (DR) disease recognition and
classification. Our model leverages the power
of CNN architectures: Inception V3 and VGG16
models by combining their strengths to cater to exact
requirements. VGG16 model efficiently captures
fine features and wide-ranging features such as
textures and edges, crucial for classifying initial
signs of DR. Similarly, Inception V3’s architecture is
proficient at detecting multiscale patterns, providing
an extensive setting for shaping the occurrence
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of more complex DR severity stages. Our deep
hybrid model allows the extraction of various
appearance features in retinal images, which can
better assist the classification and detection of
DR. Our proposed model evaluated on diverse
datasets, including EyePACS1 and APTOS2019,
demonstrating confident performance of 99.63%
accuracy in classifying the DR severity levels on
EyePACS1 dataset, while 98.70% accuracy on the
APTOS2019 dataset, indicating that our proposed
deep hybrid model well distinguished different
stages and highly efficient in DR detection. This
model helps clinicians and medical experts to
classify and identify diabetic retinopathy DR
stages and severity levels early. This automatic
system helps to manage and treat the patient more
effectively and introduces timely treatment.

Keywords: retinal images, diabetic retinopathy (DR), deep
hybrid model, Inception V3, VGG16.

1 Introduction
Diabetic retinopathy (DR) is the foremost reason for
blindness in the young, a significant complication
of diabetes, and a most important public health
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problem [1]. DR impacts one-third of the 463 million
people with diabetes worldwide, and projections by
the International Diabetes Federation (IDF) estimate
a rise from 552 million in 2035 to 642 million by
2040 [2]. The global prevalence of DR currently affects
over 158.2 million people and is expected to exceed
191 million by 2030 [2]. This draining eye disease
develops due to prolonged diabetes, causing damage
in the retina to the blood vessels, the light-sensitive
tissue in the rear of the eye [3, 4]. DR progresses
through several stages associated with pathological
changes and corresponding visual impairments [5].
Non-proliferative Diabetic Retinopathy (NPDR): In
this phase, the blood vessels in the retina lead
to microaneurysms (small leaks), haemorrhages
(bleeding), and cotton wool spots (damaged areas in
the nerve fiber layer of the retina) [6]. The NPDR
type is further divided into mild, moderate, and
severe based on these abnormalities. Proliferative
Diabetic Retinopathy (PDR): In this advanced stage,
new blood vessels form on the retina’s surface, which
are fragile and prone to leaking [7], leading to vision
loss. These vessels can block fluid flow in the vitreous,
causing vitreous haemorrhage and further impairing
vision [8].

Timely detection and intervention are critical to
prevent severe vision loss, as DR can progress
rapidly [9, 10]. However, conventional DR screening
methods require significant time and resources [5,
11–14]. The physical inspection of retinal images
by ophthalmologists, while standard, has limitations
due to subjective interpretation and the need for
specialized expertise [15–17]. This makes large-scale
implementation challenging. To address these
limitations, an intelligent detection system is essential
for accurate and efficient early-stage DR diagnosis,
increasing accessibility to early intervention.

Our proposed study introduces a deep hybrid
model for automated DR classification and detection.
The model combines the strengths of VGG16 and
Inception V3 Convolutional Neural Networks (CNNs).
VGG16 is proficient at capturing detailed features,
such as textures and edges, aiding in early DR
identification, while Inception V3 detects multiscale
patterns and contributes to identifying complex
severity levels. We tested the model on EyePACS1 [18]
and APTOS2019 [19] datasets, achieving superior
results in DR severity classification. Unlike traditional
methods, our approach leverages deep learning
to extract detailed features from retinal images,
significantly improving DR diagnostic accuracy and

efficiency.
• Suggest a novel deep hybrid model that combines

the convolutional neural network (CNN)
models, VGG16 and Inception V3, leveraging
their complementary strengths to surpass the
performance of existing state-of-the-art works,
demonstratingmodels’ effectiveness in classifying
and detecting DR disease severity levels.

• Improve the deep CNN-based early classification
and detection system using VGG16 and inception
V3 models. The model leads to improved
extraction of complex features from retinal images
and a more accurate and robust DR diagnosis
system.

• Demonstrate the effective implementation of
the deep hybrid model in real-time diagnosis,
highlighting its effectiveness in detecting
diabetic retinopathy (DR) and its potential to
significantly enhance patient care and decrease
the consequences of DR by offering clinicians a
robust and efficient DR classification system.

This paper is based on five sections: section one
is an introduction. Section two presents’ analyses
of prior research on diagnosing diabetic retinopathy.
Third, materials and methods. Four highlights the
comprehensive overview of the results and result
discussion. The fifth section provides a research
conclusion.

2 Related Work
This review section highlights prior works on diabetic
retinopathy classification and detection. Panwar et
al. [20] presented an alternative machine-learning
approach to analyzing retinal fundus images
to diagnose diabetic retinopathy. Despite the
traditionally diverse data and the distribution of
disease stages, they trained their model on a large
sample of retinal images. Models’ performance
demonstrated that the overall evaluation of diabetic
retinopathy diseases remained high compared to the
traditional and prior approaches.
Jain et al. [1] proposed various CNN models,
InceptionV3, VGG19, and VGG16 [21], and assessed
the models of DR classification concerning labels
for two classes and five classes. Results realized
the model’s performance would be proportional
to increased depth in terms of pooling layers and
convolutional in CNN. The top precision for two types
of DR classification attained 80.40% using VGG19.
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In a study conducted by Voets et al. [13], authors
used ensemble deep learning for binary classification
(NRDR-RDR) and InceptionV3 for feature extraction,
the model trained on a publicly available dataset,
EyePACS. The proposed study provided an AUC
of 85.3% on Messidor-2. Another survey study by
Toledo-Cortés et al. [16] used InceptionV3 to classify
RDR. The authors have recommended a deep-learning
Gaussian Process (GP) model using the EyePACS
dataset. A GP regression has an AUC of 87.83% on
Messidor2. Masood et al. [22] shows an accuracy
of 48.2% in DR detection using the transfer learning
model on the EyePACS database Inception-V3. Harun
et al. [23] discoursed a Multi-layered perceptron
trained along Bayesian regularization, achieving an
improved classification presentation compared to
using Levenberg–Marquardt in training at 72.11%
and testing accuracy at 67.47%. The study refers
to [24], using the Kaggle dataset and trio neural
network models: feedforward neural network (FNN),
deep-FNN, and CNN. The best training precision
achieved with a deep FNN is 89.6%. Zago et al. [25]
achieved the Kappa score (K-Sc) of 0.86 using the
public Kaggle dataset and the random forest classifier.
The CNN model was used to assess the severity of
diabetic retinopathy. Saranya et al. [26] introduced a
method for the initial diagnosis of diabetic retinopathy
using reflection images, implementing a proposed
automatic recognition system. After intensive training
on a large corpus of retinal images, the model
showed very high accuracy for diagnosis. Yang
et al. [27] demonstrated that an SVM and CNN
hybrid architecture achieved the highest accuracy in
diagnosing diabetic retinopathy. On the other hand,
in [28], Ni et al. proposed a hybrid solution to
identify DR concentrated image processing and deep
learning together for better examinations of diagnosing
from a fundus image. For validation of model 400
retinal fundus images in the Messidor dataset used
and assessed with various performance metrics, they
attained the promised result with an average accuracy
of 97%, 94% recall, Specificity of 98%, precision of 96%,
F-score95%, and GMean95%. H. Jiang et al. [29] used
three deep learning models (Inception V3, ResNet151,
and InceptionResNet-V2). They attained accuracies
of 87.91%, 87.20%, and 86.18%. When they combined
models with the AdaBoost algorithm, they reached
an even better accuracy of 88.21%. Referring to the
study [30], the authors applied transfer learning
by stacking CNNs network on topmost of ResNet
and Inception-based models to perform multiclass
classification of fundus images for blindness detection

using the (APTOS) dataset. The pictures underwent
pre-processed steps through resizing, obscuring, and
BBO operations. Data augmentation is utilized to
balance the class data distribution. The study achieved
a test accuracy of 82.18%using theAPTOS dataset. The
authors in [17] proposed a multiclass classification
method for eye-related diseases, using CNN-based
network architecture for fundus image classification
and leveraging the power of transfer learning that
groups ocular diseases into their respective classes.
They used the Peking University Ocular Disease
Intelligent Recognition (PKU-ODIR) dataset, which
includes class labels for eight types of ocular diseases.

3 Methods And Materials
This methods and materials section focuses on the
techniques and materials used in our novel study. The
fundamental purpose of this study is to propose a
novel deep hybrid model for an automated diagnosis
of diabetic retinopathy (DR) and enhance real-time
early DR stages classification, surpass the previous
classification methods with promised performance,
and accomplish the desired outcomes in diabetic
retinopathy research (DR). Our study leverages the
strengths of CNN architectures, such as VGG16
and Inception V3’s Transformer Learning models, to
identify abnormal features in retinal pictures. The
VGG16 model is used because of its ability to identify
intricate features like texture and edges, which are
crucial for the timely detection of diabetic retinopathy
(DR). The Inception V3 model is chosen for its solid
pre-training performance and ability to analyze and
extract complex and multiple features. It just requires
a more remarkable ability to include many variables.
The performance assessment of our deep connection
model is conducted by assessing the EyePACS1 and
APTOS2019 datasets. These two datasets serve as
a reliable basis for training and evaluating models
under various situations and levels of severity in
diabetic retinopathy. They are extensively used and
acknowledged in the field of medicine. We use this
extensively employed data to evaluate the real-world
effectiveness of our novel hybridmodel. We conducted
independent evaluations of the accuracy of both
VGG16 and Inception V3 on these datasets, enabling
us to compare them individually and together. The
process included acquiring curated datasets and using
transformer learning models (VGG16 and Inception
V3) to create a deep hybrid architecture. It also
included determining parametric settings, training
methods, assessment criteria, and model evaluation.
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Figure 1. The Proposed Deep Hybrid Model for DR Detection.

Table 1. Summary of the Datasets Utilized in Experiments.

Datasets Training Testing Validation Total Images Classes
Data Division Images Data Division Images Data Division Images

EyePACS1 80% 28,101 10% 3,513 10% 3,513 35,126 5
APTOS2019 80% 4,467 10% 558 10% 559 5,584 5

Table 2. Distribution of Classes in Datasets.

Dataset No DR Mild Moderate Severe Proliferative DR Total Images

EyePACS1 18,456 8,712 5,270 1,902 786 35,126
APTOS2019 3,005 1,117 890 377 195 5,584

We are comparing the findings of our hybrid model
with prior cutting-edge approaches to understand how
well it can identify and classify different phases of
diabetic retinopathy and its overall efficiency. Figure 1
portrays the research flow diagram of the proposed
deep hybrid model to diagnose diabetic retinopathy.

3.1 Data Acquisition
We use multiple data from public databases, such
as Kaggle datasets: EyePACS1 and APTOS2019.
Both image datasets have five categories: “Mild,”
“Moderate,” “Mild,” “Severe,” and “Proliferating”
DR images. APTOS Asia Pacific Teleophthalmology
Association created the APTOS2019 database of
5,584 high-resolution images as part of the 2019
Visual Vision Challenge. Furthermore, the California
Health Foundation created the EyePACS1 dataset
containing 35,126 high-resolution photos for the
Diabetic Retinopathy Detection Challenge. These
are well-known and widely used datasets designed
to study performance models in assessing diabetic
retinopathy. Tables 1 and 2 provide detailed statistics

of both datasets.

3.2 Data Processing
The APTOS2019 and EyePACS datasets lay under
varying lighting conditions because both datasets
comprise the retinal fundus pictures captured using
different cameras with different specifications. In
datasets, there are various inconsistencies and
unbalanced data. Therefore, to overcome these
inconsistencies, all images underwent numerous
pre-processing steps to normalize and standardize
datasets. Figures 2 and 3 show both datasets’ original
fundus image samples before applying pre-processing
techniques.

Figure 2. The eye retinal fundus images EyePACS Dataset
before pre-processing.
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Figure 3. The eye retinal fundus images APTOS2019 Dataset
before pre-processing.

Resizing is a crucial step in the pre-processing
of diabetic retinopathy fundus images. Bicubic
interpolation is often used for this purpose, as
it calculates the weighted average of surrounding
pixels, leading to smoother and more visually
consistent results. This method is favored because
it helps minimize artifacts and distortions during
resizing, ensuring the images remain clear and
free of visual imperfections. When resizing the
image, for each new pixel in the output image, the
bicubic interpolation formula is applied using the
corresponding neighboring pixels in the original
image, calculated as:

x =
x′

scale factor
(1)

y =
y′

scale factor
(2)

The scale factor is the ratio of the output size to the
input size in either dimension (horizontal or vertical).
The resulting I ′(x′, y′) is the interpolated intensity
value for the resized image at the location (x′, y′).
This process ensures that the resized image maintains
smooth transitions and reduces the appearance of
artifacts and distortions, producing a high-quality,
visually consistent output. After resizing, the photos
from both datasets are displayed in Figures 4 and 5.

Figure 4. The eye retinal fundus images EyePACS Dataset
following image resizing.

Figure 5. The eye retinal fundus images APTOS2019 Dataset
following image resizing.

3.3 Data Augmentation
The accomplishment of deep learningmodels is greatly
affected by the size and variety of the dataset. A large
and diverse training dataset is essential for avoiding
overfitting and ensuring strong generalization. Various
techniques, such as flipping, cropping, rotating, and
zooming, are applied to enhance the diversity of
the images, as illustrated in Figures 6 and 7. These
augmentation Figures 6 and 7 highlight the effects
of the augmentation techniques on the training
dataset, with operations like cropping, rotating,
flipping, and shearing being key contributors. This
approach significantly enhances the training data
representativeness and comprehensiveness, providing
a strong foundation for the model’s effectiveness.

Figure 6. EyePACS Dataset fundus images after applying
various data augmentation methods.

Figure 7. APTOS2019 Dataset fundus images after applying
various data augmentation methods.

3.4 VGG16 Architecture
We use the CNN based on VGG16 architecture to
detect DR. We construct the VGG16 model as follows:
a model structure consisting of convolutional layers
(Conv2d) tailed by the (ReLU) function, which is
essential for capturing complex details in retinal
fundus images. This VGG16 architecture starts with
13 convolutional layers with a small 3x3 receptive
field, permitting the network to learn fine-grained
features, such as boundaries and textures, essential
for image detection in the early stage of diabetic
retinopathy (DR). Batch normalization is used after
the normalization function to stabilize and speed
up the training process. The max pooling layer is
concatenated after every two or three convolutional
layers to reduce the width of the feature map, thus
subsampling the image for the flexibility of model
parameters and preserving the essential features, as
shown in Table 3. The VGG16 model eventually
consists of three layers, which are ultimately divided
into one of five DR weights: “normal,” “light,”
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Table 3. VGG16 Parametric Table.
Layer Type Parameters Example Values

Initial
Convolutional
Layers

Conv2d Filters: 64, Kernel Size:
(3, 3), Padding: (1, 1)

Filters: 64, Kernel
Size: (3, 3),
Padding: (1, 1)

Convolutional
Blocks (Blocks
1–5)

Conv2d Number of Layers: 13,
Filters: 64, 128, 256, 512

Number of Layers:
13, Filters: 64, 128,
256, 512

Max-Pooling
Layers

MaxPool2d Kernel Size: (2, 2),
Stride: (2, 2)

Kernel Size: (2, 2),
Stride: (2, 2)

Fully
Connected
Layers

Linear Output Size: 4096, 4096,
Number of Classes

Output Size: 4096,
4096, Number of
Classes

Dropout Dropout Dropout Rate: 0.5 Dropout Rate: 0.5

“medium,” and “normal.” And thus improves the
model’s generalization ability. Although the VGG16
architecture is straightforward, providing the best
performance in image distribution tasks due to its
depth and integration design.

3.5 Inception V3 Architecture

Table 4. Inception Network Parametric Table.
Layer Type Parameters Example Values

Initial
Convolutional
Layer

Conv2d Filters: 32, Kernel
Size: (3, 3), Stride:
(2, 2), Padding: (0,
0)

Filters: 32, Kernel
Size: (3, 3), Stride:
(2, 2), Padding:
(0, 0)

Inception
Modules
(Modules
1–11)

Mixed (1x1,
3x3, 5x5)

Filters: 64, 128, 256,
512

Filters: 64, 128,
256, 512

Auxiliary
Classifiers

Conv2d + FC Filters: 128, FC
Output Size: 1024,
Dropout: 0.7

Filters: 128, FC
Output Size: 1024,
Dropout: 0.7

GA Pooling Adaptive
AvgPool2d

Size of Output: (1, 1) Size of Output: (1,
1)

FC Layer Linear Size of Output:
Number of Classes

Size of Output:
Number of
Classes

The Inception V3 architecture is a more complex
and advanced model designed to capture multiscale
features from retinal fundus images, which is crucial
for accurately detecting numerous levels of DR. The
model is schematized by the Inception module, which
employs multiple convolutional filters of different
sizes (1x1, 3x3, 5x5) simultaneously, allowing the
network to recognize features at various levels of
granularity. The ReLU function follows each Inception
module to highlight non-linearity, permitting the
model to acquire complex patterns in the data.
Batch normalization is applied to the output of the
convolutions to ensure training stability and improve
convergence. Inception V3 also adds an auxiliary

to the intermediate process to solve the gradient
vanishing problem and thus improve early learning.
Table 4 displays the flexibility of Inception V3 model
parameters. The architecture includes an output
max pooling layer to downsample feature maps and
decrease computational complexity while preserving
important information for classification. The final
output is produced by a fully connected process that
classifies the input image into one of five DR groups.
Inception V3 efficiently processes complex scales of
retinal features, making it predominantly useful for
DR classification.

3.6 Deep Hybrid Model (VGG16 + Inception V3)

Table 5. Hybrid Architecture Parametric Table.
Layer Type Parameters Example Values

VGG16
Convolutional
Blocks

Conv2d Number of Layers: 13,
Filters: 64, 128, 256, 512

Number of Layers: 13,
Filters: 64, 128, 256, 512

Inception V3
Modules

Mixed (1x1,
3x3, 5x5)

Filters: 64, 128, 256, 512 Filters: 64, 128, 256, 512

Concatenation
Layer

Concat Input: VGG16 +
Inception V3 Feature
Maps

Input: VGG16 +
Inception V3 Feature
Maps

GA Pooling Adaptive
AvgPool2d

Output Size: (1, 1) Output Size: (1, 1)

FC Layer Linear Output Size: Number of
Classes

Output Size: Number of
Classes

Dropout Dropout Dropout Rate: 0.5 Dropout Rate: 0.5

Our deep hybrid model integrates the power of
CNN architectures to advance model performance
and increase accuracy for diabetic retinopathy (DR)
detection: the VGG16 and Inception V3 models. This
hybrid approach first inputs pre-processed retinal
fundus images independently of the VGG16 and
InceptionV3 networks. VGG16 is excellent at capturing
fine details, such as texture and edges, which are
essential for identifying early signs of DR. In contrast,
the architecture of Inception V3 excels at analyzing
multiple patterns and provides a broader context
for analyzing more critical processes. After feature
extraction, the outputs of the last convolutional
layers of both architectures are combined to form
a single feature layer by utilizing the advantages
of the two CNN networks, classify the combined
features into one of five DR weights, further
improving the model’s ability to expand widely
across different datasets. Combining the fine-grained
feature extraction capabilities of VGG16 with the
multi-detection capabilities of Inception V3, the hybrid
model outperforms all other models given more
accurate and robust means to classify DR. Table 5
shows the parametric setting of our deep hybrid
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Figure 8. Deep Hybrid Model Architecture Diagram.

model. Figure 8 depicts the detailed architecture of
our proposed model for DR detection.

3.7 Performance Metrics
We evaluate and analyze the performance of our
proposed deep learning approach using different
performance measuring metrics, including confusion
matrix (CM), to evaluate the overall proposed model
efficiency. The confusion matrix, an error matrix, is
mainly helpful in evaluating classification models and
determining the models [20]. CM can be defined as in
equations.

[
TP FN
FP TN

]
(3)

The accuracy metric is the ratio of the sum of true
positives (TP) and true negatives (TN) to the total

number of TP, TN, FP, and FN, known as ACC.

ACC =
TP + TN

TP + TN + FP + FN
(4)

The precision metric is defined as the ratio of true
positives (TP) to the total number of predicted positive
labels, including both true positives (TP) and false
positives (FP), which mathematically is defined as.

PRC =
TP

TP + FP
(5)

However, recall measures how well a classification
model detects positive examples in neural networks.
Recall is the dataset’s true positives (TP) ratio
to positive instances, which is mathematically
representative.

RC =
TP

TP + FN
(6)
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Finally, the F1-score is the harmonic mean of accuracy
and recall, balancing model accuracy with accurate
positive detection. The equation shows the F1 score.

F1 = 2× PRC +RC

PRC ×RC
(7)

4 Results and Discussion
Our study provides an in-depth review of the
performance and evaluation of our deep hybrid model
in diagnosing diabetic retinopathy (DR). This novel
model has been rigorously tested on various databases,
including EyePACS1 and APTOS2019, to evaluate its
robustness and performance. To assess the reliability
and efficiency of our hybrid model, we compare its
performance with the previous studies and methods,
as shown in Table 7. A comprehensive analysis
of results provides insight into the strengths and
potential limitations of the deep hybrid model and
provides detailed information about its potential. Our
study uses various performance metrics to evaluate
the model classification. Table 6 and Figure 9 show
the results performance of our deep hybrid model
on EyePACS1 and APTOS2019 datasets compared to
models such as VGG16 and Inception V3.
The VGG16 model achieved 0.9444 accuracy, 0.9450
precision, 0.9640 recall, and 0.9544 F1-score on the
EyePACS1 dataset. Similarly, the Inception V3 model
achieved 0.9404 accuracy, 0.9467 precision, 0.9479
recall, and 0.9442 F1-score. The hybrid model
combines VGG16 and Inception V3 and outperforms

both by achieving 0.9963 accuracy, 0.9951 precision,
0.9934 recall, and 0.9908 F1-score. Correlation
confusion matrices [426, 25, 16, 313], [384, 24, 21,
351], and [535, 2, 4, 245] provide detailed information
about the performance of the model in detecting and
classifying diabetic retinopathy. The model prediction
result is shown in Figure 10.
The VGG16 model achieved 0.9395 accuracy, 0.9191
precision, 0.9546 recall, and 0.9461 F1-score on the
APTOS2019 dataset. Similarly, the Inception V3
model achieved 0.8977 accuracy, 0.9159 precision,
0.9570 recall, and 0.9446 F1-score. The hybrid model
combines VGG16 and Inception V3 and outperforms
both by achieving 0.9870 accuracy, 0.9867 precision,
0.9924 recall, and 0.9858 F1-score. Correlation
confusion matrices [411, 32, 24, 327], [577, 54, 26,
137], and [584, 7, 10, 193] provide detailed information
about the performance of the model in detecting and
classifying diabetic retinopathy. The model prediction
result is shown in Figure 11.
Moreover, we employ many performance-measuring
metrics to assess and compare our combined model
with prior state-of-the-art research studies conducted
on diverse datasets. In Figure 12, the visual analysis
displays a comparable ROC-AUC curve. Moreover,
Table 6 comprehensively summarizes the model’s
performance on several datasets, including various
measuring metrics. Furthermore, Table 7 compares
our hybrid model performance findings with prior
research studies to detect and diagnose diabetic
retinopathy (DR). Our hybrid model, consisting of

Figure 9. Result of our deep hybrid model.
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Figure 10. Proposed Model Predicted Results on the Eyepacs1.

Figure 11. Proposed Model Predicted Results on the APTOS2019.

Figure 12. Comparative ROC-AUC for the Hybrid Model Across Each Dataset.

Table 6. Results and discussion of hybrid VGG16 + Inception V3.

Dataset Model Accuracy Precision Recall F1-Score

EyePACS1
VGG16 0.9444 0.9450 0.9640 0.9544
Inception V3 0.9404 0.9476 0.9479 0.9442
Hybrid 0.9963 0.9951 0.9934 0.9908

APTOS2019
VGG16 0.9395 0.9191 0.9546 0.9461
Inception V3 0.8977 0.9159 0.9570 0.9446
Hybrid 0.9870 0.9867 0.9924 0.9858

Note:Hybrid = VGG16 + Inception V3

VGG16 and Inception V3, provided robust assessment
performance on the APTOS2019 and EyePACS1
curated datasets, demonstrating promising results

compared to state-of-the-art studies. Our deep
hybrid model achieves a notable accuracy of 0.9963
on EyePACS1, demonstrating its effectiveness in
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Table 7. Comparative investigation with prior studies.

Reference Model Accuracy Precision Recall F1-Score

[31] U-Net 87 89 96 88

[32] Inception V3 90.1 98.2 89 95

[33] VGGNet 80.3 85.5 82 98

[34] AlexNet 96.8 87 87 86

[8] Hybrid Model
(Hybrid-a, Hybrid-f, Hybrid-c) 91.37 N/A 93.9 86.34

[5] KNN 87 66 93 N/A

[35] WP-CNN 88 71.9 81.5 N/A

Proposed Deep
Hybrid Model

Hybrid Model
(VGG16 + InceptionV3)

0.9963 0.9951 0.9934 0.9908
0.9870 0.9867 0.9924 0.9858

categorizing diabetic retinopathy (DR).

5 Conclusion
Our research study significantly contributes to making
an automatic and early detection diabetic retinopathy
system by proposing a deep hybrid model that
integrates the strengths of VGG16 and Inception V3
architectures. This combination enhances the accuracy
and robustness of the detection method, particularly
in distinguishing between the five stages of diabetic
retinopathy: ‘normal,’ ‘mild,’ ‘moderate,’ ‘severe,’
and ‘proliferative.’ By leveraging the detailed feature
extraction capabilities of VGG16 and the multiscale
feature recognition power of Inception V3, our hybrid
model addresses the challenges posed by varying
retinal image characteristics. The model has been
tested on two widely recognized datasets, APTOS2019
and EyePACS1, demonstrating its effectiveness in
real-world applications. The detailed numerical
results, which can be seen in Table 5, highlight the
model’s capabilities, with accuracy rates of 0.9963 on
the EyePACS1 dataset and 0.9870 on the APTOS2019
dataset, along with high precision, Recall, and F1
scores. Compared to recent state-of-the-art models
(as shown in Table 6), our hybrid model exhibits
superior performance, underscoring its potential as a
reliable tool for early and accurate diabetic retinopathy
detection. However, it is essential to acknowledge the
constraints of ourmodel, such as how it depends on the
quality and diversity of the training datasets, which

might affect its ability to be applied consistently to
other populations or imaging scenarios.

Limitations: Despite the strong performance of our
deep hybrid model, there are several limitations.
The model’s effectiveness depends on the quality
of input images, as poor-quality or low-resolution
images may reduce diagnostic accuracy. The
datasets used exhibit class imbalances, which could
introduce bias, particularly for underrepresented
classes. While the model performs well on EyePACS1
and APTOS2019, its generalizability to other datasets
with different imaging protocols or demographics
requires further validation. Additionally, the
model’s high computational complexity may limit
scalability and deployment in resource-constrained
environments.

Future Work: To augment the practicality of our
model, we suggest conducting a future study that
explicitly targets tasks related to these datasets and
refines the hybrid model to achieve better performance
in real-world scenarios. Future studies could evaluate
the model’s performance under different conditions
and datasets and explore the integration of new
advanced features or architectures. Additionally,
while data augmentation and preprocessing
techniques have shown improvements in model
accuracy and generalizability, a direct comparison
between the model’s performance on augmented
and non-augmented data was not performed in this
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study. As part of future work, we plan to conduct
a comprehensive evaluation to assess how data
augmentation reduces overfitting and enhances model
robustness, providing further insights into its impact
on the model’s performance.
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