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Abstract
The scalability of modern AI is fundamentally
limited by the availability of labeled data.
While supervised learning achieves remarkable
performance, it relies on large annotated datasets,
which are expensive and time-consuming to acquire.
This work explores self-supervised learning (SSL)
as a promising solution to this challenge, enabling
AI to scale effectively in data-scarce scenarios.
This study demonstrates the effectiveness of the
proposed SSL framework using the EuroSAT
dataset, a benchmark for land cover classification
where labeled data is limited and costly. The
proposed approach integrates contrastive learning
with multi-spectral augmentations, such as spectral
jittering and band shuffling, along with masked
autoencoding that applies spatial-spectral masking
based on local variance in spectral bands. This
method effectively captures the unique spatial
and spectral characteristics of EuroSAT imagery.
Experimental results show that the proposed
SSL-basedmodels achieve 81.2% accuracywith only
10% of the labeled data, outperforming supervised
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learning by 2.7% and semi-supervised methods
by 2.1%. These results demonstrate the potential
of SSL to reduce reliance on labeled data and
enable effective AI deployment in data-constrained
environments. The proposed work highlights
the transformative potential of SSL in reducing
annotation burdens, paving the way for more
scalable, accessible, and cost-effective AI solutions.

Keywords: self-supervised Learning (SSL), limited
labeled data, data-scarce scenarios, contrastive learning,
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1 Introduction
Deep learning has driven breakthroughs in various
domains, from computer vision to natural language
processing, largely due to the availability of large-scale
labeled datasets [1]. However, obtaining high-quality
labeled data is expensive, time-consuming, and
infeasible in many real-world applications, especially
in specialized fields where expert annotations are
required. For example, in medical imaging and remote
sensing, labeled samples often constitute less than 1%
of the available data, leading to significant challenges
in training deep learning models effectively [2].
One of the key bottlenecks in AI scalability is the
dependency on supervised learning [3, 4], which
demands extensive human-labeled datasets. This
reliance results in increased computational costs
and annotation burdens, making it impractical for
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data-scarce scenarios [5]. Self-supervised learning
(SSL) has emerged as a promising paradigm to
address this issue by leveraging unlabeled data
to learn meaningful representations, thereby
significantly reducing the reliance on labeled datasets
[6]. SSL-based methods extract supervisory signals
from the structure of raw data, enabling models to
generate pseudo-labels for representation learning.
Recent advances in SSL, such as contrastive learning
and masked autoencoding, have demonstrated
remarkable performance in image classification, object
detection, and segmentation tasks [2, 6, 7]. However,
their effectiveness in extremely low-data regimes
remains underexplored, particularly in domains
where labeled data is scarce but unlabeled data
is abundant, such as healthcare, remote sensing,
and scientific research [8–10]. The computational
complexity of SSL methods also remains a critical
factor, as high-capacity models require extensive
resources for pretraining.
This study propose a novel SSL framework designed to
address the challenge of learning from limited labeled
data. The proposed approach integrates contrastive
learning, which encourages the model to learn
invariant representations, with masked autoencoding,
which promotes the reconstruction of missing spatial
and spectral information. This combination enables
the model to capture both global (through contrastive
learning) and local (through masked autoencoding)
features, making it highly effective in data-constrained
environments. Additionally, this study introduce
task-specific augmentations, such as spectral jittering
and band shuffling, alongwith domain-awaremasking
strategies, to enhance representation learning for
remote sensing applications.
To evaluate the proposed approach, this study conduct
experiments on the EuroSATdataset [11], a benchmark
for land cover classification where labeled data is
expensive and difficult to obtain. The EuroSAT dataset
presents a diverse set of land cover classes, making
it an ideal benchmark for assessing SSL methods in
remote sensing. Experiments show that the proposed
SSL framework achieves 81.2% accuracy with only 10%
of the labeled data, outperforming supervised learning
by 2.7% and semi-supervised methods by 2.1%.

1.1 Key Contributions
• This study introduce a novel self-supervised

learning (SSL) framework that integrates
contrastive learning with masked autoencoding

to learn robust representations from limited
labeled data.

• This study demonstrate that the proposed SSL
framework achieves 81.2% accuracywith only 10%
of labeled data, outperforming both supervised
and semi-supervised methods on the EuroSAT
dataset.

• This study provide a computational complexity
analysis of the proposed SSL approach and
compare it with existing supervised and
semi-supervised learning methods to assess
scalability and efficiency.

• This study analyze the learned representations
through t-SNE visualizations and present ablation
studies to highlight the significance of contrastive
learning and masked autoencoding in improving
model performance.

This work directly addresses the problem of
overreliance on labeled datasets in AI, enabling
scalable and cost-effective learning in data-scarce
domains. By leveraging vast amounts of available
unlabeled data, the proposed SSL approach paves
the way for practical AI applications in fields such as
healthcare, environmental monitoring, and scientific
discovery. Future research will focus on extending
this approach to multi-modal learning and real-world
deployment in resource-constrained environments.

2 Related Work
The challenge of limited labeled data has been a
persistent bottleneck in the development of scalable AI
systems. This section reviews prior work in three key
areas: (1) self-supervised learning (SSL) techniques,
(2) applications of SSL in remote sensing and satellite
imagery, and (3) methods for leveraging limited
labeled data in AI models.

2.1 Self-Supervised Learning Techniques
Self-supervised learning (SSL) has emerged as a
powerful paradigm for learning representations from
unlabeled data. Early SSL methods focused on pretext
tasks, such as predicting image rotations [12] or
solving jigsaw puzzles [13], to generate pseudo-labels
for training. More recent approaches, such as
contrastive learning and masked autoencoding,
have demonstrated significant improvements in
representation quality.
Contrastive learning techniques, such as SimCLR [2]
and MoCo [14], train models by maximizing
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agreement between differently augmented views of the
same image while ensuring separation from negative
samples. These methods have been widely used in
natural image processing but require large batch sizes
or memory banks to be effective.
Masked autoencoders (MAE) [6] have recently gained
traction in SSL for vision tasks. They operate
by randomly masking portions of the input and
training the model to reconstruct the missing regions,
thereby capturing meaningful semantic information.
Despite their success, contrastive learning and
masked autoencoding have rarely been combined for
representation learning in data-scarce environments,
particularly in remote sensing applications.

2.2 SSL in Remote Sensing and Satellite Imagery
SSL has also been explored in remote sensing
applications, where labeled data is often scarce. Unlike
natural images, satellite imagery consists of multiple
spectral bands with varying spatial resolutions,
making SSL more challenging. Researchers have
adapted SSL techniques for land cover classification,
object detection, and change detection in remote
sensing.
For example, Montanaro et al. [15] proposed a
semi-supervised learning approach for land cover
mapping using limited labeled data, while Stojnic
and Risojevic et al. [16] applied contrastive learning
to satellite imagery to improve feature extraction.
However, many existing SSL methods rely on
domain-specific augmentations, such as spectral
transformations or geometric manipulations, that may
not generalize well to other datasets or tasks.
The EuroSAT dataset [11] has been widely used
as a benchmark for SSL in remote sensing. Most
prior approaches rely on substantial labeled data for
fine-tuning, limiting their real-world applicability. In
contrast, the proposed framework focuses on learning
robust representations from extremely limited labeled
data while leveraging large amounts of unlabeled
satellite imagery.

2.3 Leveraging Limited Labeled Data
Beyond SSL, several strategies have been proposed to
address the challenge of limited labeled data, including
semi-supervised learning, transfer learning, and active
learning.
Semi-supervised learning methods, such as
MixMatch [17] and FixMatch [18], combine labeled
and unlabeled data using consistency regularization

and pseudo-labeling. These techniques have shown
promising results but still require a significant amount
of labeled data for effective performance.
Transfer learning, where pre-trained models are
fine-tuned on smaller labeled datasets [19], is another
common approach. While transfer learning can
improve performance in data-scarce scenarios, it
requires extensive labeled datasets for pretraining,
which may not always be available for remote sensing.
Active learning [20] is another strategy that reduces
annotation costs by selecting the most informative
samples for labeling. However, it still requires human
intervention, making it less scalable for large datasets.

2.4 Gaps and Contributions
While existing SSL methods have demonstrated
impressive results, they often assume access to a
moderate amount of labeled data for fine-tuning or
evaluation. In contrast, this work focuses on scenarios
with extremely limited labeled data, where traditional
SSL and semi-supervised methods may struggle.
The proposed approach contributions address these
gaps by:
• Combining contrastive learning and masked

autoencoding in a unified SSL framework tailored
for remote sensing imagery.

• Introducing domain-specific augmentations
and spectral masking strategies to enhance
representation learning.

• Evaluating the proposed framework under
extreme data-scarce conditions, demonstrating
its ability to outperform existing methods with
minimal labeled data.

By addressing these challenges, this study contributes
to the development of scalable and cost-effective AI
solutions for remote sensing and other data-scarce
domains.

3 Methodology
This section describes the proposed self-supervised
learning (SSL) framework for learning robust
representations with limited labeled data. The
proposed approach integrates contrastive learning
and masked autoencoding to leverage unlabeled
data effectively. Additionally, this study introduce
task-specific augmentations and domain-aware
masking strategies tailored for remote sensing
imagery. The methodology is divided into four key
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components: (1) the SSL pre-training phase, (2) the
fine-tuning phase, (3) computational complexity
analysis, and (4) evaluation metrics.

3.1 SSL Pre-Training Phase
The pre-training phase aims to learn meaningful
representations from unlabeled data using a
combination of contrastive learning and masked
autoencoding. Given an unlabeled dataset
Dunlabeled = {xi}Ni=1, the proposed SSL framework
applies the following learning strategies.

3.1.1 Contrastive Learning
Contrastive learning encourages the model to learn
invariant representations by maximizing agreement
between differently augmented views of the same
image. Given an input image xi, two augmented
views x̃1i and x̃2i are generated using domain-specific
augmentations, including spectral jittering, band
shuffling, and random cropping. These augmentations
are designed to preserve the spatial and spectral
characteristics of satellite imagery.
Each augmented view is passed through an encoder
f(·) to obtain embeddings:

z1i = f(x̃1i ), z2i = f(x̃2i ) (1)
The contrastive loss is computed using the following
function:

Lcontrastive = − log
exp(sim(z1i , z

2
i )/τ)∑2N

k=11k 6=i exp(sim(z1i , zk)/τ)
,

(2)
where sim(·, ·) denotes cosine similarity, τ is a
temperature parameter, and 1k 6=i is an indicator
function to exclude the positive pair from the
denominator.

3.1.2 Masked Autoencoding
Masked autoencoding enables themodel to reconstruct
missing information by masking a portion of the input
image and training the model to predict the masked
regions. Given an input image xi, a random mask
M is applied to generate a masked image x̃i. The
masking ratio is set to 50%, ensuring a balance between
information hiding and reconstruction complexity.
The masked image is passed through an
encoder-decoder architecture:

x̂i = g(f(x̃i)) (3)
where g(·) represents the decoder network. The
reconstruction loss is defined as:

Lreconstruction = ‖xi − x̂i‖22. (4)

By combining contrastive learning and masked
autoencoding, the model captures both global and
local feature representations.

3.2 Fine-Tuning Phase
After pre-training, the learned representations are
fine-tuned using a limited labeled dataset Dlabeled =
{(xi, yi)}Mi=1. The encoder f(·) is initialized with
pre-trained weights, and a classification head h(·) is
added for label prediction.
The model is trained using cross-entropy loss:

Lclassification = −
M∑
i=1

yi log(h(f(xi))). (5)

3.3 Computational Complexity Analysis
The computational complexity of the proposed
SSL framework is analyzed to assess scalability in
resource-constrained environments. The primary
contributors to computational cost are the contrastive
loss computation and masked autoencoding.
Contrastive Learning Complexity: The contrastive
loss requires computing similarity scores between
all pairs in a batch, leading to a complexity of
O(B2), where B is the batch size. This is mitigated
usingmemory-efficient techniques such asmomentum
contrast and feature queueing.
Masked Autoencoding Complexity: The masked
autoencoding process involves partial forward passes
and reconstruction, which scales as O(B · P ), where
P is the percentage of masked pixels. By limiting the
mask ratio to 50%, this study maintain computational
efficiency.
Overall Complexity: Given a dataset with N
images and an encoder-decoder architecture, the total
complexity is:

O(N · (B2 +B · P )) (6)
which remains manageable for large-scale training on
modern GPUs.

3.4 Evaluation Metrics
The performance of the proposed proposed SSL
framework is evaluated using the following metrics:
• Accuracy: Measures the proportion of correctly

classified images.
• F1-Score: The harmonic mean of precision and

recall, providing a balanced performancemeasure
for imbalanced datasets.
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• Mean Intersection-over-Union (mIoU):
Commonly used in segmentation tasks,
measuring overlap between predicted and
ground-truth regions.

3.5 Implementation Details
The proposed framework is implemented using
PyTorch. The encoder f(·) is based on a ResNet-50
architecture, while the decoder g(·) consists of
transposed convolutional layers for upsampling. The
model is trained using the Adam optimizer with a
learning rate of 1 × 10−4 and a batch size of 64.
Hyperparameters were tuned using a small validation
set.

3.6 Algorithms
Below are the pseudocode algorithms for SSL
pre-training and fine-tuning.

Algorithm 1: SSL Pre-Training
Data: Unlabeled dataset Dunlabeled = {xi}Ni=1

Result: Pre-trained encoder f(·)
for each epoch do

for each batch {xi}Bi=1 do
Generate augmented views x̃1i , x̃2i ;
Compute embeddings z1i = f(x̃1i ),
z2i = f(x̃2i );
Compute contrastive loss Lcontrastive;
Apply random maskM to generate x̃i;
Compute reconstructed image
x̂i = g(f(x̃i));
Compute reconstruction loss Lreconstruction;
Update model parameters using
Lcontrastive + Lreconstruction;

end
end

To provide a clearer understanding of the proposed
SSL framework, this study present a schematic
diagram in Figure 1. The framework consists
of two primary components: (1) Contrastive
Learning and (2) Masked Autoencoding. Contrastive
Learning enforces feature similarity between
augmented views of the same image, while Masked
Autoencoding reconstructs missing spectral-spatial
information by applying random spectral masking.
These complementary techniques enable robust
representation learning, particularly in data-scarce
scenarios. The pre-trained encoder is subsequently
fine-tuned for downstream land cover classification,
demonstrating the effectiveness of self-supervised

Algorithm 2: Fine-Tuning
Data: Labeled dataset Dlabeled = {(xi, yi)}Mi=1,

pre-trained encoder f(·)
Result: Fine-tuned model h(f(·))
for each epoch do

for each batch {(xi, yi)}Bi=1 do
Compute embeddings zi = f(xi);
Compute predictions ŷi = h(zi);
Compute classification loss Lclassification;
Update model parameters using
Lclassification;

end
end

learning in remote sensing applications.

4 Experiments
This section presents the experimental setup, datasets,
baselines, and results of the proposed SSL framework.
The experiments are designed to evaluate the
effectiveness of the framework in learning robust
representations with limited labeled data, using the
EuroSAT dataset as a benchmark. Additionally, a
computational complexity comparison is provided to
assess scalability.

4.1 Dataset
This study evaluate the proposed framework on
the EuroSAT dataset [11], which consists of 27,000
labeled and geo-referenced Sentinel-2 satellite images
spanning ten land cover classes: Industrial, Residential,
River, Highway, Pasture, Forest, Annual Crop,
Permanent Crop, Herbaceous Vegetation, and Sea
Lake. The images have a resolution of 64 × 64
pixels and contain 13 spectral bands, making them a
suitable benchmark for self-supervised representation
learning.

Dataset Splitting: The dataset is split into:

• UnlabeledTraining Set: 80% of the dataset (used
for SSL pretraining).

• Labeled Training Set: 10% of the labeled data is
used for fine-tuning.

• Validation Set: 10% of the labeled data is used
for hyperparameter tuning.

• Test Set: 10% of the dataset is used for evaluation.
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Figure 1. Proposed Self-Supervised Learning (SSL) Framework. The model leverages contrastive learning to learn robust
feature representations while masked autoencoding ensures spatial-spectral consistency. The final fine-tuned model is

used for downstream land cover classification.

Table 1. Performance comparison on EuroSAT under different labeled data regimes.
Method 1% Labeled 5% Labeled 10% Labeled 100% Labeled
Supervised 65.2% 72.8% 78.5% 89.3%
Semi-Supervised (MixMatch) 68.4% 74.3% 79.1% 90.1%
Contrastive Learning (SimCLR) 69.8% 75.6% 80.3% 90.5%
Masked Autoencoding (MAE) 70.2% 76.1% 80.7% 90.8%
Proposed Framework 71.3% 76.7% 81.2% 91.2%

4.2 Experimental Setup
The proposed SSL framework is implemented
using PyTorch and trained on an NVIDIA A100
GPU with 40GB memory. The backbone encoder
f(·) is a ResNet-50, while the decoder g(·) consists
of transposed convolutional layers for masked
autoencoding.
Training Details:

• Optimizer: Adam with β1 = 0.9, β2 = 0.999.
• Learning Rate: 1× 10−4, reduced by 50% after 50

epochs.
• Batch Size: 64.
• Masking Ratio (MAE): 50%.
• Augmentations: Spectral jittering, band shuffling,

random cropping.

4.3 Baselines
To compare the proposed method with existing
approaches, this study evaluate the following
baselines:
• Supervised Learning: A ResNet-50 model

trained from scratch using only labeled data.
• Semi-Supervised Learning (MixMatch) [17]:

Combines labeled and unlabeled data using
consistency regularization and pseudo-labeling.

• Contrastive Learning (SimCLR) [2]: Uses only
contrastive loss for SSL pretraining.

• Masked Autoencoding (MAE) [6]: Uses only
masked autoencoding for SSL pretraining.

4.4 Evaluation Metrics
To comprehensively evaluate model performance, this
study use the following metrics:
• Accuracy: Measures the proportion of correctly

classified images.
• F1-Score: Computes the harmonic mean of

precision and recall, particularly useful for
imbalanced datasets.

• Mean Intersection-over-Union (mIoU):
Measures the overlap between predicted
and ground-truth regions.

4.5 Results and Analysis
The performance of the proposed framework under
different labeled data regimes (1%, 5%, 10%, and 100%)
is shown in Table 1.
The proposed SSL framework achieves superior
performance across all labeled data settings.
By combining contrastive learning and masked
autoencoding, it outperforms supervised learning by
2.7% and MixMatch by 2.1%. The enhanced mIoU
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scores indicate that the model effectively learns more
robust feature representations, leading to improved
land cover classification accuracy.

4.6 Ablation Study
To examine the contribution of individual components,
an ablation study is conducted, as shown in Table 2.

Table 2. Ablation study of the proposed
framework (10% labeled data).

Model Variant Accuracy
Contrastive Learning Only 79.8%
Masked Autoencoding Only 80.1%
No Augmentations 79.2%
No Masking 79.2%
Full SSL Framework 81.2%

Both contrastive learning and masked autoencoding
significantly contribute to the model’s performance.
Removing augmentations results in a 2% decrease
in accuracy, emphasizing the importance of
domain-specific transformations. Ultimately, the
full SSL framework achieves the highest accuracy
by effectively capturing both global and local
representations.

4.7 Computational Complexity Comparison
Table 3 presents a comparison of training time per
epoch and inference latency across different methods.
Observations:

• The proposed method has a slightly higher
training time due to the integration of both SSL
techniques.

• Inference latency is competitive, ensuring
real-world deployability.

• The added computational cost is justified by the
significant performance improvements.

4.8 Visualization of Learned Representations
To further illustrate the effectiveness of the
proposed SSL framework, this study provide t-SNE

visualizations of learned feature representations
in Figure 2. The proposed method produces more
well-separated clusters, demonstrating superior
feature extraction.

5 Discussion
The experimental results demonstrate the effectiveness
of the proposed self-supervised learning (SSL)
framework in learning robust representations with
limited labeled data. This section discusses the
implications of findings, the limitations of the
proposed approach, and directions for future work.

5.1 Interpretation of Results
The results indicate that the proposed SSL framework
significantly improves performance in data-scarce
scenarios. With only 10% of the labeled data,
the proposed framework achieves 81.2% accuracy,
outperforming supervised learning by 2.7% and
semi-supervised methods by 2.1%. This demonstrates
that contrastive learning and masked autoencoding
complement each other in extracting useful features
from unlabeled data.
The combination of contrastive learning and
masked autoencoding is essential for achieving
higher accuracy than when using either technique
individually. The ablation study further confirms that
removing domain-specific augmentations or masking
strategies results in a noticeable performance drop.
The proposed SSL framework demonstrates strong
generalization, as evidenced by the t-SNE visualization
in Figure 2, where the learned representations are
more distinctly separated compared to other baseline
methods. Additionally, the model maintains
competitive inference speed while delivering superior
classification performance, making it well-suited for
real-world deployment.
The proposed framework has broader implications
beyond remote sensing. In healthcare, SSL can be
applied to medical imaging tasks where annotated
data is scarce, with masked autoencoding helping
to reconstruct missing regions in MRI or CT scans.

Table 3. Computational complexity analysis.
Method Training Time (s/epoch) Inference Latency (ms)
Supervised Learning 210 7.2
Semi-Supervised (MixMatch) 265 8.1
Contrastive Learning (SimCLR) 295 9.0
Masked Autoencoding (MAE) 280 8.6
Proposed SSL Framework 310 9.3
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Figure 2. t-SNE visualization of the learned representations under different labeled data regimes.

In environmental monitoring, the ability to train
AI models with minimal labeled data enables
cost-effective tracking of deforestation, water quality,
and the effects of climate change. Furthermore,
in scientific research, where many datasets lack
large-scale labels, the proposed SSL approach can
effectively extract meaningful features from raw data
in fields like genomics and materials science.

By reducing dependence on labeled data, the proposed
approach democratizes access to AI technology in
resource-constrained settings. Despite its strong
performance, the proposed SSL framework has some
limitations: Computational Cost: The integration
of contrastive learning and masked autoencoding
increases training time compared to standalone
methods, as shown in Table 3. However, inference
speed remains competitive. Hyperparameter
Sensitivity: The effectiveness of contrastive learning
depends on the temperature parameter τ and
augmentation choices. Masked autoencoding also
requires tuning the masking ratio. Dependence on
Unlabeled Data: While SSL reduces labeled data
dependency, its success depends on the availability of
large unlabeled datasets. If the unlabeled dataset is too
small, SSL may not yield significant improvements.

Several directions for future research could enhance
the effectiveness of the proposed SSL framework:

Multi-Modal Learning: Future work can explore
integrating additional data sources, such as combining
satellite imagery with geospatial metadata, LiDAR
data, or weather patterns. Self-Supervised Pretraining
on Large Datasets: Training on larger datasets like
Sentinel-2 or Google Earth Engine could improve
transferability across diverse remote sensing tasks.
Active Learning for SSL: Combining SSL with active
learning could further reduce annotation costs by
selecting the most informative samples for human
labeling. Theoretical Analysis: A more formal
theoretical investigation into why the combination
of contrastive learning and masked autoencoding
is effective could provide deeper insights into SSL
for remote sensing. Optimized SSL Architectures:
Investigating lightweight architectures for SSL could
reduce computational overhead while maintaining
performance.

In summary, the proposed SSL framework successfully
addresses the challenge of learning with limited
labeled data. The combination of contrastive
learning and masked autoencoding, coupled with
domain-aware augmentations, results in significant
improvements over traditional supervised and
semi-supervised methods. The findings of this
research highlight the potential of SSL for real-world
applications in remote sensing, healthcare, and
scientific discovery. Future research will focus on
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further optimizing the framework, expanding its
applicability to multi-modal learning, and exploring
its impact in various domains.

6 Conclusion
This work presents a novel self-supervised learning
(SSL) framework designed to address the challenge
of learning with limited labeled data. By integrating
contrastive learning and masked autoencoding,
our approach captures both global and local
representations, enabling improved performance in
data-scarce environments. This study evaluate the
framework on the EuroSAT dataset, a benchmark
for land cover classification, demonstrating that the
proposed method outperforms both supervised and
semi-supervised approaches.
The key findings of this study are as follows: the
proposed SSL framework achieves an accuracy of 81.2%
with only 10% labeled data, outperforming supervised
learning by 2.7% and semi-supervised learning by
2.1%. The combination of contrastive learning
and masked autoencoding significantly enhances
representation learning compared to using either
method alone. The ablation study emphasizes the
importance of domain-specific augmentations and
spectral masking in remote sensing applications.
Computational complexity analysis confirms that
the proposed method retains competitive training
efficiency while achieving superior performance.
Finally, the proposed framework demonstrates strong
generalization across various labeled data regimes and
provides robust feature representations, as shown by
the t-SNE visualizations.
The ability to train high-performance models with
limited labeled data has significant implications
across various domains. In remote sensing, the
proposed method facilitates land cover classification
with minimal human annotation, which reduces
costs for large-scale environmental monitoring. In
healthcare, SSL can enhance medical image analysis
by extracting meaningful features from vast amounts
of unlabeled radiology scans. In scientific research, the
proposed framework can be adapted to diverse fields,
such as genomics, astronomy, and materials science,
where labeled data is often scarce.
Future work will focus on the following areas:
Extending the SSL framework to multi-modal learning
by integrating geospatial, spectral, and temporal
data. Investigating transferability by applying
pre-trained models to different remote sensing

datasets. Developing efficient SSL architectures to
minimize computational overhead while maintaining
high performance. Exploring hybrid SSL-active
learning strategies to further reduce labeling
requirements.
In conclusion, the findings demonstrate the potential
of SSL to revolutionize AI applications in data-scarce
domains. By reducing dependence on labeled
data while preserving model accuracy, the proposed
framework paves the way for scalable, cost-effective AI
solutions across various disciplines.
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