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Abstract

With the rapid development of autonomous driving
technology, the demand for real-time and efficient
object detection systems has been increasing to
ensure vehicles can accurately perceive and respond
to the surrounding environment. Traditional object
detection models often suffer from issues such
as large parameter sizes and high computational
resource consumption, limiting their applicability
on edge devices. To address this issue, we
propose a lightweight object detection model called
YOLOvS8-Lite, based on the YOLOvVS framework, and
improved through various enhancements including
the adoption of the FastDet structure, TFPN pyramid
structure, and CBAM attention mechanism. These
improvements effectively enhance the performance
and efficiency of the model. Experimental results
demonstrate significant performance improvements

of our model on the NEXET and KITTI datasets.

Compared to traditional methods, our model exhibits
higher accuracy and robustness in object detection
tasks, better addressing the challenges in fields such
as autonomous driving, and contributing to the
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advancement of intelligent transportation systems.
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real-time performance, intelligent transportation.

1 Introduction

Autonomous driving technology, as a significant
breakthrough in today’s technological realm, is leading
us into a new era of transportation[1]. However,
as its development delves deeper, we are gradually
becoming aware of the myriad challenges and
hurdles that autonomous driving faces. In practical
applications, autonomous driving systems must
navigate through various complex traffic scenarios
and situations, including road conditions, weather
conditions, traffic signals, and the behavior of other
road users. The complexity of these factors sometimes
makes it difficult for autonomous driving systems to
make correct decisions, thus sparking concerns about
their safety and reliability[2, 3]. Among the plethora
of autonomous driving technologies, object detection
serves as a crucial component, playing a pivotal role.
Object detection systems perceive objects and obstacles
in the surrounding environment, providing real-time
environmental information and data to autonomous
vehicles. Accurately and efficiently detecting and
identifying various objects on the road, such as
vehicles, pedestrians, and bicycles, is paramount
for ensuring the safety and stability of autonomous
driving systems. Therefore, research and improvement
in object detection technology have become one of the
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crucial directions in the development of autonomous
driving technology[4, 5].

In recent years, with the continuous development of
autonomous driving technology, various algorithms
have flourished in the field of object detection to meet
the demand for precise and efficient object recognition
in autonomous driving systems[6]. Firstly, the Yolo
series of algorithms is one of the classic representatives
in the field of object detection. The Yolo (You Only
Look Once) algorithm is renowned for its high speed
and concise network structure, capable of detecting
and classifying multiple objects in an image in a
single forward pass. Its model employs convolutional
neural networks (CNNs) for feature extraction and
utilizes fully connected layers for object detection[7].
However, due to the issue of inaccurate localization
when dealing with small objects and dense scenes, the
Yolo algorithm may exhibit lower detection accuracy
in certain situations. Secondly, the Faster R-CNN
algorithm is another commonly used object detection
algorithm[8]. This algorithm extracts candidate object
regions by introducing a Region Proposal Network
(RPN), followed by object detection and classification
through ROI pooling layers and fully connected layers.
Faster R-CNN improves detection accuracy compared
to the Yolo algorithm but suffers from a complex
network structure and relatively slow speed due
to its large computational overhead. Additionally,
the SSD (Single Shot MultiBox Detector) algorithm
predicts object locations and categories simultaneously
on feature maps of different scales[9], achieving
object detection in a single forward pass. With a
simple model structure and fast detection speed, the
SSD algorithm is suitable for real-time applications.
However, there is still room for improvement in
small object detection and object localization accuracy
with the SSD algorithm. Lastly, the Mask R-CNN
algorithm extends object detection into the realm of
semantic segmentation. Building upon Faster R-CNN,
this algorithm introduces additional segmentation
branches to generate precise object boundaries[8, 10].
While Mask R-CNN excels in object detection and
segmentation tasks, its complex network structure and
higher computational costs limit its widespread use in
practical applications[11].

The deployment of vehicle detection models also
encounters certain challenges. High-precision models
often have large-scale architectures, making them
difficult to deploy. In practical applications, especially
on embedded systems or edge devices with limited
resources, deploying these large models becomes

even more challenging. Furthermore, even with
sufficient computational resources, these models
may still have slow inference speeds, affecting their
real-time performance[12, 13]. In past research, we
have observed a lack of balance between accuracy,
speed, and the number of parameters in previous
works. Some models may prioritize achieving high
accuracy but perform poorly in terms of speed and
deployment, while others may have advantages in
speed but fall short in accuracy. Therefore, we face the
challenge of how to design and train vehicle detection
models to maintain high accuracy while having fast
inference speeds and fewer parameters[14]. The key to
addressing this challenge lies in effective model design
and optimization. We can reduce the model’s scale
and inference costs by exploring lightweight network
architectures, quantization methods, and model
compression techniques. Additionally, optimizing
algorithms and leveraging hardware acceleration can
improve the model’s inference speed to meet real-time
requirements. By considering accuracy, speed, and the
number of parameters comprehensively, we can better
balance the performance of vehicle detection models
and achieve their effective deployment and application
in various practical scenarios[15, 16].

In response to the existing challenges, we propose
the YOLOvS8-Lite solution aimed at enhancing
the model’s inference speed and reducing its
complexity by introducing the lightweight
network, FastDet. Additionally, we incorporate
the CBAM (Convolutional Block Attention Module)
attention mechanism to enhance feature extraction.
YOLOvS8-Lite is dedicated to addressing the balance
between accuracy and efficiency in vehicle detection
models, focusing on lightweight architectures and
attention-based feature enhancement. Through the
design of the FastDet backbone network, we streamline
computations while maintaining high detection
performance. The integration of the CBAM attention
mechanism allows the model to capture richer
feature information, thereby improving its ability to
accurately detect vehicles in various scenarios. The
introduction of this approach represents a significant
advancement in achieving a better balance between
accuracy, speed, and complexity in vehicle detection
models, offering improved feasibility for deployment
on resource-constrained devices and enhancing
performance in real-world applications.

Here we introduce the three contributions of this
paper:



IECE

IECE Transactions on Emerging Topics in Artificial Intelligence

e The introduction of the YOLOv8-Lite framework
addresses the challenges faced by vehicle
detection models by incorporating the lightweight
backbone network, FastDet. This framework
aims to improve model inference speed and
reduce complexity while prioritizing efficiency
without compromising accuracy, providing a
practical solution for real-time vehicle detection
applications.

e The integration of the Convolutional Block
Attention Module (CBAM) attention mechanism
into the feature extraction process further
enhances the performance of the YOLOvS8-Lite
framework. By selectively focusing on informative
features, the CBAM attention mechanism
improves the model’s ability to capture relevant
information, thereby achieving more precise
vehicle detection across various environmental
conditions and scenarios.

e This model is more suitable for deployment
on resource-constrained devices such as
embedded systems or edge devices, expanding
its applicability and effectiveness in real-world
scenarios.

2 Related Works

2.1 The application of two-stage object detection
algorithms in autonomous driving

The application of two-stage object detection
algorithms in autonomous driving is a crucial
component of the development of autonomous
driving technology[17]. First is Fast R-CNN, which
achieves end-to-end training of region proposal
and object detection by introducing the Region of
Interest (Rol) pooling layer, resulting in higher
detection accuracy and improved speed. However, it
is still constrained by the computational overhead of
region proposal generation. Next is Faster R-CNN,
which enhances inference speed and efficiency by
introducing the Region Proposal Network (RPN)
to share convolutional features, yet it still relies
on selective search algorithms for region proposal
generation, limiting its speed. Further, HyperNet
improves localization accuracy by directly predicting
bounding box parameters from shared feature maps,
effectively handling objects of various scales and
aspect ratios, but may increase complexity and
computational cost. Mask R-CNN extends Faster
R-CNN by adding parallel mask prediction branches,
achieving instance segmentation and accurate object

localization, albeit at a higher computational cost
due to additional mask prediction tasks. Pedestrian
FPN (PEN) is specifically designed for pedestrian
detection in autonomous driving scenarios, utilizing
Feature Pyramid Networks (FPN) to effectively
handle pedestrians of various scales and orientations,
although it may lead to longer inference times. CRAFT
(Cascade R-CNN with Adaptive Feature Fusion)
improves detection accuracy by iteratively refining
bounding box predictions at multiple stages using a
cascade architecture and adaptive feature fusion, albeit
potentially requiring longer inference times[18]. In
summary, these two-stage object detection algorithms
strike a balance between accuracy and speed in
autonomous driving, optimizing object localization
and instance segmentation, yet they may incur higher
computational costs and longer inference times. The
selection of suitable algorithms depends on the
specific requirements of the autonomous driving
system[19].

2.2 The application of one-stage object detection
algorithms in autonomous driving

In the field of autonomous driving, the application of
one-stage object detection algorithms has garnered
widespread attention[20]. Transformer-based
object detection algorithms like DETR have
attracted researchers’ interest. These algorithms
enable end-to-end object detection by introducing
attention mechanisms and leveraging global context
information, eliminating the need for candidate region
generation steps seen in traditional two-stage methods
and thus simplifying the process. However, these
algorithms often suffer from noticeable performance
degradation when dealing with a large number of
objects, and they incur higher training and inference
costs[21]. Furthermore, the evolution of algorithms
from YOLOv5 to YOLOVS8 has also been notable.
YOLOV5 introduced a lightweight object detection
framework that achieved faster inference speed and
higher accuracy through improvements in backbone
networks and feature extraction methods. YOLOv8
further optimized network structures and training
strategies, enhancing detection performance and
robustness.  Additionally, RetinaNet is another
noteworthy algorithm that addresses class imbalance
issues by introducing focal loss but suffers from
slower inference speeds. Similarly, SSD, known for
its simple and efficient design, holds a significant
position in the object detection domain; however,
its performance diminishes when detecting small
objects or objects with different aspect ratios.
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In summary, these algorithms have their own
strengths and weaknesses in terms of detection
performance, speed, and applicability, thus requiring
comprehensive consideration based on specific
application requirements and scene constraints when
selecting the appropriate algorithm[22].

3 Methodology

3.1 YOLOvVS8 Network

YOLOVS is the latest advancement in the You Only
Look Once (YOLO) series, boasting outstanding
performance and innovative design[23]. This model
enhances the accuracy and efficiency of object
detection by introducing a series of new techniques
and optimizations. The network architecture of
YOLOWS is illustrated in Figure 1.

The improvements in YOLOvVS8 can be attributed to
several aspects:

e YOLOvV8 draws inspiration from the design
philosophy of YOLOv7 ELAN for its backbone
network and Neck part. It replaces the C3
structure of YOLOV5 with a richer C2f structure
and fine-tunes different channel numbers for
models of different scales. These refinements and
optimizations significantly enhance the model’s
performance and make it more suitable for various
complex scenarios.

e Compared to YOLOv5, YOLOvVS introduces
significant changes to its Head part. It adopts the
mainstream decoupled head structure, separating
classification and detection heads. Additionally,
it transitions from an Anchor-Based approach to
an Anchor-Free approach, further improving the
model’s detection accuracy and robustness.

o To better optimize the model’s performance, we
employ the TaskAligned Assigner positive sample
allocation strategy and introduce Distribution
Focal Loss. These new loss computation schemes
effectively enhance the model’s training stability
and convergence speed, further boosting its
performance.

Through these innovative designs and optimization
strategies, YOLOv8 has made significant
advancements in the field of object detection,
providing more reliable and efficient solutions for
applications such as autonomous driving.

4

3.2 YOLOvS-Lite

Our overall network architecture takes into account
the computational resource constraints of devices in
scenarios such as autonomous driving. Therefore,
we opted for a lightweight network model called
YOLOv8-Lite. As shown in Figure 2, YOLOvS8-Lite
is based on the YOLOvVS framework and achieves
efficient object detection through simplified design and
optimized computation. Recognizing the demands
for real-time performance and efficiency, we avoided
large network structures like CSPDarkNet53 and
instead adopted our proposed FastDet structure,
which simplifies network complexity and is better
suited to the computational resources of edge devices.
Additionally, we introduced the TFPN (Top-Down
Feature Pyramid Network) pyramid structure to
address information loss during feature fusion. The
TFPN structure effectively merges feature maps from
different levels, enhancing the network’s detection
capability across different scales while reducing
information loss. This pyramid structure design
allows for a more comprehensive understanding of
input images, thereby improving object detection
accuracy. Furthermore, we introduced the CBAM
(Convolutional Block Attention Module) mechanism
to further enhance the network’s representation
capability. The CBAM mechanism adaptively adjusts
attention within feature maps, enabling the network
to focus more accurately on important target areas,
thereby improving object detection performance.
The introduction of this mechanism enhances the
network’s robustness in handling complex scenarios
and occlusions, making it more suitable for practical
applications such as autonomous driving.

3.3 CBAM

In the field of deep learning, attention mechanisms
play a crucial role in allowing models to focus on
relevant information while filtering out irrelevant
details[24]. CBAM (Convolutional Block Attention
Module) is a popular attention mechanism designed
to enhance feature representations in deep neural
networks. It consists of two complementary
sub-modules: the Channel Attention Module (CAM)
and the Spatial Attention Module (SAM). CAM
recalibrates feature maps across channels to emphasize
informative features, while SAM recalibrates feature
maps spatially to capture contextual information.
We introduced the CBAM attention module into
the Feature Pyramid Network (FPN) to strengthen
the feature extraction network, effectively extracting
crucial features from the feature maps and improving
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Figure 1. YOLOv8 Network Architecture Diagram[33].

the model’s accuracy. Specifically, within the FPN
architecture, we incorporated 6 ECA attention
blocks. These attention blocks dynamically adjust
the importance of features across channel and spatial
dimensions, enabling the model to focus on relevant
regions and enhance performance. The network
architecture of the CBAM is depicted in Figure 3.

In the following equations, we introduce the key
mathematical formulations of CBAM:

The Channel Attention Map C' is computed as the
sigmoid activation of the average channel-wise feature
responses.

1 H W
e S Y ReUve ) | )

i=1 j=1

C=co

where: C is the channel attention map. H and W are
the height and width of the feature map, respectively.
X;,j is the feature map at position (4, j). W, represents
the weights used for channel-wise convolution. o
denotes the sigmoid activation function.

The Spatial Attention Map S is computed similarly,
capturing spatial dependencies across the feature map.

C
S=0 (é ZRGLU(WS : X:,:,c)) (2)

c=1

where: S is the spatial attention map. C' is the number
of channels in the feature map. X. .. represents the
c-th channel of the feature map. W; represents the
weights used for spatial-wise convolution.

The Output Feature Map Y is obtained by combining
the channel and spatial attention maps element-wise
with the original feature map X, enhancing the
model’s ability to focus on relevant regions.

Y =X0(C+5) (3)

where: Y is the output feature map. © denotes
element-wise multiplication.

The Global Average Pooling operation computes the
average value of each channel in the feature map X,
providing a global context for the spatial features.

GlobalAvgPool(X) =

where:  GlobalAvgPool(X) represents the global
average pooling operation applied to the feature map
X.

The Multi-Layer Perceptron (MLP) MLP(X) is applied
to the input feature map X to capture more complex
patterns and relationships. Here, W5 and W5 represent
the weights of the MLP layers.

MLP(X) = ReLU(W - (ReLU(W; - X) + X)) (5)

where: MLP(X) denotes the multi-layer perceptron
(MLP) applied to the input feature map X. W; and
W represent the weights of the MLP layers.

3.4 TFPN

Our TFPN network architecture is uniquely designed
for object detection tasks, aiming to fully leverage the
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information from feature maps at different scales [25].
Firstly, we enhance the output feature maps of Dark3,
Dark4, and Dark5 in the backbone network, which
contain target information at different scales. Next,
we employ a top-down upsampling approach, using
bilinear interpolation to resize the feature maps
from deeper layers to match the sizes of shallower
feature maps, facilitating feature fusion. This method
ensures the effective fusion of feature maps at
different levels and the comprehensive utilization
of the information they carry. Subsequently, we
perform bottom-up convolution or pooling operations
to gradually downsample the feature maps from
shallower to deeper layers, extracting more semantic
information. This bidirectional feature extraction
process helps the model better understand the
semantic content of images, thereby improving the
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accuracy and robustness of object detection. The
network architecture of TFPN is illustrated in Figure 4.

Below, we explain the main mathematical derivation
formulas of TFPN:

H; = Upsample(H;y1) + W Hll + b (6)
where: H; is the feature map at level [, H;,; is the
feature map at level [ + 1, W} is the weight matrix
for convolution at level |, H l’ is the feature map after
bottom up processing at level [, b; is the bias term at
level 1.

H, = ReLU(H)) (7)

where: ReLU(-) is the rectified linear unit activation
function.

W; = Conv(H;_1) (8)

where: W, is the weight matrix for convolution at level
[, H,_ is the feature map atlevel [ — 1, Conv(-) denotes
the convolution operation.

Upsample(H;;1) = Bilinear_Interpolation(H;1)
(9)
where: Upsample(H; ) is the upsampled feature map
from level [ + 1, Bilinear_Interpolation(-) denotes the
bilinear interpolation operation.

H; = Conv_Pooling(X) (10)
where: H; is the feature map at the first level, X is the
input image or feature map, Conv_Pooling(-) denotes
the convolution and pooling operations.
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3.5 FastDet

In the CSPDarkNet53 structure, the Dark module
serves as a critical feature extraction module designed
to extract image features for subsequent tasks.
Adopting a deep residual structure, this module
utilizes a series of convolutional and pooling layers to
extract and abstract features from input images [26].
While the Dark module has been designed with
lightweight principles in mind, it may still have
some limitations under certain circumstances.
For instance, when processing large-scale feature
maps, the Dark module may require significant
computational resources, resulting in slower inference
speeds. Particularly in scenarios where real-time
performance is crucial, the performance limitations of
the Dark module may restrict the model’s applicability.
Therefore, despite making progress in lightweight
design, further optimization and improvement are
still needed to enhance its performance in fast object
detection tasks.

We introduce the innovative FastDet structure,
designed based on lightweight principles, to improve
the inference speed and accuracy of object detection
models. This structure begins with a simple 1 x 1
convolution operation, followed by the Fast module
performing channel shuffling, dividing the feature
map into two segments along the feature channels.
This design enables the model to more efficiently
extract and utilize feature information, significantly
boosting inference speed while maintaining accuracy.
Figure 5 illustrates the structures of Dark and FastDet.
From the figure, it is evident that the Dark module
consists of multiple convolutional layers and pooling
layers, forming a deep residual network for feature
extraction. In contrast, the FastDet structure employs a

more simplified approach, with a simpler architecture.
Figure 5 illustrates the network architecture of FastDet.
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Conv+BN+SiLU
K1.s1.p0.c

Concat

BottleNeckxN

Conv+BN+SiLU
K1.s1.p0.c/2

Inputs Inputs

Figure 5. FastDet Network Architecture Diagram

Below, we explain the main mathematical derivation
formulas of FastDet:
Y=WX+b (11)
where: Y is the output feature map, W is the weight
matrix, X is the input feature map, b is the bias vector.
Y = Shuffle(X) (12)
where: Y is the output feature map after channel
shuffling, Shuffle(-) denotes the channel shuffling
operation.

Yl, Yg = Spllt(X) (13)
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where: Y and Y are the output feature maps split
along the channel dimension, Split(-) denotes the
feature map splitting operation.

Y = Conv(X) (14)
where: Y is the output feature map after convolution,
Conv(-) denotes the convolution operation.

Y = Pooling(X) (15)
where: Y is the output feature map after pooling,
Pooling(-) denotes the pooling operation.

4 Experiments

4.1 Dataset

To evaluate the performance of our proposed method
in various scenarios, we selected two representative
datasets: NEXET and the KITTI dataset.

The NEXET dataset is a large-scale video dataset
widely used in the field of autonomous driving. It
covers various urban streets [27], highways, and rural
roads under different weather conditions and road
conditions. The dataset provides high-resolution video
clips along with rich annotation information, including
bounding boxes, class labels, and motion trajectories
of vehicles. This makes the NEXET dataset an ideal
choice for studying and evaluating object detection
algorithms.

The KITTI dataset is a classic dataset for autonomous
driving [28], jointly released by the Karlsruhe Institute
of Technology (KIT) and Toyota. It contains images,
point clouds [29], and pose information collected from
sensors mounted on vehicles. The dataset covers
various tasks in urban and suburban road scenes,
including object detection, object tracking, and stereo
vision. Annotation information in the KITTI dataset
includes bounding boxes and class labels for objects
such as vehicles, pedestrians, and bicycles. Due to its
realistic scenes and rich annotation information, the
KITTI dataset is widely used for the development and
evaluation of autonomous driving algorithms.

4.2 Experimental Environment

As shown in Table 1, our experimental setup is
presented.

4.3 Experimental Details
4.3.1 Data preprocessing

We selected a total of 53,460 images from the NEXET
dataset. According to the partition criteria of 70% for

Table 1. Experimental environment demonstrated.

Parameter Configuration

CPU Intel Core i7-12700KF

GPU NVIDIA GeForce RTX 4090 (24 GB)
CUDA version CUDA 11.6

Python version Python 3.9.13

Deep learning framework Pytorch 2.0.0

Operating system Ubuntu 22.04.2

training, 20% for validation, and 10% for testing, the
training set comprises 37,422 images, the validation
set comprises 10,692 images, and the test set comprises
5,346 images. Similarly, we selected 37,586 images from
the KITTI dataset, with the training set containing
26,310 images, the validation set containing 7,517
images, and the test set containing 3,759 images.The
specific results are shown in Table 2.

Table 2. Dataset Split

Dataset Training Set Validation Set Test Set
NEXET 37422 10692 5346
KITTI 26310 7517 3759

During the data cleaning phase, we first identify and
remove outliers and noise from the image data. Next,
we assess the quality of the images and eliminate
those with poor quality to ensure consistency and
reliability of the data. Additionally, we perform
standardization procedures on the images, such as
resizing and background removal, to prepare a clean
dataset for model training.

To increase the diversity and richness of the dataset,
we employed data augmentation techniques to
augment the image data. Data augmentation includes
operations such as random rotation, flipping, cropping,
and brightness adjustment to generate additional
training samples, thereby enhancing the model’s
generalization ability and robustness.

4.3.2 Model training

Our training settings for the YOLOvS8-Lite model
took into account the practical requirements of
the autonomous driving domain. We opted for
a lightweight model suitable for edge devices and
employed representative parameter configurations
during training. As shown in Table 3, the learning rate
was set to 0.001, and we utilized the Adam optimizer
to enhance convergence speed and accuracy. Given
the high real-time demands of autonomous driving
tasks, we set the batch size to 640 to improve training
efficiency. Additionally, to prevent model overfitting,
we applied a small weight decay value of 0.001. The
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Figure 6. The performance of the YOLOv8-Lite model.

training epochs were set to 300 to ensure the model
adequately learned the features and patterns within
the dataset. Ultimately, our YOLOv8-Lite model, with
these parameters, consisted of 4,385,523 parameters
and 252 layers, providing an efficient and reliable
solution for object detection tasks in the autonomous
driving scenario.

Table 3. Model Parameter Settings

Parameter Value
Learning Rate 0.001
Optimizer Adam
Batch Size 640
Weight Decay 0.001
Training Epochs 300
Model Parameters 4,385,523
Number of Layers 252

During the training process, we closely monitored
the changes in various metrics, which are crucial
for evaluating model performance and training
progress.  Figure 6 illustrates the variations in
bounding box loss, confidence loss, and class loss.
Analyzing these loss curves enables us to gain a
clearer understanding of the model’s performance
during training. Specifically, our model demonstrated
outstanding performance, with gradual decreases in
bounding box loss, confidence loss, and class loss,
indicating a progressive improvement in the accuracy
and precision of the model for object detection tasks.
Our model can effectively detect objects in images
and accurately classify and localize them. This steady

improvement validates the effectiveness of our training
process and the robustness of the model. Our model
exhibited excellent performance on both the NEXET
and KITTI datasets, providing a reliable solution for
object detection tasks in practical applications such as
autonomous driving.

Algorithm 1 shows the training process of our network.

4.3.3 Evaluation Metrics

The experiment adopts the following evaluation
metrics to comprehensively assess the model’s
performance:

Accuracy: Evaluates the ratio of accurately classified
instances among the total instances.

True Positives + True Negatives

Accuracy =
Y Total Instances

(16)
Where True Positives are the number of correctly
predicted positive instances, True Negatives are the
number of correctly predicted negative instances, and
Total Instances is the total number of instances.

Recall: Gauges the ratio of accurately identified true
positive instances by the model among all genuine
positive instances.

True Positives
Recall = 17
ced True Positives 4+ False Negatives (17)

Where True Positives are the number of correctly
predicted positive instances, and False Negatives
are the number of incorrectly predicted negative
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Model Parameters and Computational Complexity for KITTI and NEXET Datasets

KITTI PARAMS (M)

PARAMS (M)

Faster-RCNN FCOS YOLOvSn YOLOv7-tiny YOLOw8n Qurs

NEXET PARAMS (M)

PARAMS (M)

Faster-RCNN ~ FCOS YOLOvSn  YOLOw7-tiny Qurs

Model

YOLOvEn

KITTI FLOPs (B)

Faster-RCNN FCOs YOLOv5Sn YOLOv7-tiny YOLOvBNn Qurs

NEXET FLOPs (B)

55D Faster-RCNN FCOS Ours

YOLOvVSn YOLOv7-tiny YOLOvENn
Model

Figure 7. Model parameters and computational complexity for KITTI and NEXET datasets.

Algorithm 1 Training YOLOv8-Lite Network

Require: Training dataset: NEXET and KITTI
Ensure: Trained YOLOvS8-Lite network

1:

10:

11:
12:
13:
14:

Initialize YOLOvS8-Lite network parameters
randomly

Set learning rate o, batch size B, and number of
epochs E

for epoch = 1 to E do

fori=1to N/B do
Sample a mini-batch of size B from the
training dataset
Forward pass: Compute predicted bounding
boxes and confidence scores
Compute loss function £ using ground truth
bounding boxes
Backward pass: Update network parameters
using gradient descent

end for

Evaluate precision and mAP@0.5 on the

validation set

if Validation mAP@0.5 has improved then
Save current model parameters

end if

end for
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instances. Recall measures the proportion of true
positive instances correctly identified by the model
amonyg all actual positive instances.

Precision: Assesses the ratio of accurately predicted
true positive instances among all instances flagged as
positive by the model.

True Positives

Precision = — —
True Positives + False Positives

Where True Positives are the number of correctly
predicted positive instances, and False Positives are
the number of incorrectly predicted positive instances.
Precision measures the proportion of true positive
instances among all instances predicted as positive
by the model.

F1 Score: Represents the harmonic average of precision
and recall, ensuring equilibrium between them.

P . .
F1 Score — 2 x Lcctston X Recall

(19)

Precision + Recall

F1 Score is the harmonic mean of precision and recall,
providing a balance between them.
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Table 4. Comparison of different methods on KITTI and NEXET datasets.

KITTI NEXET

Methods Precision F1 Score mAP@0.5 FPS Precision F1 Score mAP@0.5 FPS
SSD[9] 58.37 54.09 56.29 18 56.19 51.86 53.09 9
Faster-RCNNJ[20] 64.16 52.07 49.09 20 61.90 51.42 47.88 15
FCOS[32] 71.58 52.62 59.82 21 68.86 49.98 57.63 19
YOLOV5n[30] 66.13 64.56 60.89 42 63.02 61.20 58.67 39
YOLOv7-tiny 67.92 62.62 65.36 62 65.69 59.91 63.16 60
[31]

YOLOVSn [19] 70.82 66.63 66.35 57 68.58 64.36 64.22 54
Ours 76.72 74.62 75.32 85 74.52 71.82 73.12 72

mAP: Represents the average precision scores’ mean
across all classes or categories, a commonly utilized
metric in object detection tasks.

N
1
mAP = z; AP; (20)

Where N is the number of classes or categories, and
AP; is the Average Precision for class i. mAP is the
mean of the average precision (AP) scores across
all classes or categories, commonly used in object
detection tasks.

mAP@[IoU]: Denotes the average precision means at
varying Intersections over Union (IoU) thresholds,
assessing the model’s effectiveness across diverse IoU
requirements.

N
mAPQ[IoU] = % Y Apa[IoU);
=1

(21)

Where APQ[I0oU]; is the Average Precision at the IoU
threshold for class i. mAP@[IoU] is the mean of the
average precision at different Intersections over Union
(IoU) thresholds, evaluating the model’s performance
under different IoU requirements.

4.4 Experimental Results and Analysis

Table 4 provides a comparative analysis of different
methods applied on the KITTI and NEXET datasets.
This table includes key performance indicators such
as precision, F1 score, mAP@0.5, and frames per
second (FPS), aiming to comprehensively evaluate the
effectiveness of various methods in object detection
tasks. In the evaluation on the KITTI dataset, the
method proposed in this study performed the best,
achieving scores of 76.72% in precision, 74.62% in
F1 score, 75.32 in mAP@0.5, and 85 in FPS. These
results not only demonstrate its superior accuracy
but also its significant advantage in processing speed.

For the NEXET dataset, our method also displayed
outstanding performance, specifically achieving a
precision of 74.52%, an F1 score of 71.82%, a mAP@0.5
of 73.12, and an FPS of 72. These outcomes further
confirm the consistency of our method’s efficiency
and accuracy across different testing scenarios. In
summary, by adopting the lightweight network model
YOLOVvS8-Lite, we have not only made breakthroughs
in accuracy and speed but also ensured the feasibility
of the model in practical applications. Particularly in
scenarios like autonomous driving, where fast and
accurate object detection is required, a high FPS rate
means faster response times, which is crucial for safety.

Table 5 presents a comparison of parameter counts
and computational complexity for different models
on the KITTI and NEXET datasets. It lists each
model’s number of parameters and floating-point
operations (FLOPs), revealing that our proposed
model demonstrates lower parameters and FLOPs
on both datasets, specifically 4.80M/8.95B (KITTI)
and 4.60M/8.75B (NEXET). This indicates that our
model maintains high efficiency while reducing
computational resource consumption. In contrast,
other models like SSD, Faster-RCNN, FCOS, YOLOv5n,
YOLOv7-tiny, and YOLOv8n show varying degrees
of parameter counts and computational complexity.
Figure 7 visualizes these comparisons, further
highlighting the results and allowing us to see
at a glance that our model has found an ideal
balance between high-performance object detection
and computational resource efficiency. This not
only provides an effective solution for areas such as
autonomous driving but also offers valuable insights
for future efficient computing in resource-constrained

environments.
4.5 Ablation study

As Table 6 demonstrates, the ablation study results
compare the specific impacts of different module
combinations on model performance. Through

11
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Figure 8. Visualization of detection results. (a) YOLOv8-Lite. (b) YOLOVS.

Table 5. Model parameters and computational complexity
for KITTI and NEXET datasets.

Model KITTI NEXET
PARAMS FLOPs PARAMS FLOPs
SSD 6.98M 9.95B 6.48M 9.15B
Faster-RCNN 6.79M 9.85B 6.19M 8.75B
FCOS 6.72M 9.65B 6.12M 7.55B
YOLOv5n 7.32M 10.25B 6.72M 9.45B
YOLOvV7-tiny 7.52M 10.45B 6.92M 9.65B
YOLOv8n 7.22M 10.15B 6.62M 8.35B
Ours 4.80M 8.95B 4.60M 8.75B

CBAM, TFPN, and FastDet to explore the stepwise
improvement in model performance. Ultimately, when
all modules were integrated in Experiment (5), the
model demonstrated optimal performance on both
KITTI and NEXET datasets, particularly on the KITTI
dataset, where precision, F1 score, mAP@0.5, and FPS
were improved to 76.19%, 74.09%, 74.79%, and 85,
respectively, with similar significant improvements
observed on the NEXET dataset. This series of ablation
studies not only verifies the importance of CBAM,

detailed analysis of three core modules—CBAM,
TFPN, and FastDet—the experiments reveal their
individual and combined effects on precision, F1 score,
mean Average Precision (mAP@0.5), and frames per
second (FPS). The baseline experiment (Experiment
1) did not employ any of the new modules, while
subsequent experiments progressively introduced

12

TFPN, and FastDet in enhancing model performance
but also provides strong evidence for designing
efficient object detection models, emphasizing the
effectiveness of our model in the field of autonomous
driving.

4.6 Discussion

Based on the visualization results shown in Figure 8,
we can observe that each detection box represents the
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(b)

Figure 10. Visualization of Model Limitations.

actual predicted location of objects, with the top of
the detection box displaying the predicted category
and confidence score. These results demonstrate the
outstanding detection performance of the proposed
YOLOvVS8-Lite, especially in terms of recognizing
small objects. Compared to the original YOLOvVS
model, YOLOvS8-Lite significantly improves overall
precision while maintaining prediction accuracy. This
achievement is primarily attributed to optimizations
made in the model architecture, including the
introduction of more efficient feature extraction
and fusion mechanisms, as well as an optimized
network structure designed to reduce computational
complexity while enhancing the model’s ability to
recognize small objects.

Further analysis shows that our network is more
comprehensive in object detection. As demonstrated in

Figure 9, there are many missed detections by YOLOVS,
which we have marked with red boxes. In contrast, our
model effectively reduces missed detections, thereby
improving the comprehensiveness and accuracy of
detection. Additionally, the robustness of our model in
handling complex scenes has significantly improved.
In environments with dense objects, YOLOv8-Lite not
only reduces missed detections but can also more
accurately distinguish and locate objects that are close
to each other, a task that is challenging for conventional
models. This capability of our model is attributed
to the in-depth optimization of the feature extraction
layers and network structure, enabling the model to
more effectively capture subtle feature differences and
thus achieve more accurate object detection in complex
environments.

However, our network also has some limitations. As

13
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Table 6. Ablation Experiment Results on KITTI and NEXET Datasets

Modules KITTI NEXET
Method CBAM TFPN FastDet Precision F1 mAP@0.5 FPS Precision Fl1 mAP@0.5 FPS
Score Score
€))] 65.31 69.41 69.61 63 70.11 67.21 68.41 51
2) v 66.33 70.01 71.51 70 73.11 67.81 70.31 62
3) v 66.81 70.61 70.91 63 64.61 69.71 69.71 51
(@) v v 72.01 69.71 71.71 65 71.84 68.51 70.51 52
®)] v v v 76.19 74.09 74.79 85 73.99 71.29 72.59 72

shown in Figure 10, it is evident that in conditions
of poor lighting or snowy weather, our model cannot
comprehensively and accurately detect objects. This
phenomenon is mainly due to the significantly reduced
visibility of objects in these special environments,
making it difficult for the model to capture sufficient
feature information, thereby affecting the accuracy and
comprehensiveness of detection.

To address this issue, future work needs to
consider the introduction of more powerful feature
extraction and enhancement techniques, such as
using deeper network structures or introducing
environment-adaptive algorithms, to improve the
model’s performance in complex environments.
Additionally, leveraging multimodal data (such as
radar and infrared images) may also be an effective
means to enhance the model’s robustness, as these
technologies can provide additional environmental
information when visual information is insufficient.

5 Conclusion

In our study, we proposed a lightweight object
detection model based on the YOLOvS-Lite framework
and validated it on the NEXET and KITTI datasets.
Experimental results demonstrate that our model
performs well in the task of object detection. This
model significantly enhances efficiency and inference
speed while reducing the number of parameters.
Additionally, through comprehensive evaluation of
various metrics, our model exhibits reliability and
effectiveness in real-world applications such as
autonomous driving. However, our model still has
some limitations. Firstly, due to constraints in model
parameters and network structure, our model may
perform poorly in handling complex scenes and
occlusion situations. Secondly, owing to dataset
limitations and training strategy choices, the model
may encounter overfitting or underfitting issues in
specific scenarios, affecting its generalization ability
and stability.

14

Looking ahead, we will continue to improve the
model’s design and training strategies to enhance
its adaptability and robustness in complex scenes.
Furthermore, we plan to expand the scale and diversity
of the dataset to comprehensively evaluate the model’s
performance and generalization ability. Additionally,
we aim to explore more advanced object detection
technologies and algorithms to address the challenges
in fields like autonomous driving, contributing to the
development of intelligent transportation systems.
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