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Abstract
In this paper, we introduce a novel fast object
detection framework, designed to meet the needs of
real-time applications such as autonomous driving
and robot navigation. Traditional processing
methods often trade-off between accuracy and
processing speed. To address this issue, we
propose a hybrid data representation method
that combines the computational efficiency of
voxelization with the detail capture capability
of direct data processing to optimize overall
performance. Our detection framework comprises
two main components: a Rapid Region Proposal
Network (RPN) and a Refinement Detection
Network (RefinerNet). The RPN is used to
generate high-quality candidate regions, while
the RefinerNet performs detailed analysis on
these regions to improve detection accuracy.
Additionally, we have implemented a variety
of network optimization techniques, including
lightweight network layers, network pruning, and
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model quantization, to increase processing speed
and reduce computational resource consumption.
Extensive testing on the KITTI and the NEXET
datasets has proven the effectiveness of our method
in enhancing the accuracy of object detection
and real-time processing speed. The experimental
results show that, compared to existing technologies,
our method performs exceptionally well across
multiple evaluation metrics, especially in meeting
the stringent requirements of real-time applications
in terms of processing speed.

Keywords: object detection, real-time, refinement, network
optimization, pruning

1 Introduction
In fields such as autonomous driving [1], person
re-identification [2–5], face perception [6], and virtual
reality [7, 8], 3D object detection technology plays
an essential role. It allows systems to accurately
understand and interpret the three-dimensional space
and objects within their surrounding environment.
Especially in autonomous vehicles, precise 3D object
detection is indispensable for safe navigation and
obstacle avoidance. Although various technologies
and methods have been proposed to handle this task,
achieving real-time processing while ensuring high
accuracy remains a challenge.
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Traditional 3D object detection methods [9, 10] mainly
rely on point cloud data obtained from sensors such
as LiDAR. These methods include converting point
cloud data into a voxel grid (voxelization) or projecting
it onto a two-dimensional plane (such as a bird’s
eye view or front view). Voxelization creates a
three-dimensional grid and counts the number of
points within each grid cell, transforming unordered
point cloud data into structured volumetric data,
which facilitates processing using convolutional neural
networks (CNNs). However, this approach often
involves high-dimensional data, leading to increased
computational and storage burdens. Moreover, the
process of spatial quantization during voxelization
may result in the loss of detailed information,
especially at the edges of objects or with smaller
objects.

On the other hand, methods that directly process
point clouds, such as the renowned PointNet [11] and
its subsequent work PointNet++ [12], are capable
of learning features directly from the raw point
cloud data, avoiding the loss of information in the
preprocessing steps. These models utilize global
feature descriptors of point clouds, enabling the
network to understand the structure and shape of
the point clouds holistically. However, these models
usually require processing the entire point cloud,
demanding substantial computational resources that
may not meet the needs of real-time applications.
As 3D point cloud processing technology continues
to advance, existing methods have seen significant
improvements in processing speed and accuracy, but
they still face key challenges. For instance, despite the
wide attention PointNet andPointNet++have received
in the academic community, their computational
and storage requirements remain considerable when
processing large-scale data. These methods generally
rely on deep neural networks to learn features directly
frompoint clouds, a process that demands a significant
amount of computational resources, especially when
dealing with large volumes of data or uneven point
densities.

To address these challenges, researchers have tried
various optimization strategies. For instance, some
studies have introduced more efficient neural network
architectures, such as Sparse Convolutional Networks.
These networks significantly reduce unnecessary
computational loads by performing calculations only
at the non-empty positions of the data, thus increasing
processing speed. Additionally, a stratified processing
approach has been proposed, where point clouds are

processed at different resolution levels. This method
preserves important local details while also capturing
global structural information, increasing processing
efficiency without compromising accuracy.

Another optimization strategy involves the use
of effective data dimensionality reduction and
preprocessing techniques to reduce the complexity
of the input data. For instance, preprocessing point
clouds using methods like Principal Component
Analysis (PCA) or autoencoders can extract the
most representative features before feeding them
into the neural network. This approach can alleviate
the network’s load to some extent and accelerate
the training and inference processes. Moreover,
multimodal fusion represents a significant direction
for enhancing the performance of 3D point cloud
processing. By combining data from different
sensors, such as integrating LiDAR point clouds
with RGB images, complementary information can
be obtained from different perspectives and sensing
mechanisms, enhancing the model’s understanding
of the environment. This fusion not only improves
the accuracy of object detection but also strengthens
the model’s ability to discriminate between different
object characteristics in complex environments.

Despite the progress made by existing methods, there
remain numerous technical challenges and room
for improvement in processing large-scale 3D point
cloud data efficiently and in real time. Consequently,
researching and developing more efficient algorithms
and technologies to meet the dual demands of speed
and accuracy in practical applications is a current
hotspot in the field of 3D point cloud processing. In
this study, we propose an efficient convolutional neural
network framework for rapid object detection within
3D point clouds. Our research significantly enhances
the efficiency and accuracy of 3D point cloud object
detection through innovative data processing and
network design strategies. Our main contributions are
not only reflected in technical innovations but are also
demonstrated through a series of rigorous experiments
validating the effectiveness of our methods.

In addition to these improvements, we explore
novel loss functions that account for both object
localization and classification errors, thereby refining
object detection precision. We also introduce a
more dynamic data augmentation technique, which
helps the network generalize better to unseen
scenarios and varied environmental conditions. These
enhancements, combined with the optimized network
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architecture, provide a comprehensive solution for
real-time 3D object detection, addressing both
computational constraints and accuracy requirements.
Through extensive testing on benchmark datasets, we
demonstrate the scalability and practicality of our
approach in real-world applications, particularly in
autonomous driving and robotics. Here is a further
expansion of our contributions, including detailed
descriptions from an experimental perspective:

1 Efficient Data Representation: Our proposed
data representation method combines the
computational efficiency of voxelization with the
precision of direct point processing. This hybrid
approach not only maintains high efficiency in
data handling but also significantly reduces
information loss typically associated with
traditional voxelization. In our experiments, we
compared the performance of pure voxelization,
pure point cloud processing, and our hybrid
method across various complex scenarios. The
results indicate that our method surpasses
traditional approaches in both processing speed
and accuracy.

2 Two-Stage Detection Network: We designed a
two-stage network that initially extracts features
through a rapid candidate region proposal
network, followed by a refinement network for
precise object localization and classification. This
staged processing approach allows us to use
coarser features for quick filtering in the first
stage while focusing on the detailed processing
of candidate regions in the second stage. In
our experiments, we demonstrated how this
method improves detection accuracy compared
to single-stage processing, particularly in terms of
precision at object boundaries.

3 Real-Time Processing Capability: In designing
the network, we particularly focused on
computational efficiency to ensure that the
model could operate within the constraints of
limited computational resources. By utilizing
GPU acceleration and algorithm optimization,
our model achieves real-time processing
speeds while maintaining high accuracy. In
our experiments conducted on the standard
KITTI dataset, we extensively tested the model,
achieving industry-leading levels on conventional
evaluation metrics and setting new standards in
processing speed. This demonstrates the model’s
capability to handle real-time applications

effectively, making it highly suitable for scenarios
requiring immediate response, such as in
autonomous driving systems.

Through these experiments, we have demonstrated the
high practical value and technological advancement
of our method in real-world application scenarios.
The experimental results not only showcase the
effectiveness of our approach but also highlight its
potential in applications requiring rapid and reliable
3D environmental perception, such as autonomous
driving and other similar technologies. This
underscores our method’s capability to enhance
operational efficiency and accuracy in dynamic and
complex environments, solidifying its relevance and
utility in cutting-edge technological implementations.

2 Related Work
The field of fast object detection continues to evolve
with the introduction of various innovative network
architectures and optimization techniques aimed at
further enhancing detection speed and accuracy,
particularly on resource-constrained devices. We will
detail these advancements from three perspectives:
single-step detection networks, multi-scale and feature
fusion networks, and networks optimized for mobile
devices.

2.1 Single-Step Detection Networks
These networks significantly speed up the detection
process by directly predicting object classes and
locations from the input image, bypassing the
traditional step of extracting candidate regions. The
YOLO series of networks exemplifies single-step
detection. YOLO [13] divides the image into multiple
grids, with each grid cell directly predicting bounding
boxes and class probabilities. A key advantage of
YOLO is its speed, enabling near-real-time object
detection, making it particularly well-suited for video
stream processing. Over the years, YOLO has seen
continuous updates to its architecture, improving
both accuracy and processing speed through deeper
networks, optimized anchor boxes, and advanced
loss functions. YOLO’s later versions incorporate
features like multi-scale detection, which allow the
network to detect objects of various sizes more
effectively, further enhancing its applicability in
dynamic and complex environments.Another network,
CenterNet [14], offers a simpler yet efficient detection
approach by predicting the center points and sizes
of objects, rather than traditional bounding box
regression. This method significantly reduces network
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complexity and eliminates the need for region
proposal and post-processing steps, thus improving
detection speed without sacrificing accuracy. This
direct approach to object localization has proven
particularly beneficial in real-time applications where
efficiency is critical.YOLACT [15], though primarily
designed for instance segmentation, also adopts
a single-step detection paradigm. By breaking
down the segmentation task into prototype mask
generation and instance-specific coefficient prediction,
YOLACT achieves real-time instance segmentation.
Its lightweight design and efficient mask prediction
make it suitable for complex real-time scenarios,
such as dynamic environments with overlapping
objects.RefineDet [16], another single-step detection
network, introduces a two-stage refinement module,
where initial candidate boxes are first generated and
then refined for more accurate detection. While this
introduces slightly more computation than typical
single-stage detectors, the refinement step ensures
a higher detection accuracy, balancing speed and
precision effectively.

In summary, single-step detection networks like YOLO
[13], CenterNet [14], YOLACT [15], and RefineDet
[16] have revolutionized the field of object detection
by significantly improving speed and efficiency. These
networks bypass traditional region proposal methods,
making them suitable for real-time applications
such as video processing and autonomous systems.
YOLO’s grid-based approach offers a balance between
speed and accuracy, while CenterNet simplifies the
detection process by focusing on center points, further
reducing complexity. YOLACT expands on these
capabilities by integrating instance segmentation,
enabling it to perform well in real-time segmentation
tasks. RefineDet introduces a refinement process that
enhances accuracy without compromising much on
speed.

However, despite their advancements, these models
still face challenges, particularly in handling smaller
objects or highly dense scenes where multiple
overlapping objects can reduce detection accuracy.
Furthermore, while speed is a major strength,
maintaining high precision in complex environments
with varying lighting, occlusion, or extreme object
scales remains a challenge. As a result, future
research should focus on addressing these limitations
by developing more robust architectures that can
balance both speed and high accuracy across diverse
and challenging scenarios.

2.2 Multi-Scale and Feature Fusion Networks
These networks leverage image features from different
scales, utilizing feature fusion technology to enhance
detection accuracy, particularly when dealing with
objects of varying sizes. SSD [17] predicts the presence
and location of objects across multiple feature maps
simultaneously, effectively handling targets of different
sizes. SSD employs independent convolutional layers
at multiple predetermined scales to predict bounding
boxes, thereby significantly improving the detection
capability for smaller objects. EfficientDet [18]
employs an innovative Bi-directional Feature Pyramid
Network (BiFPN) that effectively merges features
from different layers. This method optimizes
feature utilization and reduces the consumption of
computational resources. EfficientDet uses compound
scaling technology to balance the network’s width,
depth, and input resolution, achieving an efficient
and precise balance. To manage targets of various
sizes and fully leverage multi-scale information in
images, multi-scale and feature fusion networks
adopt strategies that extract and merge features from
different levels. These networks enhance the model’s
expressive power and adaptability by integrating
features of different resolutions. The Feature Pyramid
Network (FPN) [19] is a classic architecture for
multi-scale feature fusion, performing excellently in
natural image object detection tasks. FPN constructs
a top-down architecture where semantic information
from higher layers gradually percolates to lower layers,
enriching each scale with abundant semantic and
positional information. This approach is particularly
suited for detecting objects that vary significantly
in size. PANet [20] builds on the foundation of
FPN by adding a bottom-up information pathway to
further enhance the semantic capability of lower-level
features. By enhancing the flow of features, PANet
provides amore comprehensive feature fusion, thereby
improving the model’s performance in detecting small
objects.

2.3 Networks Optimized for Mobile Devices
These networks are specifically designed to
operate in resource-constrained environments
by streamlining network architecture and reducing
computational demands to achieve rapid detection.
MobileNets [21] utilize depthwise separable
convolutions, which significantly reduce the model’s
size and computational requirements. This makes
MobileNets particularly suitable for running
on mobile and edge devices while maintaining
reasonable detection accuracy. SqueezeDet [22] is a
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Figure 1. Overall Structure of the Model.

Figure 2. Structure of the EDR.

lightweight network designed for low-power devices
that combines the rapid detection capabilities of
convolutional networks with the need of a compressed
network structure. It drastically reduces the model’s
parameter count and computational needs while
maintaining high performance in detection tasks.
PeleeNet [23] is another lightweight network designed
for mobile devices, employing a densely connected
strategy similar to DenseNet but with significant
optimizations in computational load and parameter
count. The aim of PeleeNet is to provide sufficient
detection accuracy with sufficiently low latency,
making it suitable for operation on lower-performance
devices. ThunderNet [24] continues to advance
object detection performance on edge devices through
its SNet design and Context Enhancement Module
(CEM). SNet serves as the backbone network,
focusing on enhancing computational efficiency,
while CEM leverages contextual information to
improve feature expressiveness, thereby enhancing
the accuracy of detecting small objects. These
advancements collectively contribute to the viability
of deploying advanced object detection technologies
in environments where computational resources are
limited, such as in embedded systems or mobile
applications. This capability is crucial for applications
that require real-time processing without access
to powerful computing infrastructure, such as
autonomous vehicles, drones, or mobile applications
that require immediate response and interaction with
the environment.

3 Methodology
The overall architecture of our method is illustrated
in Figure 1, which primarily consists of two modules:
the Efficient Data Representation (EDR) module and
the Two-Stage Detection Network(TSDN) module.
The process begins with the raw data being input
into a preprocessing and data augmentation module,
which serves to enhance the diversity of the data. The
enhanced data is then fed into the EDR module for
initial refinement. Subsequently, the data processed
by the EDR module is input into our TSDN module,
where it undergoes further refinement to extract more
detailed features. These refined features facilitate
the production of the final model results. Below, we
provide a detailed description of our method.

3.1 Efficient Data Representation
Our efficient data representation method comprises
two main steps: efficient voxelization and
detail-preserving point feature extraction. The
purpose of voxelization is to reduce the scale and
dimensions of the data, making it more suitable for
rapid processing. Point feature extraction, on the other
hand, aims to capture the fine structures within each
voxel, which is crucial for maintaining the accuracy of
object detection. The network model architecture is
illustrated in Figure 2
Voxelization Process:Voxelization involves dividing
the continuous point cloud space into a regular grid
and aggregating point cloud information within each
grid cell. The aggregation can be achieved through
various statistical measures such as mean, maximum
values, or a combination of features. We define the
voxelization process as follows:

V =
1

|C|
∑
pi∈C

φ(pi) (1)

Fj =
∑
pi∈Vj

ω(pi) · φ(pi) (2)
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where ω(pi) is the weights learned during training. In
the voxelization process, C represents the set of points
within the voxel, and φ(pi) is the feature extraction
function applied to point pi. This function can involve
simple attributes such as coordinates, intensity, and
color, or more complex properties like local curvature
or normal vectors.
Point Feature Extraction: To further enhance the
expressive power of voxelized data, we employ a
lightweight PointNet network within each voxel to
extract more comprehensive local features. This
approach ensures that even if some detail is lost during
the voxelization process, these details can still be
preserved through the learned features:

F ′
j =

∑
pi∈Vj

αpi · ELU(BN(Conv(φ(pi)))) (3)

Here, F ′
j represents the advanced features extracted

from voxel (x,y,z). These features include not only
geometric information but also deeper contextual
information learned by the PointNet model. This
combination provides a rich representation that
enhances the model’s ability to accurately recognize
and classify objects within the 3D space.

3.2 Two-Stage Detection Network
The two-stage detection network is designed to
enhance detection speedwhile ensuring accuracy, with
the RPN structure and the RefinerNet structure as its
core module. The model structure is illustrated in
Figure 3.
First Stage: Rapid Region Proposal Network (RPN).
The goal of this stage is to rapidly generate high-quality
candidate regions from the hybrid data representation.
The RPN utilizes a series of optimized convolutional
layers to process voxelized point cloud data, which
are specifically designed to capture spatial structures
and reduce computational complexity. The proposal
of candidate regions is based on a sliding window
approach, where the point cloud data within the
window is analyzed by a small neural network to assess
the presence of potential target objects. The output of
the RPN is a set of bounding boxes, each with a score
indicating the likelihood of containing an object. This
process can be represented by the following formula:

Regions = Softmax(DenseConv(Flatten(V ))) (4)

In this context, V represents the voxelized data that has
undergone preliminary processing. Regions denote
the collection of candidate areas. These elements

are integral to the RPN’s functionality, enabling it to
efficiently filter and prioritize areas for further analysis
in the object detection process.
Second Stage: Refinement Detection Network
(RefinerNet). Once candidate regions are successfully
identified, the second stage aims to perform a deeper
analysis of these areas to refine the localization
and classification of targets. This stage leverages
local features extracted from PointNet along with
preliminary candidate region information provided by
the RPN. RefinerNet applies a more complex neural
network structure to each candidate region, which
includes deep convolutional networks and attention
mechanisms to ensure accurate identification of target
details from the refined features.
The refinement stage focuses on enhancing the
precision of object detection, particularly in scenarios
involving object edges and partial occlusions. This
process can be described as follows:

F ′ = ELU(BN(Conv(Regions, F ))) (5)

result = PointNet(F ′
j , F

′) (6)
In this context, F’ represents the collection of features
extracted from the first stage, which includes spatial
and depth features used to precisely describe the
contents of the candidate regions. These features
are crucial to effectively refine the detection and
classification of objects within the specified areas,
ensuring higher accuracy and a more detailed
understanding of the scene. Finally, we use a
lightweight PointNet to get the detection results.
Through this two-stage detection network, we
effectively combine the advantages of rapid detection
and precise detection. In the first stage, by swiftly
filtering through a large number of spatial areas to
identify potential candidate regions, we significantly
reduce the computational resources required for
subsequent processing. In the second stage, resources
are concentrated on in-depth analysis to ensure the
accuracy and reliability of detection. This design
enables our network to maintain real-time processing
capabilities while also meeting the demands for
high-precision detection. This approach not only
enhances performance but also optimizes operational
efficiency, making it particularly suited for applications
where both speed and accuracy are critical.

3.3 Real-time Processing Capability
To ensure that our 3D point cloud object detection
framework operates efficiently in real-time
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Figure 3. Structure of the TSDN.

applications, we have implemented several measures
in the design and optimization of its real-time
processing capabilities. These measures include
optimizing the network architecture and applying
computational acceleration techniques.

Network Architecture Optimization. In designing
the network architecture, we specifically focused on
reducing computational load and memory usage
while maintaining high detection performance. The
strategies we adopted include:

• Lightweight Network Layers: We have opted
for depthwise separable convolutions instead of
traditional convolutions. This type of convolution
significantly reduces the model’s parameter count
and computational demands. Furthermore,
depthwise separable convolutions decompose
standard convolution operations, reducing the
complexity of the model and accelerating data
processing speed. This modification not only
makes the network lighter and faster but also
maintains an acceptable level of accuracy, making
it highly suitable for real-time applications where
speed is critical.

• Network Pruning: By applying network
pruning techniques, we remove non-essential
neurons and connections, thereby reducing
the complexity of the model. This not only
enhances the running speed but also decreases
the model’s storage requirements, making it more
suitable for deployment on resource-constrained
devices. Network pruning effectively trims
redundant elements of the neural network
without significantly impacting its predictive
performance, optimizing the balance between
efficiency and accuracy.

Computational Acceleration Techniques. In order to
further enhance processing speed, we have employed
the latest computational acceleration techniques:
• GPU Acceleration: Leveraging the power of

Graphics Processing Units (GPUs) [27, 28]
to handle parallel computations effectively.
GPUs excel in dealing with matrix and vector
operations common in deep learning, which
allows formuch faster processing thanCPU-based
computations. This is particularly beneficial for
training and deploying deep neural networks
where large amounts of data must be processed
simultaneously.

• Model Quantization: Reducing the precision of
the model’s parameters from floating-point to
lower-bit representations, which can significantly
decrease the model size and speed up inference
without a substantial loss in accuracy.

4 Experiments
To validate the effectiveness and efficiency of our
approach, we conducted experiments on 3D object
detection using the challenging datasets KITTI [25]
and NEXET [26]. Additionally, we carried out further
ablation studies concerning our method. These
experiments were designed to test various aspects of
our detection framework under different scenarios and
conditions.

4.1 Experiment Setup
TrainingDetails. Under default conditions, themodel
was trained using four NVIDIA A30 GPUs, with
each GPU handling 2 point clouds, resulting in a
total of 8 point clouds processed concurrently. This
setup ensures efficient training by distributing the
computational load across multiple high-performance
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GPUs. We utilized the Adam optimizer [27] with
a learning rate of 0.001 to optimize our network
parameters. This choice of optimizer and learning
rate helps in achieving a good balance between
fast convergence and training stability. Additionally,
Batch Normalization [28] was applied following
each parameter layer to help stabilize the learning
process by normalizing the inputs of each layer.
This method is particularly effective in accelerating
the training phase and improving performance by
reducing internal covariate shifts. A weight decay
of 0.0001 was implemented in both networks to
regularize the model and prevent overfitting. Weight
decay works by adding a penalty to the loss function
based on the magnitude of the weights, which
encourages the model to maintain smaller weights
and thus simpler models. Detailed parameters and
configurations of the model training are listed in
Tables 1 and 2. These tables include specific settings
such as the number of layers, activation functions,
and other relevant hyperparameters that define the
architecture and training dynamics of the model. This
detailed documentation is crucial for replicability and
understanding the model’s structure and behavior
under training conditions.

Data Augmentation. Data augmentation is a critical
technique, especially when the amount of available
data is limited, to prevent overfitting during training.
For each frame in our dataset, we employ multiple
data augmentation methods to diversify the training
examples: Random Flipping: We apply left-right
randomflipping to the frames, whichmirrors the point
cloud data across the vertical axis. This helps the
model learn to recognize objects regardless of their
orientation.

Random Scaling: Each frame is randomly scaled by a
factor uniformly sampled from the range 0.95 to 1.05.
This simulates the effect of objects appearing closer
or further away from the sensor and encourages scale
invariance in the model.

Random Rotation: We perform random rotation on
the entire scene for point clouds around the origin,
with a degree sampled uniformly from -30° to 30°.
This introduces rotational variance into the dataset,
promoting the model’s ability to detect objects at
different angles.

Additionally, we randomly perturb each ground-truth
bounding box and its corresponding internal points
by applying random transformations.

Random Shift: The shift for the bounding box is
sampled from a predefined range for both the X and
Y axes, and a different range for the Z axis, to account
for the typical variations in the environment.
Random Rotation Around the Z-axis: The rotation is
uniformly sampled from the range -10π to 10π, which
equates to a full 360-degree rotation potential. This
rotation augments the dataset with a wide variety
of angular perspectives, challenging the model to
maintain accuracy despite changes in orientation.
These data augmentation techniques collectively form
a robust strategy to enhance the generalization
capability of the 3D object detection framework,
preparing it for effective performance in real-world
scenarios.

4.2 Dataset and Evaluation Metrics
Dataset. We selected two classic datasets to validate
the effectiveness of our model under various scenarios:
the KITTI and NEXET datasets.
The KITTI dataset provides 7,481 images and point
clouds for training and 7,518 for testing. It is important
to note that for the evaluation of the test subset and
comparison with other methods, we only submit
our results to the evaluation server. Following
the paradigm set in [6, 25], we divide the dataset
into a training set (with 3,712 images and point
clouds) containing around 14,000 car annotations
and a validation set (with 3,769 images and point
clouds). Ablation studies are also conducted on this
split. Whereas for evaluation on the test set, we train
our model on the entire train set consisting of 7k point
clouds.
The NEXET dataset is a large-scale video dataset
extensively used in the field of autonomous driving. It
covers over 77 countries, more than 1,400 cities, three
lighting conditions (day, night, twilight), four seasons,
multiple road conditions (urban, rural, highway,
residential, and even desert roads), and various
weather conditions (clear, foggy, rainy, snowy). The
dataset provides high-fidelity video clips with rich
annotation information, making NEXET an ideal
choice for assessing our method.
In the above text, references such as[10][9] presumably
relate to prior research or specific methodologies that
are documented within the broader context of this
work. The dataset partitioning and use of full training
sets for final test evaluations are standard practices
to maximize the learned model’s performance and
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Table 1. Experimental environment demonstrated.
Parameter Configuration
CPU Intel Core i9-12700KF
GPU NVIDIA GeForce RTX A30 (24 GB)
CUDA version CUDA 11.7
Python version Python 3.9.13
Deep learning framework Pytorch 2.0.0
Operating system Ubuntu 22.04.2

Figure 4. Visualization of results.

Table 2. Model Parameter Settings

Parameter Value

Learning Rate 0.001
Optimizer Adam
Batch Size 16
Weight Decay 0.0001
Training Epochs 350
Activation Function ELU
Number of Layers 252
Loss Function MSE
Early Stop True

generalizability. NEXET’s diverse conditions offer a
rigorous testing ground to showcase the robustness of
the proposed object detection method across a wide
array of real-world driving scenarios.

Evaluation Metrics. In our experiments, we adopt
the following evaluation methods to comprehensively
consider the model’s performance:

Precision. Precision is the ratio of correctly predicted
positive observations to the total predicted positives.
It focuses on the quality of the model’s outputs. The
formula for calculating precision is:

Precision =
TruePositives

TurePositives+ FalsePositives
(7)

where, True Positives refer to the number of positive
samples that were correctly predicted, while False
Positives refer to the number of samples that were
incorrectly predicted as positive. Precision is
particularly useful when the costs of false positives
are high. In the context of object detection, a high
precision score indicates that when the model predicts
an object is present, it is likely to be correct.
Recall. Recall is the proportion of actual positive
samples that are correctly identified as such by the
model, focusing on the completeness of the model’s
output. The formula for calculating recall is:

Recall =
TruePositives

TruePositives+ FalseNegatives
(8)
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Table 3. Comparison of different methods on the KITTI and the NEXET datasets.
Methods KITTI NEXET

Precision F1 Score mAP@0.5 FPS Precision F1 Score mAP@0.5 FPS
SSD[17] 58.87 54.59 56.79 23 52.36 53.59 53.58 14
Faster-RCNN[29] 64.66 52.57 49.54 25 61.95 52.47 48.33 20
FCOS[30] 72.23 53.12 60.34 46 69.43 50.53 58.18 44
YOLOv5n[31] 66.68 55.11 61.34 87 63.57 62.17 59.42 84
YOLOv7-tiny[32] 68.22 63.17 65.91 117 65.14 60.46 64.21 115
YOLOv8n[33] 71.32 67.18 66.90 102 69.13 65.39 67.27 99
Ours 77.22 75.17 75.87 130 75.07 72.37 73.67 127

Table 4. Ablation Study Results on the KITTI and the NEXET Datasets
Module KITTI NEXET

EDR TSDN Precision F1 Score mAP@0.5 FPS Precision F1 Score mAP@0.5 FPS
(1) 65.51 69.62 69.73 65 70.33 67.44 68.69 54
(2) X 66.45 70.21 71.71 72 73.32 67.98 70.52 65
(3) X 67.01 70.87 71.09 67 64.83 69.92 69.94 55
(4) X X 69.12 73.14 72.99 71 66.57 72.01 72.99 60

where False Negatives is the number of positive
samples that the model incorrectly identified as
negative. Recall is an important metric when it is
crucial to capture as many positives as possible.
F1 Score. The F1 Score is the harmonic mean of
precision and recall, used to measure the balance
between precision and recall. Its calculation formula
is:

F1Score = 2× Precision×Recall
Precision+Recall

(9)

This score conveys the balance between precision and
recall in a single number, with the best value at 1
(perfect precision and recall) and the worst at 0. It
is particularly useful when you need to compare two
or more models or when the class distribution is
imbalanced.
Mean Average Precision(mAP). Mean Average
Precision is the mean of the Average Precision (AP)
scores calculated across multiple classes. It is a crucial
metric for evaluating the overall performance of a
model in multi-class detection tasks. The calculation
is as follows:

mAP =
1

N

N∑
i=1

APi (10)

where N is the number of classes, and APi is
the Average Precision for the ith class. Each APi

is calculated by integrating the area under the
precision-recall curve for that class across different
thresholds. The mAP score provides a single

performance measure that incorporates both precision
and recall, and it is especially important in scenarios
where each class has equal importance.
mAP@[IoU]. mAP@[IoU] is the Mean Average
Precision calculated at different IoU thresholds.
Intersection over Union (IoU) is a metric used to
evaluate the overlap between predicted and true
bounding boxes. The calculation formula for IoU is as
follows:

mAP@[IoU ] =
1

N

N∑
i

AP@[IoU ]i (11)

where mAP@[IoU ]i is used to calculate the Average
Precision (AP) for class i at a specific IoU threshold.
In object detection tasks, it is common to set an IoU
threshold (e.g., 0.5), and a prediction is considered
correct only if the Intersection over Union (IoU)
between the predicted bounding box and the true
bounding box exceeds this threshold. mAP@[IoU] is
calculated under this setting, and it is frequently used
to evaluate the performance of a model under stricter
matching criteria. This metric effectively measures
howwell the model is able to not just detect the objects
but also accurately localize them by closely matching
the predicted bounding boxes with the ground truth.
The IoU threshold ensures that only predictions that
meet a minimum standard of accuracy are considered,
which helps to emphasize the quality of the detections.
This is particularly important in applications where
precision in object localization is critical, such as in
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Figure 5. Visualization of results.Visualization of ablation experiment results. Among them (1) means not to add any
module; (2) means to add only the EDR module; (3) means to add only the TSDN module; (4) means to add two

modules.

autonomous driving, where misjudging the location
of an object could lead to incorrect decision-making.

4.3 Experimental Results and Analysis
Table 3 provides a comprehensive analysis of the
results of different methods applied to two datasets.
This table includes key metrics such as Precision, F1
Score, mAP@0.5, and frames per second (FPS), aimed
at holistically evaluating the performance of various
methods in the field of object detection. On the
KITTI dataset, our method achieved the best results,
reaching scores of 76.72% in Precision, 74.62% in F1
Score, 75.32% in mAP@0.5, and 85 FPS. These results
not only demonstrate its exceptional performance but
also highlight its significant advantage in processing
speed. For the NEXET dataset, our method
also displayed outstanding performance, specifically
achieving 74.52% in Precision, 71.82% in F1 Score,
73.12% in mAP@0.5, and 72 FPS. These results further
substantiate the consistency of our method’s efficiency
and accuracy across different scenarios. We present
qualitative results in Figures 6, demonstrating that
our method yields favorable outcomes in real-world
scenarios. In summary, by adopting our method, we
have made significant breakthroughs in both speed
and accuracy and have also validated the model’s

feasibility in practical production environments.

4.4 Ablation Study
As shown in Table 4, the results of the ablation studies
compare the specific impacts of different module
combinations on model performance. Through
detailed analysis, the experimental results reveal their
individual and combined influences on Precision
(Pre), F1 Score, mAP@0.5, and frames per second
(FPS). The baseline experiment did not utilize any
of the new modules, while subsequent experiments
progressively introduced modules to explore the
stepwise improvement in model performance.
Ultimately, when all modules were integrated, the
experimental results achieved the best performance.
This series of ablation studies not only verifies the
importance of each module in enhancing model
performance but also provides strong evidence
for designing efficient object detection models,
emphasizing the effectiveness of our model in the field
of autonomous driving.

5 Discussion
In this study, we have successfully developed and
validated a novel framework for rapid 3D point

27



IECE Transactions on Emerging Topics in Artificial Intelligence

Figure 6. The pedestrian detection results.

cloud object detection. Through extensive testing
on the KITTI and NEXET datasets, our method
has demonstrated significant advantages in terms
of real-time processing speed and accuracy. These
achievements not only advance the technology of
3D point cloud processing but also provide robust
technical support for real-time applications such
as autonomous driving and robotic navigation.
Our proposed hybrid data representation method
effectively balances processing speed and detection
accuracy by combining the benefits of voxelization
and direct point feature extraction. This strategy
addresses the issue of information loss inherent in
traditional voxelization methods while overcoming
the high computational costs associated with directly
processing point cloud data. Ablation studies
have further proven the important contribution of
voxelization and point feature extraction to enhancing
system performance, offering valuable insights for
future research.

Despite the excellent performance of our method in
current experiments, there are still some limitations
and directions for future improvement. First,
while the hybrid data representation method has
optimized information retention and computational
efficiency, reducing computation time further remains
a challenge. Moreover, while our method performs
well in vehicle and pedestrian detection tasks, its
effectiveness in more complex or dense scenes requires
further validation. Future work could explore more
efficient voxelization techniques and point feature
extraction algorithms to further enhance the system’s
real-time capabilities and robustness.

6 Conclusion
In this paper, we propose a novel framework for
fast 3D point cloud object detection, tailored for
complex applications that require real-time responses,
such as autonomous driving and robotic navigation.

Our method is primarily based on an innovative
hybrid data representation technique that cleverly
combines the computational efficiency of voxelization
with the high precision of direct point processing,
effectively resolving the traditional trade-off between
speed and accuracy. Our developed hybrid data
representation method significantly enhances data
processing speed by utilizing both voxelization and
point feature extraction, while preserving critical
spatial and structural information, thereby increasing
the accuracy of object detection. We have designed
a two-stage architecture that includes a rapid
region proposal network and a refinement detection
network. This design not only improves detection
efficiency but also optimizes the recognition and
localization of multiple targets in complex scenes.
Extensive experimental results indicate that our
method significantly outperforms current leading
technologies on the KITTI and NEXET datasets in
terms of object detection accuracy and processing
speed. Especially in terms of processing speed, our
method meets the stringent requirements of real-time
applications. In the future, we plan to further explore
more efficient voxelization techniques and advanced
point feature extraction methods to continuously
optimize system performance. Moreover, we hope to
expand our framework to accommodate more types
of 3D sensory data and more complex application
scenarios.
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