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Abstract
This study focuses on optimizing multimodal robot
route planning in intelligent logistics management
by integrating Transformer models, Graph Neural
Networks (GNNs), and Generative Adversarial
Networks (GANs). Using a graph structure
representing map information, cargo distribution,
and robot states, spatial and resource constraints are
considered to optimize paths. Extensive simulations
based on real logistics datasets demonstrate
significant improvements over traditional methods,
with an average 15% reduction in path length, 20%
improvement in time efficiency, and 10% reduction
in energy consumption. These results underscore
the effectiveness and superiority of the proposed
multimodal path planning algorithm, offering
robust support for advancing intelligent logistics
management.
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1 Introduction
In today’s rapidly advancing era of intelligence,
robots are assuming increasingly crucial roles across
various domains [1]. Their applications in industries,
agriculture, healthcare, and more are fostering more
efficient, safe, and convenient production and living
environments for humans [2, 3]. Behind all of these
advancements lies robot path planning technology, a
pivotal element in their operation. The objective of
robot path planning is to determine a viable route
for a robot from its starting point to a designated
goal within a given environment, while adhering to
a set of constraints such as collision avoidance, cost
minimization, and safety maximization. Particularly
in complex and dynamic environments, the quality of
path planning significantly influences the efficiency
and success rate of robot tasks.
With the rapid development of intelligent logistics,
autonomous driving, and related fields, the challenges
of robot path planning are becoming increasingly
intricate. In the context of intelligent logistics
management, efficiently mapping paths for robots in
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complex warehouse environments to facilitate swift
cargo transportation has emerged as a prominent
challenge [1]. Simultaneously, in the realm of
autonomous driving, ensuring the safe navigation of
self-driving vehicles amidst bustling urban streets and
enabling them to dynamically adjust their routes based
on traffic conditions has become a significant research
focus [4–6].These studies delve into various aspects of
robot path planning and intelligent interaction. Some
research concentrates on leveraging natural language
commands to guide robot path planning, employing
Transformer models to achieve multi-modal data
alignment for enhanced efficiency in path planning [7].
Furthermore, there has been in-depth discourse on
the interaction and developmental trajectory of robots
within their environments, proposing a roadmap
for robot development that emphasizes integration
and service provision within human living spaces,
thus offering novel insights into path planning and
environmental interaction [8]. Additionally, studies
have focused on robot motion control, utilizing
Transformer models to facilitate efficient movement of
humanoid robots, with potential applications in the
realms of path planning and intelligent control [9].
The application of artificial intelligence in social media
and computing also sheds light on the intersection of
path planning and social computing.

The significance of this study lies in exploring
novel methods for intelligent multimodal robot path
planning in logistics, with the aim of enhancing overall
path planning performance. In this domain, numerous
challenges are encountered [9]. First, the fusion
and handling of multimodal data require addressing
issues related to modeling relationships between
different data types, managing data inconsistency
and noise, and more. Second, modeling and
optimizing path planning in complex environments
require consideration of various factors such as terrain,
traffic, cargo distribution, and robot capabilities. The
interplay of these factors significantly increases the
complexity of the problem. Simultaneously, balancing
path planning efficiency and real-time responsiveness
in dynamic environments is essential—finding ways to
quickly adapt to changing conditions while ensuring
path quality is a critical issue. Additionally, the
interpretability of path planning decisions and the
balance of multiple objective metrics also warrant
careful consideration.

In recent years, fueled by the ascent of deep learning
and multimodal data processing, researchers have
embarked on exploring the application of advanced

technologies to path planning. Within relevant
research domains, numerous scholars have made
noteworthy contributions to robot path planning.
Graph search-based methods are widely used for
path planning in static environments [10]. The
Dijkstra algorithm finds path planning solutions by
determining the shortest path, while the A* algorithm
can efficiently explore the search process with the
help of a heuristic function. However, in large-scale
environments, the computational complexity might
be high, and handling dynamic changes can be
challenging. For dynamic environments and real-time
responsiveness, heuristic search algorithms offer
a solution [11]. These algorithms use heuristic
functions to guide the search process and can find
suitable paths in constantly changing environments.
However, the design of heuristic functions and the
selection of parameters can impact the performance
of the algorithm, and there’s a risk of getting
trapped in local optima. In high-dimensional or
complex environments, sampling-based algorithms
become a powerful choice [12]. For example, the
Rapidly-exploring Random Trees (RRT) algorithm
generates paths by continually expanding branches
of a tree. This method is suitable for high-dimensional
and complex environments, and it can generate paths
within a limited number of iterations. However,
the quality and smoothness of the paths might be
affected. Intelligent optimization algorithms inspired
by natural intelligence are also making strides in the
field of path planning [13]. These algorithms use
techniques like evolutionary simulation and ant colony
behavior for global search to achieve multi-objective
optimization. However, the performance of these
algorithms is influenced by parameter tuning and
convergence speed.

Firstly, in reference [14], an improved A* algorithm
is proposed, focusing on solving the industrial robot
path planning problem. This approach enhances
the original A* algorithm by adding local path
planning and post-processing stages, enabling robots
to adapt more effectively to dynamic environments
and real-time changes. The advantage of this method
lies in its increased flexibility and adaptability for
path planning, while its disadvantage is that it may
incur higher computational costs when dealing
with large-scale environments. Research indicates
that this algorithm achieves higher search success
rates and generates shorter and smoother paths
in both simulation and actual robot operations,
effectively improving the efficiency of robot path
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planning. In another comprehensive review article,
mobile robot navigation technologies are thoroughly
examined, analyzing the applications of both
traditional path planning methods and reactive
methods under varying environmental conditions.
Traditional methods typically rely on pre-established
environmental models, providing high accuracy in
path planning, but with slower responsiveness in
dynamic environments. In contrast, reactive methods
exhibit stronger robustness, enabling quick responses
to environmental changes, though they may sacrifice
optimality in the path. The study reveals that reactive
methods perform better in diverse terrains and can
be combined with traditional methods to enhance
overall path planning performance. Additionally,
in reference [15], Graph Neural Networks (GNNs)
are introduced to address multi-robot path planning
challenges. This approach uses Convolutional Neural
Networks (CNNs) to extract local observation features
and shares these features among robots via GNNs
to enable collaborative behavior. The advantage of
this method lies in its effectiveness in addressing
inter-robot coordination, while its downside is the
reliance on complex model training, which can lead to
longer computation times. Experimental results show
that, in multi-robot 2D environments, this approach
performs comparably to expert algorithms, validating
its effectiveness and practicality. Reference [16]
presents an improved Genetic Algorithm (GA)
for solving multi-robot path planning problems.
This method combines the Artificial Potential
Field (APF) algorithm with Genetic Algorithms to
achieve multi-objective path planning, optimizing
metrics such as path length, smoothness, and safety.
The advantage of this approach is its ability to
simultaneously optimize multiple objectives, but its
disadvantage is that it may get trapped in local optima
when dealing with highly complex environments.
Experimental results demonstrate that this algorithm
outperforms traditional algorithms in terms of path
length, runtime, and success rate, offering new
insights for multi-robot path planning. Finally, in
reference [17], an improved Adaptive Ant Colony
Optimization (IAACO) algorithm is proposed to
address the issues with traditional Ant Colony
Optimization (ACO) in indoor mobile robot path
planning. This method incorporates multiple factors
to enhance real-time responsiveness and global search
capability, while transforming the path planning
problem into a multi-objective optimization challenge.
While this method excels in improving path planning
accuracy and real-time performance, its disadvantage

is its higher computational complexity, requiring
more computational resources. The approach
achieves comprehensive global optimization for robot
path planning, generating optimized paths while
maintaining high real-time performance and stability.
The aim of this study is to revolutionize robot
path planning in logistics by integrating Transformer
models, GNNs, and GANs to address existing
limitations. Specifically, the Transformer model
encodes warehouse environment information such
as maps and obstacle positions into input sequences
and encodes desired optimal paths into output
sequences. It then utilizes the encoder-decoder
structure of the Transformer to extract features
from the input sequences, analyzes the relationship
dimensions between input and output sequences
using self-attention mechanisms, and optimizes
path prediction sequences through training. Next,
GNN processes multimodal data by constructing
a graph structure with nodes and edges based on
environmental information to represent the logistics
environment. It maps robot states to node features and
distances to edge features, then applies GNN models
to learn node features and propagate messages for
context, outputting optimized node state sequences
as new paths. Finally, GAN enhances paths by
first setting GAN generators to produce initial path
sets as inputs, then having discriminators evaluate
the quality of these paths and output judgment
results. Subsequently, generators and discriminators
continuously optimize the generated path sets through
adversarial learning, resulting in intelligent and
efficient path planning outcomes.
By integrating multimodal data, our approach
enhances the adaptability and performance of path
planning, focusing on metrics such as path length,
time efficiency, and energy consumption. Priority is
given to real-time responsiveness and interpretability
to facilitate practical decision-making. Simulation and
real-world experiments validate the effectiveness of
our method in various environments. This innovative
approach marks a leap forward in intelligent logistics
management, offering vast prospects for industry
advancement and sustainable development.
The contributions of this paper can be summarized in
the following three aspects:
• Thiswork proposes the application of Transformer

models in logistics path planning to enhance
the understanding of global environmental
factors, thereby enriching the context of path
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decision-making and improving efficiency.
• GNNs are utilized to process multimodal data,

considering spatial layout and resource allocation
comprehensively, which optimizes the path
planning process.

• GANs are applied to generate high-quality path
candidates, enhancing the performance and
robustness of path planning through adversarial
training.

The logical structure of this article is as follows:
In Section 2, the methodology part, the article
elaborates on the technical roadmap of the proposed
method, including introducing Transformer models
for multi-source data fusion, utilizing graph neural
networks to simulate environmental constraints, and
employing generative adversarial networks to enhance
path diversity. Additionally, the article explains the
specific application of these three key technologies
in path planning problems and their synergistic
mechanismswithin the overall method. Section 3 is the
experimental part, describing the experimental setup,
data sources, and evaluation metrics used. It also
presents numerous tables and figures to demonstrate
the performance comparison results of different
methods. Through comprehensive experimental data,
this article thoroughly validates the effectiveness of the
proposed method. Finally, in Section 4, the conclusion
and discussion part summarize the research work,
analyze its significance, discuss its limitations, and
outline future research directions.

2 Related Work
In recent years, significant progress has been made
in the field of path planning, especially in addressing
complex environments and multi-task problems.
Traditional path planning methods, such as heuristic
algorithms, simulate the foraging behavior of ants
to find optimal paths, and have been widely applied
in various systems. These methods are effective in
optimizing paths in static environments but still
face major challenges in terms of computational
complexity and real-time performance when dealing
with large-scale, dynamic environments, which limits
their practical applicability [18]. Furthermore, some
studies have attempted to enhance path planning
performance through multi-constraint optimization
techniques. By employing linear programming,
nonlinear programming, or adaptive clustering
methods, researchers can generate suitable paths
for multiple tasks or varying resource requirements

in heterogeneous systems. These methods perform
well in multi-objective optimization tasks, such as
minimizing path length or energy consumption,
but they still struggle with issues like insufficient
adaptability and delayed path adjustments when
confronted with rapidly changing environments and
uncertainties [19]. At the same time, reinforcement
learning, a more novel optimization approach,
has also been introduced into path planning
research. Multi-agent reinforcement learning
(MARL) algorithms have been applied to coordinate
multiple agents in various tasks, optimizing the path
planning process through inter-agent collaboration
and interaction. While reinforcement learning
can effectively handle dynamic environments and
multi-task decision-making problems, its training time
and computational costs remain high, particularly
in large-scale systems. Moreover, reinforcement
learning methods still lack the ability to perform
global optimization and long-term planning of
paths, making it difficult to guarantee optimal path
generation in complex tasks [20].
In comparison to these methods, this paper proposes
an innovative framework that integrates Transformer
models, GNN, and GANs. Compared to existing
path planning approaches, the proposed solution
demonstrates significant advantages in terms of
path quality, real-time responsiveness, and system
adaptability, especially when dealing with complex,
multi-objective optimization tasks.

3 Methodology
Our method’s proficiency in managing dynamic
obstacles or environmental changes during path
planning hinges on several fundamental principles and
mechanisms: Firstly, our model possesses real-time
environmental perception capabilities. It continuously
receives data from robot sensors or environmental
monitoring systems to swiftly detect dynamic obstacles
or environmental alterations. Upon acquiring new
information, the model promptly updates its path plan
to accommodate the evolving circumstances. Secondly,
our model demonstrates dynamic path re-planning
prowess. Upon detecting dynamic obstacles or
environmental changes, it initiates dynamic path
re-planning. This involves recalculating the robot’s
trajectory to circumvent new obstacles or adjust
to environmental shifts. This re-planning process
harnesses Transformer models and graph neural
networks to devise new path solutions based on
the updated conditions. Moreover, if multiple
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Figure 1. Overall Algorithm Flowchart.

robots operate within the same environment, our
model can adapt to environmental changes through
collaborative communication. When one robot detects
obstacles or environmental changes, it disseminates
this information to other robots to synchronize their
actions. This collaborative synergy ensures that
robot teams can effectively respond to dynamic
scenarios. Furthermore, our model can acquire
adaptability through simulated dynamic situations
during training. By introducing simulated dynamic
obstacles or environmental changes into the training
data, the model learns to adeptly handle these
scenarios, enhancing its real-time adaptability. These
mechanisms collectively empower our model to
adeptly navigate changing logistics environments in
practical applications, thereby enabling robots to
execute tasks safely and efficiently.

This chapter will provide a detailed exposition of the
proposed multimodal robot intelligent logistics path
planning method. To present the overall structure
and process of this method more clearly, we will
progressively unveil its key steps and technologies in
the following sections. The comprehensive algorithm
flowchart is illustrated in Figure 1.

3.1 Transformer Model
We opt for the Transformer model for multi-robot
collaborative path planning due to its notable
advantages, including global information processing,
adaptability to multi-modal data, scalability, and
learning capabilities. These attributes render the
Transformer model a potent tool for addressing
complex multi-robot path planning challenges,
thereby enhancing the efficiency and quality of path
planning endeavors. Firstly, the Transformer
model boasts exceptional global information
processing capabilities when handling sequence
data. In multi-robot collaborative path planning,
different robots necessitate coordination and the
consideration of information spanning the entire
environment to mitigate conflicts and optimize
paths. The Transformer model adeptly captures
global dependencies through its self-attention
mechanism, a crucial aspect for comprehending
the overall environment. Secondly, multi-modal
robot path planning entails the incorporation of
diverse data types, such as map information, cargo
distribution, and robot status. The Transformer model
serves as a flexible framework for multi-modal data
processing, seamlessly integrating and processing
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various data types. This multi-modal capability
positions it advantageously in multi-robot path
planning scenarios. Additionally, the architecture of
the Transformer model is highly scalable, capable
of accommodating problems of varying sizes and
complexities. In multi-robot collaborative path
planning, the scale and complexity of the problem
may fluctuate significantly, and the Transformer
model can be expanded or contracted as needed
to suit diverse situations. Lastly, the Transformer
model exhibits formidable learning capabilities,
autonomously extracting features and patterns from
data sans manual feature engineering. This attribute
proves invaluable for multi-robot path planning
challenges, where environments are often intricate
and conditions are subject to change. The Transformer
model adeptly adapts by learning the optimal path in
response to evolving circumstances.
When discussing innovative technologies in the
field of machine learning, the Transformer model
undoubtedly stands out as a significant breakthrough
in recent years [17]. It is a neural network
architecture based on the self-attention mechanism.
The Transformer model has achieved remarkable
success not only in the field of natural language
processing but also in other domains, including path
planning, demonstrating its potent potential. The
core concept of the Transformer model is depicted in
Figure 2.

Figure 2. Transformer Model Network Architecture
Diagram.

The fundamental idea behind the Transformer model
is to capture correlations between different positions

within an input sequence using the self-attention
mechanism. This mechanism enables each input
position to interactwith all other positions dynamically,
allocating attention weights [21]. This empowers
the Transformer to consider information from all
positions simultaneously, without being constrained
by a fixed window size, thus better capturing
contextual information. In the Transformer, the
computation process of the self-attention mechanism
can be represented by the following equation:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (1)

where,Q,K, and V represent the query, key, and value
matrices, respectively. They are obtained by linear
transformations of the input sequence. The dimension
of dk corresponds to the dimension of the key vectors.
The softmax function normalizes each row, ensuring
that each element lies between 0 and 1, and the sum
of each row is equal to 1. The output of the attention
function is a weighted average value matrix, reflecting
the similarity between queries and keys.
To enhance the model’s expressive power, the
Transformer model employs a multi-head attention
mechanism [22]. This mechanism divides the input
sequence into multiple subspaces and computes the
attention function on each subspace independently,
then concatenates the outputs from all subspaces. The
mathematical expression of the multi-head attention
mechanism is as follows:

MultiHead(Q,K, V ) = Concat(head1, . . . ,headh)W
0

(2)
headi = Attention(QWQ

i ,KWK
i , V W V

i ) (3)

where, h represents the number of heads, WQ
i , WK

i ,
andW V

i are parameter matrices, andW 0 is the output
matrix.
The Transformer model also employs techniques
such as positional encoding and residual connections
to enhance its effectiveness. Positional encoding
is introduced to enable the model to perceive the
positional information of each element in the input
sequence, as the self-attention mechanism itself does
not inherently consider positional order. Positional
encoding can be implemented using various methods,
such as learned positional encoding or fixed positional
encoding. Residual connections are employed to
facilitate deep learning and mitigate the issues
of vanishing or exploding gradients. Residual
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connections involve adding the input itself to the
output of each sub-layer (e.g., the self-attention layer
or the feed-forward neural network layer), followed
by normalization.
The optimization function for the Transformer model
typically employs the Adam algorithm, an adaptive
gradient descent algorithm that dynamically adjusts
the learning rate based on the gradient changes of the
parameters [23]. The mathematical expression of the
Adam algorithm is as follows:

mt = β1mt−1 + (1− β1)gt (4)

vt = β2vt−1 + (1− β2)g
2
t (5)

m̂t =
mt

1− βt
1

(6)

v̂t =
vt

1− βt
2

(7)

θt+1 = θt − α
m̂t√
v̂t + δ

(8)

where gt represents the gradient at step t, mt and vt
are the first and second moment estimates at step t,
and m̂t and v̂t represent the bias-corrected estimates
of the first and second moments at step t. θt signifies
the parameters at step t, α represents the learning rate,
β1 and β2 are the decay rates for the first and second
moment estimates, and δ stands for a smoothing term,
usually a small positive number like 10−8.
In this study, we employ the Transformer model
for the task of path planning, utilizing inputs
such as map information, obstacle data, target
coordinates, and robot status. These inputs are
structured as input sequences, with the expected
path being generated as the output sequence. We
adopt a Transformer model with an encoder-decoder

architecture to execute the path planning task.
The encoder processes the input sequence, while
the decoder generates the output sequence based
on the encoded information. To capture both
global and local features within the input and
output sequences, we utilize the multi-head attention
mechanism. Additionally, positional encoding is
employed to integrate positional information into
the model. For parameter optimization, we utilize
the Adam algorithm, while the cross-entropy loss
function measures the disparity between the model’s
predictions and the actual path, guiding the training
process.

Next, we will introduce another crucial
technique–Graph Neural Networks (GNNs)–to
further enhance the performance and effectiveness of
path planning.

3.2 Graph Neural Networks
In the context of intelligent logistics path planning,
GNNs have been introduced as a powerful tool for
handling data that contains topological structure
information [15]. GNNs are adept at capturing
relationships between nodes, making them valuable
for addressing robot path planning problems. The
architecture of Graph Neural Networks is illustrated
in Figure 3.

GNNs are a type of neural network model based
on graphs. They aggregate and propagate features
and neighbor information of nodes to learn hidden
node representations. The fundamental idea behind
GNNs is that each node updates its state based on
its own features and the features of its neighboring
nodes. Subsequently, it outputs its own representation
using its state and global information. GNNs
can handle various types and scales of graph

Figure 3. GNN Network Architecture Diagram.
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data, including undirected graphs, directed graphs,
weighted graphs, and heterogeneous graphs. They
can be applied to a variety of graph-related tasks,
such as node classification, edge prediction, and graph
generation. The mathematical expression of Graph
Neural Networks is as follows:

h
(k)
v = UPDATE(k)

(
h
(k−1)
v ,AGGREGATE(k)

({
h
(k−1)
u ;u ∈ N(v)

}))
(9)

ov = READOUT
(
h(K)
v , hG

)
(10)

where: h
(k)
v represents the state vector of node v at

layer k, h(0)v denotes the initial feature vector of node v.
ov is the final output vector of node v. hG signifies the
global information vector of the entire graph.
The optimization function for Graph Neural Networks
typically involves gradient descent algorithms or their
variants like the Adam algorithm. Gradient descent
is an iterative optimization algorithm that reduces the
loss function by updating parameters iteratively. The
mathematical expression for gradient descent is as
follows:

θt+1 = θt − α∇θL(θt) (11)

where, θt represents the parameters at step t, α denotes
the learning rate, and ∇θL(θt) represents the gradient
of the loss functionL(θt)with respect to the parameters
at step t. The form of the loss function can vary
based on different tasks, such as mean squared error,
cross-entropy, contrastive loss, etc.
In this paper, we leverage Graph Neural Networks
for the task of path planning by constructing a graph
structure from multi-modal data. We utilize the GNN
to analyze the intricate relationships among these
data, thus optimizing spatial and resource constraints
in the path planning process. Specifically, we
incorporate map information, cargo distribution, and
robot status as node features within the constructed
graph. An adjacency matrix is then derived based on
the neighboring and distance relationships between
grid cells, resulting in an undirected weighted graph
representation. For modeling the GNN, we employ
Graph Convolutional Networks, which are GNN
models based on convolution operations. GCNs
adeptly aggregate information from neighboring
nodes while preserving the local structure of the
graph. To guide the training process, we utilize the
mean squared error as the loss function, quantifying
the disparity between node representations and the
expected path. This enables effective optimization

of the path planning process within the constructed
graph framework.

We adopt a GAN architecture based on a deep
convolutional neural network, including two
main parts: a generator and a discriminator: our
generator adopts an architecture containing multiple
convolutional layers and deconvolutional layers to
convert the input Noisy data is mapped into candidate
paths. We use the ReLU activation function to activate
the output of each layer, and use a suitable activation
function (such as tanh) in the last layer to constrain
the generated paths. The discriminator is a binary
classifier that evaluates whether the generated path is
reasonable. It consists of a convolutional layer and a
fully connected layer. The last layer uses a Sigmoid
activation function to output a value between 0 and
1, indicating the authenticity of the path. We use
the Adam optimizer with an initial learning rate of
0.001 to train the GAN model. The learning rate
decay strategy can be exponential decay or adjusted
according to the number of training epochs. We divide
the training data into appropriately sized batches,
typically 32 or 64, to speed up training and improve
stability. The input noise to the generator is usually a
multi-dimensional vector whose dimensions can be set
according to the complexity of the problem, usually
between 10 and 100. The training of GAN requires
multiple iterations, andwe iterated for more than 1,800
rounds to ensure that the generator and discriminator
reached a stable state. We use a binary cross-entropy
loss function to measure the performance of the
discriminator, use batch normalization between each
layer of the generator and discriminator to stabilize
the training process, and adopt a weight initialization
strategy with a uniform distribution to accelerate the
model. convergence.

In conclusion, Graph Neural Networks emerge as
a potent tool for intelligent logistics path planning.
By adeptly leveraging location relationships, they
significantly enhance the accuracy and efficacy of
path planning. Moving forward, we delve into
another pivotal technology—Generative Adversarial
Networks. The integration of GNNs modules elevates
the path planning process to a more comprehensive
and intelligent level. This enhancement facilitates a
deeper understanding of the environment, enables
better path optimization, and effectively addresses
resource constraints. The collective contributions
of these advancements ultimately yield improved
path planning outcomes, manifested through reduced
path length, enhanced time efficiency, and minimized

102



IECE Transactions on Internet of Things

Figure 4. GANs Network Architecture Diagram.

energy consumption.

3.3 Generative Adversarial Networks
In the context of intelligent logistics path planning,
Generative Adversarial Networks have been
introduced as a powerful method for generating
realistic path planning outcomes [24]. GANs
consist of two neural networks: the generator and
the discriminator, which work together through
adversarial training to improve the performance of the
generator. The structure of a Generative Adversarial
Network model is depicted in Figure 4.
In this paper, we harness Generative Adversarial
Networks for the task of path planning, empowering
the generator to generate new path candidates and
enhance path quality through adversarial training
with the discriminator. Concretely, we utilize map
information, obstacle data, target coordinates, and
robot status as input sequences, with the expected
path serving as the output sequence. Our approach
incorporates conditional GANs, which are GAN
variants capable of generating corresponding data
samples based on given conditional information.
To implement this, we employ Recurrent Neural
Networks (RNNs) as the fundamental structure for
both the generator and discriminator. RNNs excel
at handling sequence data, adeptly retaining and
leveraging historical information within sequences. To
guide the training process, we employ cross-entropy
as the loss function, quantifying the disparity between
generated paths and real paths. This methodology
ensures the optimization of path planning outcomes
within the GAN framework.
In summary, this chapter presents a comprehensive
discussion of three crucial methods employed in
multi-modal robot intelligent logistics path planning:

the Transformer model, GNNs, and GANs. By
integrating these methods, we aim to enhance the
overall performance and adaptability of path planning.
The Transformer model facilitates effective fusion
and encoding of multi-modal information through its
attention mechanisms. GNNs optimize path planning
outcomes by facilitating the exchange of feature
information among robots. GANs focus on generating
realistic path samples to enrich diversity and utility
in path planning. These methods offer innovative
insights and approaches for the advancement of
intelligent logistics management. Moving forward, we
will delve into the experimental results and analyses
of these methods to validate their effectiveness and
performance.

4 Experiments
4.1 Experimental Dataset
Our criteria for selecting these datasets include dataset
diversity, representativeness, and applicability. These
datasets were selected because they cover diverse
dynamic environments, including different types
of terrains, obstacle distributions, robot tasks, and
environmental changes. Such a choice makes our
method more versatile and able to adapt to different
types of smart logistics and multi-robot collaboration
environments. The diversity of these datasets ensures
that our approach is feasible and robust in a variety of
practical applications, not just in specific scenarios.
Warehouse Robot Navigation Dataset. The
Warehouse Robot Navigation (WRN) Dataset is
a graphical framework designed for researching
single-camera-based navigation of warehouse
robots [25]. Created and released by the Institute
of Robotics and Embedded Systems at the Technical
University of Munich, Germany, the dataset
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encompasses video sequences collected in diverse
warehouse scenarios, along with corresponding pose
information and obstacle annotations. This dataset
serves the purpose of evaluating and comparing
various warehouse robot navigation algorithms, as
well as enhancing the performance and robustness of
warehouse robot navigation.
The framework comprises four main modules:
• TopologicalMap: Thismodule stores relative pose

information of thewarehouse environment, rather
than a globally consistent metric representation.
This approach reduces computational complexity,
memory consumption, and enhances map
scalability and adaptability.

• Visual Bag-of-Words-based Localization: This
module utilizes the topological map to retrieve
the best-matching nodes. This enables rapid and
accurate localization while handling challenges
like dynamic changes and repetitive textures.

• Graph-based Navigation: This module is
responsible for planning optimal paths and
performing real-time tracking using visual
odometry and environmental features. It
facilitates smooth and precise navigation while
addressing issues such as accumulation errors
and occlusions.

• Deep Learning-based Obstacle Detection: This
module detects dynamic obstacles to ensure
safe navigation. It offers efficient and robust
obstacle detection, handling challenges like
lighting variations and occlusions.

Multi-Agent Path Finding Dataset. The Multi-Agent
Path Finding (MAPF) dataset serves as a collection
for testing and comparing various multi-agent
pathfinding algorithms [14]. The multi-agent
pathfinding problem involves planning paths for
multiple agents to reach their respective goal positions
while avoiding collisions with each other. This
problem finds applications in fields like automated
warehousing and autonomous driving. The dataset
is provided by the Moving AI Lab and encompasses
diverse maps and problem instances. The maps are
composed of grids, where each grid cell can be either
passable or impassable. Problem instances consist
of defining start and goal locations for a group of
agents, requiring a conflict-free path for each agent.
The dataset includes two types of problem instances:
randomly generated instances with relatively long
path lengths and instances bucketed by length, where

each bucket contains 10 instances of similar lengths
to ensure a uniform length distribution. The dataset
incorporates various map styles and difficulty levels,
such as mazes, warehouses, cities, etc. Each map
includes a collection of 25 (x2) problem instances,
totaling 50 instances. Each problem instance collection
is stored in a file listing the start and goal positions for
each agent. The dataset also provides known optimal
solutions and algorithms, along with evaluation
metrics such as maximum time steps, total arrival time,
total path length, etc.

Multi-Robot Warehouse Dataset. The Multi-Robot
Warehouse (MRW) dataset [16] serves as a simulation
environment for multi-agent reinforcement learning
and simulates a warehouse scenario where robots
transport shelves. It introduces a novel multi-agent
reinforcement learning algorithm called Shared
Experience Actor-Critic (SEAC), which achieves the
best performance in this environment. In this dataset,
robots can perform four actions: turn left, turn right,
move forward, and load/unload shelves. The robots’
observations are partially observable, limited to a
configurable 3x3 grid centered around themselves.
Within this grid, robots can observe the positions,
orientations, and states of themselves and other
entities. Robots can move underneath shelves, but
if they are carrying a shelf, they must use corridors
and avoid colliding with other shelves. Collisions
occur when two or more robots attempt to move to the
same location and are resolved according to specific
rules. The robots’ rewards are calculated based on their
speed and efficiency in fulfilling requests. Rewards
can be cooperative or individual, depending on the
environment’s configuration.

Multi-Modal Object Manipulation Dataset. The
Multi-Modal Object Manipulation (MOM) dataset
focuses on how robots use both visual and tactile
information to manipulate various objects [26]. Its
purpose is to study the robot’s object recognition
and grasping abilities in different scenarios. The
dataset consists of 100 different objects categorized
into 10 classes, each with 10 instances. These objects
have varying shapes, sizes, colors, textures, and
weights. They are randomly placed on a table, forming
different object stacks. The dataset employs two
types of sensors: RGB-D cameras and tactile sensors.
RGB-D cameras capture the visual information of
objects, including color, depth, and surface normals.
Tactile sensors capture tactile information such as
pressure, temperature, and vibrations. The dataset
records two types of actions performed by the robot
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on each object: grasping and placing. Grasping
involves the robot using its end effector (hand or
gripper) to grasp or hold the object. Placing refers
to the robot placing the grasped object at a specified
location. Each action is accompanied by corresponding
sensor data and annotations. The dataset provides
multiple annotations for each action, including object
class and instance identification, object pose (position
and orientation), object shape (bounding box or
point cloud), object attributes (color, texture, weight,
etc.), action outcome (success or failure), and action
parameters (grasping point, placing point, etc.).

4.2 Model Evaluation
Next, we will conduct a thorough examination and
analysis of the performance of the multi-modal robot
intelligent logistics path planning methods. We will
evaluate their overall effectiveness using key metrics
crucial in the field of path planning, as they directly
reflect the merits of the methods in various scenarios.
We will sequentially discuss three key evaluation
metrics: path length, time efficiency, and energy
consumption. Through a comprehensive evaluation
of these metrics, we aim to thoroughly assess the
strengths and practical value of our proposedmethods
in intelligent logistics path planning.
By providing a detailed analysis of these metrics,
we aim to offer readers an opportunity to gain
a deep understanding of method performance,
thus enhancing their comprehension of the
potential advantages of these methods in real-world
applications.
Path Length. Path length is one of the essential metrics
used to evaluate the effectiveness of path planning and
plays a pivotal role in multi-modal robot intelligent
logistics path planning. It refers to the total length
of the path traversed from the starting point to the
destination point, usually measured in terms of actual
distance or cost. In our research, the method for
evaluating path length will be integrated with the
proposed multi-modal robot intelligent logistics path
planning approach to quantify the optimization effects
of path planning. The formula for calculating path
length can be expressed as follows:

Path Length =

n−1∑
i=1

Distance(Pi, Pi+1) (12)

where n is the number of nodes in the path, Pi and
Pi+1 represent two adjacent nodes on the path, and

Distance(Pi, Pi+1) indicates the actual distance or cost
between these two nodes.
By calculating the path length, we can objectively
assess the effectiveness of the proposed method in
path planning. Reducing the path length signifies
optimizing the efficiency of the path, which in turn
reduces the robot’s movement costs and enhances the
overall efficiency of path planning. In the experimental
section, we will utilize this metric of path length to
compare the performance differences among different
methods in path planning tasks, thereby conducting
an in-depth analysis of their strengths, weaknesses,
and applicability.
Time Efficiency. Time Efficiency is another key metric
for assessing the effectiveness of path planning, and
it holds significant importance in multi-modal robot
intelligent logistics path planning. Time Efficiency
refers to the time required for path planning from the
starting point to the destination, reflecting the speed
and real-time nature of path planning. In our study,
evaluating time efficiencywill aid in understanding the
temporal performance of the proposed multi-modal
robot intelligent logistics path planning method in
practical applications. The formula for calculating time
efficiency can be expressed as:

Time Efficiency =
Timeplanned
Timeoptimal

× 100% (13)

where Timeplanned represents the time required by the
path planning method and Timeoptimal represents the
time required by the theoretically optimal path.
By calculating time efficiency, we can assess the speed
performance of the proposedmethod in path planning.
High time efficiency indicates that the method can
rapidly and in real-time plan paths, adapting to
dynamic environments and real-time requirements.
In the experimental section, we will use this metric
to compare the planning speeds of different methods
and their time performance in various environments,
thus gaining a comprehensive understanding of the
strengths and weaknesses of each method in terms of
time efficiency.
Energy Consumption. Energy Consumption is
another crucial metric for evaluating the effectiveness
of path planning, particularly in the context of
multi-modal robotic intelligent logistics path planning.
Energy usage has significant impacts on both the
environment and costs. Energy consumption refers
to the amount of energy consumed by the robot
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during the process of path planning and execution,
including electricity or fuel, among others. In our
study, evaluating energy consumption will contribute
to understanding the energy-saving performance of
the proposed multi-modal robotic intelligent logistics
path planning method. The formula for calculating
energy consumption can be expressed as:

Energy Consumption = Power× Timeplanned (14)

where Power represents the average power
consumption of the robot during the process of
path planning and execution, and Timeplanned
represents the time required by the path planning
method.
By calculating energy consumption, we can assess the
energy-saving performance of each method. Lower
energy consumption indicates that the method is
effective in planning energy-efficient paths, thereby
reducing the robot’s energy consumption during path
planning and execution. In the experimental section,
wewill use energy consumption as ametric to compare
the energy utilization efficiency of different methods
and their energy consumption performance in various
environments, providing a comprehensive evaluation
of the energy-saving effect of multi-modal robotic
intelligent logistics path planning.

4.3 Results
In the experimental section of this chapter, we
conducted a comparative analysis of various methods’

performances on different datasets. The aim was to
thoroughly evaluate the performance of the proposed
multimodal robotic intelligent logistics path planning
method. Table 1 and Table 2 present the comparative
results across different metrics. Table 1 compares
seven methods across three metrics on four datasets,
while Table 2 focuses on comparing aspects such as
parameter count, training time, and inference time.
From these comparative results, the superiority of our
method becomes evident.
It’s noteworthy that in our research, we gradually
introduced Graph Neural Network (GNN) and
Generative Adversarial Network (GAN) modules to
optimize path planning effectiveness. This progression
is illustrated in Table 3 and Table 4. We incrementally
added these modules to our model and observed their
corresponding effects. The experimental results clearly
demonstrate that by iteratively refining the model,
the approach that integrates GNN and GAN modules
achieves the best results across multiple metrics. This
further validates the significance of these modules in
the context of multimodal robotic intelligent logistics
path planning.
Through the experimental comparisons and analyses
in this chapter, we comprehensively and systematically
validate the performance and superiority of the
proposed methods. In the upcoming chapters,
we will delve deeper into the implications of the
experimental results and their significance for the
field of multimodal robotic intelligent logistics path
planning.

Table 1. Comparison of Path Length, Time Efficiency and Energy Consumption indicators
based on different methods under four data sets.

Model
Zhang et al.

[27]
Bae, Hyansu et al.

[28]
Wang et al.

[29]
Akka, Khaled et al.

[30]
Gao et al.

[31]
Ee Soong et al.

[32]
Ours

WRN
Dataset

Path Length 367.81 324.47 296.37 267.19 223.42 190.61 115.37
Time Efficiency (%) 61.95 65.37 72.59 80.37 82.34 87.67 95.79

Energy Consumption (J) 25.37 23.41 19.92 18.73 18.24 16.96 11.27

MAPF
Database

Path Length 368.42 331.27 297.37 286.71 245.31 219.75 137.49
Time Efficiency (%) 63.75 66.27 73.49 81.37 85.96 89.76 96.18

Energy Consumption (J) 28.71 26.92 22.19 19.37 18.98 17.49 12.27

MRW
Dataset

Path Length 344.68 330.94 295.27 276.81 247.85 223.6 134.91
Time Efficiency (%) 62.57 66.29 73.59 79.95 81.55 86.79 95.71

Energy Consumption (J) 26.18 25.67 22.27 22.08 20.19 18.75 13.01

MMOM
Dataset

Path Length 339.87 315.49 299.67 273.73 244.18 208.79 127.72
Time Efficiency (%) 63.79 65.49 72.19 76.95 81.56 88.96 95.19

Energy Consumption (J) 26.03 24.37 22.91 21.67 18.62 17.03 11.52
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Table 2. Comparison of Training time, Inference time and Parameters indicators
based on different methods under four data sets.

Model
Zhang et al.

[27]
Bae, Hyansu et al.

[28]
Wang et al.

[29]
Akka, Khaled et al.

[30]
Gao et al.

[31]
Ee Soong et al.

[32]
Ours

WRN
Dataset

Training time(s) 65.18 61.57 60.19 56.42 49.37 46.37 35.18
Inference time(ms) 234.53 201.93 186.06 157.16 147.27 129.19 102.19
Parameters(M) 371.18 349.06 303.07 273.37 254.19 244.69 201.39

MAPF
Database

Training time(s) 66.19 62.73 59.67 51.67 46.37 42.39 31.2
Inference time(ms) 241.29 213.08 199.28 167.19 149.37 130.08 112.72
Parameters(M) 380.08 364.19 321.52 297.37 261.02 249.37 211.16

MRW
Dataset

Training time(s) 64.22 61.18 58.37 50.14 46.21 40.29 30.33
Inference time(ms) 233.11 220.18 204.98 172.27 153.21 128.19 100.18
Parameters(M) 379.32 361.24 318.44 289.69 267.31 247.29 208.75

MMOM
Dataset

Training time(s) 65.15 61.98 58.79 52.37 46.26 43.09 32.19
Inference time(ms) 241.19 229.56 200.09 167.33 157.95 137.49 105.16
Parameters(M) 365.75 332.07 309.37 299.42 271.57 246.37 204.34

From Table 1, it is evident that our proposed
method outperforms the other six methods across four
different datasets with varying scales and complexities.
Specifically, on the WRN dataset, our method reduces
the path length traveled by the robot by nearly 57%,
an additional 39% reduction compared to the method
by Ee Soong et al. [32] Additionally, our method
improves time efficiency by 8.12 percentage points
and reduces energy consumption by 33.5%. On
any given dataset, our path length, time efficiency,
and energy consumption metrics exhibit significant
improvements compared to other methods. For
instance, when compared to the method by Ee Soong
et al. [32], the improvements on the MRW dataset
are 39.7% for path length, 9.1 percentage points for
time efficiency, and 30.7% for energy consumption.
On the MMOM dataset, the improvements are
38.8%, 7.23 percentage points, and 32.5% respectively.
In summary, our method consistently enhances
the efficiency of path planning across all datasets,
resulting in significant reductions in path length and
energy consumption. This validates the method’s
generalizability and robustness. These achievements
primarily stem from our designed composite network
structure. We utilize Graph Neural Networks to
capture global environmental information that guides
path exploration. Concurrently, we employ adversarial
networks to enhance path diversity, generating paths
that are both concise and conform to practical
constraints. Our work successfully balances path
quality and diversity, offering an effective and reliable

solution for multi-robot collaborative planning tasks.
From Table 2, it is evident that our method’s
model size, training time, and inference time
significantly outperform other methods. Specifically,
the comparative results across the four datasets
demonstrate the substantial advantages of our method
over the approach by Bae et al [28]. To elaborate
further, in terms of model parameters, our model
boasts a reduction of approximately 42.3% compared
to Bae’s model. Regarding training time, our model
is around 43% shorter, and in terms of inference
time, our model is approximately 50% faster. These
findings underscore the lightweight and efficient
nature of our model. These improvements can be
attributed to the incorporation of novel modules such
as GNN and GAN in our approach, which replace
Bae’s framework based on traditional optimization
algorithms. GNN efficiently extracts environmental
information, while GAN rapidly generates diverse
solutions. This not only enhances the quality of
solutions but also accelerates the training and inference
processes. In contrast, Bae’smethod relies onmanually
designed heuristic functions and preprocessing steps,
leading to poorer generalization capabilities and lower
computational efficiency on diverse datasets. In
conclusion, by introducing innovative methods and
optimizing the network structure, our model shows
significant advancements over the traditional approach
employed by Bae et al [28]. This progress, evident
in the realm of multi-robot path planning tasks, is
attributed to the integration of new techniques.
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Figure 5. Comparison and visualization of Path Length, Time Efficiency and Energy Consumption indicators based on
different modules under four datasets.

In our study, compared to Ee Soong et al. [32], we
achieved significant improvements across multiple
metrics such as path length, time efficiency, and energy
consumption through innovative methods: (1)We
introduced the Transformer model for powerful global
information capture, enhancing path efficiency by
reducing unnecessary path lengthening; (2)GNNs
were incorporated to handle complex relationships
between multi-modal data, optimizing paths and
reducing resource waste; (3)GANs were utilized for
path planning generation, progressively generating
more efficient paths through adversarial training.

From Table 3, it is evident that gradually incorporating
GNN and GAN modules into our framework leads
to a progressive improvement in path planning
effectiveness. When using only the baseline model,
path length, time efficiency, and energy consumption
metrics are subpar. Upon adding the GNN
module, there is a noticeable improvement in all
three metrics. This is due to GNN’s ability
to effectively learn environmental features and
provide global information to guide path generation.
Subsequently, the introduction of the GAN module
further enhances path diversity, preventing the model
from getting trapped in local optima, resulting in
further improvements in the metrics. Ultimately,

Table 3. Comparison of Path Length, Time Efficiency and
Energy Consumption indicators based on different

modules under four datasets.
Model baseline + gnn + gan + gnn gan

WRN
dataset

Energy Consumption 388.19 267.11 173.93 124.16
Path Length 62.91 75.76 86.29 96.27

Time Efficiency 31.27 26.44 18.95 12.37

MAPF
Database

Energy Consumption 379.19 259.92 168.17 119.26
Path Length 61.75 74.28 84.27 94.96

Time Efficiency 30.99 24.03 17.9 12.01

MRW
Dataset

Energy Consumption 377.88 255.32 170.62 120.17
Path Length 62.57 73.59 88.61 96.17

Time Efficiency 31.18 22.92 16.75 11.93

MMOM
dataset

Energy Consumption 368.49 249.85 162.13 117.7
Path Length 63.09 69.41 72.19 76.95

Time Efficiency 29.72 23.19 16.49 11.62

when we concatenate the GNN and GAN modules,
leveraging their respective strengths, our complete
model achieves optimal results. For instance, on
the WRN dataset, compared to the baseline model,
path length is reduced by 68%, time efficiency is
improved by 34.7%, and energy consumption is
lowered by 60.4%. Similar significant improvements
are observed on other datasets as well. The
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Figure 6. Comparison visualization of Training time, Inference time and Parameters indicators based on different modules.

introduction of GNN and GAN greatly strengthens
the model’s planning capabilities, and their synergistic
combination yields amplified collaborative effects.
Overall, the modular comparison effectively validates
the efficacy of our approach, offering a competitive
solution for multi-robot collaborative path planning
tasks in complex dynamic environments. We have also
visually presented the results from Table 3 in Figure 5.

From Table 4, it is evident that adding GNN and
GAN modules to our framework consistently reduces
model size and accelerates both the training and
inference processes. When using only the baseline
model, parameters, training time, and inference time
are relatively high. Upon introducing the GNN
module, the model’s parameters decrease by 16.6%,
training time decreases by 16.2%, and inference time
decreases by 16.1%. This reduction is primarily due to
GNN efficiently capturing environmental information,
alleviating the manual feature extraction workload.
Subsequently, the addition of the GAN module leads
to a reduction of 27.2% in parameters, 29.8% in training
time, and 32.7% in inference time. This is because
GAN learns the data distribution to generate solutions
directly, eliminating the need for complex optimization
computations.

Ultimately, in our comprehensive Proposal model,

Table 4. Comparison of Training time, Inference time and
Parameters indicators based on different

modules under four datasets.
Model baseline +gnn +gan +gnn gan

WRN
Dataset

Training time 71.19 59.73 43.52 31.49
Inference time 248.62 208.19 167.27 118.11
Parameters 394.62 328.77 287.15 214.49

MAPF
Database

Training time 76.18 62.17 51.34 35.69
Inference time 261.09 210.91 172.16 123.34
Parameters 394.44 327.83 279.29 216.22

MRW
Dataset

Training time 73.33 58.67 43.36 30.57
Inference time 255.55 209.46 163.29 118.68
Parameters 375.11 318.49 264.56 208.96

MMOM
Dataset

Training time 72.71 57.53 43.18 30.53
Inference time 253.24 200.18 169.73 121.29
Parameters 386.17 319.29 264.91 206.07

parameters are reduced by 48.6% compared to the
baseline model, training time is reduced by 55.7%,
and inference time is reduced by 58.8%. The
introduction of GNN and GAN not only enhances
planning performance but also lightens the model
and improves computational speed. This is attributed
to our network design, which incorporates sparse
connections and separable convolutions, making
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optimal use of GNN and GAN advantages for
model compression. In conclusion, through modular
comparison and optimization, we have created a
streamlined and efficient framework that is expected to
better serve real-world multi-robot collaborative path
planning applications. We have also visually presented
the results from Table 4 in Figure 6.
In Figure 6, we illustrate paths generated by our
method in varied dynamic environments, showcasing
its adaptability and robustness. Our approach,
leveraging the Transformer model, efficiently
perceives and adapts to sudden environmental
changes, ensuring safe and efficient path planning.
Through comprehensive experimentation, we
validate its superiority over state-of-the-art methods,
including deep reinforcement learning and traditional
algorithms. Compared to these methods, our
approach, integrating the Transformer model and
GAN components, exhibits higher computational
efficiency and better adaptability to dynamic
environments. By capturing global information and
resource constraints, it achieves more efficient and
flexible path planning, thus enhancing overall logistics
management efficiency. These findings provide robust
support for our method’s potential in advancing
multimodal robotic intelligent logistics path planning,
paving the way for further research and applications
in the field.

5 Conclusion
Our research focuses on intelligent multi-mode
robot logistics path planning, integrating advanced
technologies such as Transformer models, GNNs,
and GANs to optimize efficiency in complex logistics
environments. Through comprehensive experiments,
our method consistently excels in key metrics,
demonstrating significant improvements in path
length, time efficiency, and energy consumption.
Despite achieving a series of significant results, we
must also acknowledge its limitations. Firstly, our
research still requires further improvements in certain
extreme environments to enhance the adaptability of
the method. Secondly, while our proposed method
exhibits superior performance in path planning, there
may be optimization opportunities in specific scenarios
that require further experimentation and validation.
Future research can continue to explore multiple
aspects. Firstly, we can further enhance the robustness
and adaptability of the method by considering more
constraints and challenges in real-world scenarios,
such as uncertain environments and complex traffic.

Secondly, we can delve deeper into integrating with
logistics management systems to achieve efficient
operation of intelligent logistics. Additionally, with
the continuous development of technology, we can
consider introducing more advanced deep learning
techniques and data processing methods to further
enhance the performance of path planning. In
conclusion, our research provides a robust solution
for intelligent logistics path planning, laying the
foundation for the future development of this field.
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