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Abstract
Monitoring the health condition of wind turbines is
crucial to ensure the safety and efficient operation
of wind farms. Wireless sensor networks (WSNs)
provide an economical and effective solution for
such monitoring. However, when sensors detect
faults in wind turbines, traditional WSN routing
protocols often lead to redundant data transmission,
resulting in energy waste. To address this issue,
an event-triggered energy-efficient wireless routing
protocol (EEWRP) is proposed specifically in this
paper for wind turbine fault monitoring. The
protocol improves the distributed energy-efficient
clustering algorithm (DEEC) by first identifying
the type of event and then using an adaptive
dynamic sliding window method to determine the
event-triggered combination threshold. The system
only wakes up nodes and triggers data transmission
in the case of abnormal conditions, effectively
reducing data traffic and lowering network energy
consumption. Simulation experiments show that
the network lifetime of the EEWRP algorithm is
increased by about 80% and 20% compared to the
low-energy adaptive clustering hierarchy (LEACH)
and DEEC algorithms, respectively, and the data
transmission volume is about 8.74 times and 1.07
times that of the LEACH and DEEC algorithms,
respectively. The EEWRP algorithm can effectively
reduce the energy consumption, extend the network
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lifetime, and enhance the capability of data packet
transmission.
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1 Introduction
Wind turbines have been playing an increasingly
important role in the global transition to renewable
energy sources. Their efficient and reliable operation
is crucial for maximizing energy production while
minimizing environmental impact [1, 2]. However,
operating in harsh dynamic environments, wind
turbines are prone to various electrical, mechanical,
and structural faults [3–5]. Early detection and
diagnosis of these faults are crucial for preventing
catastrophic failures, ensuring personnel safety, and
optimizing maintenance plans. Wireless Sensor
Networks (WSNs) provide an economical, efficient,
and scalable solution for comprehensive health
monitoring of wind turbines [6–8]. By deploying
sensors at critical locations on the turbine, WSNs
can collect real-time data on key parameters such as
vibration, temperature, pressure, and current. This
data can then be analyzed to identify anomalies
and diagnose potential faults, enabling proactive
maintenance and preventing downtime.

Although WSNs hold significant promise in wind
turbine fault monitoring, traditional data routing
protocols often face challenges in resource-constrained
environments [9]. These protocols typically transmit
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data periodically without considering its significance,
leading to redundant data traffic and excessive energy
consumption. This is particularly crucial in wind
turbine applications, as sensor nodes rely on limited
battery power, and efficient communication is essential
for the long-term sustainability of the network.
To address these limitations, an event-triggered
energy-efficient wireless routing protocol is proposed
in this paper specifically for the fault monitoring
of wind turbines. The proposed protocol does
not transmit data periodically but triggers data
transmission only after determining the type of
event and when the decision variable exceeds a
preset threshold, significantly reducing unnecessary
data transmission, saving energy, and extending the
network’s lifespan.

An event-triggered routing protocol for wind turbine
fault monitoring is proposed in this paper, aiming
to optimize energy efficiency while maintaining
reliable data transmission. The protocol first
determines the type of event and then establishes an
event-trigger threshold based on an adaptive threshold
determination method using a sliding window. Data
will only be transmitted when the monitored data
exceeds a certain threshold and the rate of change
exceeds the rate of change threshold, reducing energy
consumption at the source of transmission to achieve
energy saving. The structure of this paper is as
follows: The second part introduces related work, the
third part introduces the traditional DEEC algorithm,
the fourth part elaborates in detail on the proposed
event-triggered energy-efficient wireless monitoring
routing protocol algorithm, the fifth part presents
experimental results and analysis, and the final part is
the conclusion.

2 Related Work
Some studies have explored the use of WSNs for fault
monitoring in wind turbines. Z.Herrasti [10] designed
a sensor for monitoring the condition of wind turbines.
Various vibration signals were used in references [11–
13] for anomaly detection in wind turbine bearings,
gearboxes, and generators. Employed Acoustic
emission signals were used in references [14, 15]
for early fault monitoring of gearboxes and bearings.
Janine [16] proposed a framework for fault detection
and diagnosis in wind turbines using WSNs and
machine learning. The application and development
of machine learning in wireless monitoring of wind
turbine faults were detailed in references [17, 18].
These works have demonstrated the effectiveness of

wireless sensor networks in capturing crucial data
for fault identification. However, most studies focus
more on the collection and analysis of monitoring data,
neglecting the energy efficiency of data transmission.

For wireless sensor networks used for monitoring
mechanical faults, obtaining useful information and
ensuring low network power consumption are key
constraints. Event triggering provides a good reference
for reducing network power consumption. The
Event-Triggered Mechanism (ETM) can effectively
reduce the sampling rate and communication overhead
while ensuring system performance [19]. Meisam [20]
applied the ETM to WSNs, determining the trigger
threshold based on historical information to decide
whether to discard data packets, thereby achieving
an efficient data aggregation method and extending
the network life. The event-triggered threshold
is set based on the chi-square distribution in
references [21, 22], which was composed of the
difference between the value measured at the current
and that measured at the last sampling time. When the
value of the event-triggered decision variable exceeded
the threshold, an event would be triggered, and
observation sampling would be performed. Wang [23]
proposed an event-triggered routing protocol that
determined whether to transmit data based on the
severity of the event and the preset energy of the node.
These three references have achieved certain results by
reducing network power consumption and extending
network life through methods such as historical data,
chi-square distribution of monitoring data before and
after, and setting event priorities. Fu [24] designed a
high-frequency sensor, using the probability density
of event occurrence to set the trigger threshold.
When the monitoring value exceeded the threshold,
the sensor is awakened for data transmission,
effectively reducing the amount of transmitted data.
Habibi [25] proposed a Bayesian inference-based
fault detection method for the transmission chain
sensor of wind turbines, obtaining the sensor fault
probability through the Expectation-Maximization
(EM) algorithm and particle filtering. The above
methods either sort the monitoring data or use a single
model to estimate the expected value or distribution of
the target variable, and then determine the threshold
to trigger transmission and reduce network power
consumption. They don’t fully consider the impact
of threshold setting on network life. Obviously, the
setting of the trigger threshold is very critical. A
threshold that is too large may miss a lot of useful
information, while a threshold that is too small will
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cause the system to be too sensitive to noise, resulting
in more data transmission and increased network load.
This paper uses the idea of a composite threshold,
combining the change threshold and the rate of
change threshold of wind turbine monitoring data. By
considering the absolute size and change rate of the
monitoring data, it identifies abnormal events. When
it is a general event, and the monitoring data exceeds
the threshold and the rate of change is also significant,
the event is triggered, reducing false positives caused
by noise or other non-event factors.

3 The distributed energy-efficient clustering
Algorithm

The distributed energy-efficient clustering algorithm
(DEEC) is a distributed energy-saving clustering
routing protocol designed for heterogeneous
WSN [23]. The protocol aims to enhance the network’s
energy efficiency and extend its lifespan through a
clustering mechanism and the dynamic selection of
cluster heads.

In the two-level heterogeneous network of the DEEC
protocol, there are (1−m)n common nodes andm×n
advanced nodes. The initial energy of the common
nodes is E0, and the initial energy of the advanced
nodes isE0(1+a), where a andm are preset percentage
variables that determine whether a node functions as a
common node or an advanced node. The total energy
consumption within the network is expressed as:

ETotal = n(1−m)E0 + n×mE0(1 + a)

= nE0(1 + am)
(1)

In the sensor network, nodes are divided into different
clusters, with one node in each cluster elected as the
cluster head (CH), responsible for collecting data from
other nodes within the cluster and transmitting it to
the base station. The selection of the CH is based
on the energy level of the nodes to ensure balanced
energy consumption. The probability of a common
node becoming a CH is:

P (i) =
EiPopt

Eavg(1 + am)
(2)

Among them, P (i) represents the probability of a node
becoming a CH; Popt is an optimization parameter
that adjusts the selection probability of the CH; Ei is
the remaining energy of the node; Eavg is the average
energy of all nodes in the network; n is the total number
of nodes in the network.

The probability of a node becoming a CH is related to
the threshold as follows:

T (si) =


P (i)

1−P (i)r mod 1
P (i)

, si ∈ G

0, otherwise
(3)

where G represents the set of nodes qualified to
become the CH in the r-th round, and si is a node
in set G.

4 Proposed Method
4.1 Proposed Method
In a wind farm, each wind turbine is monitored
by a certain number of sensor nodes placed on its
key components. These sensor nodes obtain the
parameters of the running states of components, and
form a network through a specific network topology
for data transmission.

Generally, fault monitoring requires long-term,
uninterrupted monitoring of equipment status, and a
high sampling frequency is also necessary to capture
early fault signals. However, these requirements
conflict with the need for low power consumption.
To overcome these challenges, an event-triggered
mechanism is needed to operate the system in a
low-power mode when no fault events occur, allowing
for planned, longer intervals for data sampling. In the
event of an anomaly, the system should demonstrate
high performance and wireless communication
capabilities.

For operating wind turbines, vibration signals are
often rich and distributed over a wide frequency
range due to the influence of environmental wind
fields and component coupling. These noises may
cause issues such as false alarms or high loads.
To address these issues and ensure stable system
operation, appropriate thresholds are needed to
trigger data transmission when necessary. In light
of this, an event-triggered energy-efficient wireless
sensor network routing protocol is designed in
this paper. The protocol is an improvement upon
the DEEC protocol, incorporating an event-trigger
mechanism that selectively forwards data that meets
set conditions. Data aggregation is performed before
forwarding, effectively reducing energy consumption
during transmission, thereby achieving energy-saving
goals. The system architecture is shown in Figure 1.
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Figure 1. Schematic of an event-triggered energy-aware
wireless sensing system.

As shown in Figure 1, sensors are installed or
embedded at various locations such as the bearings,
gearbox, turbine, and electrical circuits of the wind
turbine to detect values like vibration, temperature,
and current. After the event stream received by the
sensors is filtered to reduce noise, it is compared
with predefined thresholds to determine if there is
any impact. When a fault occurs, the trigger signal
from the comparator’s output wakes up the processor
to record signals from the data stream, extracting
the required parameters. The processor then wakes
up the wireless transmission module and wirelessly
transmits the extracted parameters to the host for
impact assessment. Afterwards, the processor and
wireless transmissionmodule enter a low-powermode,
waiting for subsequent events.

4.2 The Event-Triggered Energy-Efficient Wireless
Routing Protocol (EEWRP)

It is assumed that the sensors for fault monitoring
of wind turbines mainly include types such as
current, pressure, temperature, vibration, and torque,
with event streams mainly includes current overload,
excessive pressure, excessive temperature, excessive
vibration, and excessive torque. Among these events,
current overload and excessive pressure are defined as
critical events, while the rest are defined as general
events. The new protocol is based on the DEEC
protocol, with an added event-trigger mechanism.
When the systemdetects a critical event, it immediately
transmits data to the base station. When the system
detects a general event, the system triggers data
transmission to the base station only when both the
measured data and its rate of change exceed the
corresponding thresholds. During data transmission,
if the distance between the node and the base station
is less than the distance threshold d0, the node directly
transmits the data to the base station. Otherwise, the
data is sent to the cluster head through a clustering
method, and then the cluster head forwards the

information to the base station. If there are no event
triggers in the system, it will periodically send data
information to the base station at set intervals. The
flowchart of this process is shown in Figure 2.

Figure 2. Algorithm flow chart.

4.3 Adaptive Threshold Determination Method
Based on Sliding Window

The adaptive threshold determination method based
on slidingwindow iswidely used in networked control
systems, especially in scenarios where resources are
limited or there is a high demand for real-time
performance. In WSNs, this method can reduce
unnecessary data transmission and extend the battery
life of sensors. Its core principle is to dynamically set
trigger conditions using historical information of the
system state [26]. In this method, a sliding window is
used to calculate the statistical parameters of the most
recent C data points, and these parameters are then
used to update the thresholds.

To obtain the threshold for event triggering, adaptive
event triggering conditions based on two key factors
are proposed in this paper. The first is the threshold
for data change. Each sensor node monitors specific
parameters related to potential faults. A predefined
threshold is set for each parameter, and an event
may be triggered when the measured value exceeds
the corresponding threshold, indicating a potential
anomaly. The second is the threshold for change
rate. A sudden change in parameter values may
also indicate the beginning of a fault. Statistical
methods are used to monitor the rate of change over
a specified time, in conjunction with the data change
threshold. For general events, if the rate also exceeds
the set threshold, an event will be triggered, which is
beneficial for filtering out environmental noise.
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The threshold for data change can be determined by
the following formula:

Vt =
1

L

L∑
i=1

vi + k1

√√√√ 1

L− 1

L∑
i=1

(
vi −

1

L

L∑
i=1

vi

)2

(4)

The threshold for change rate can be expressed as:

Rt =
1

L− 1

L−1∑
i=1

|vi+1 − vi|+

k2

√√√√ 1

L− 2

L−1∑
i=1

(
|vi+1 − vi| −

1

L− 1

L−1∑
i=1

|vi+1 − vi|

)2

(5)

In the formula, vi represents the monitored value of
a node within the sliding window, L is the size of
the sliding window, and k1 and k2 are the adjustment
factors for the numerical threshold and the threshold
for change rate, respectively.

For each moment, every sensor parameter is compared
with the predefined threshold that represents the
normal operating range. For critical events, an event
is triggered when the measured value exceeds the
corresponding threshold:

ET1 = I(), if (vi > Vt) (6)

Using statistical methods to monitor the rate of change
of vi within a specified time period.

RCi(t) =
vi(t)− vi(t−∆t)

∆t
(7)

If the rate of change exceeds the predefined threshold
for change rate, it may trigger an event:

ET2 = I(), if (RCi(t) > Rt) (8)

Let I be the indicator function, which takes the value
of 1 if the condition is true, and 0 otherwise. From
this, it can be concluded that for general events, an
event is triggered when both the data change and the
rate of change exceed their thresholds. That is, the
combined thresholdmathematical logic formonitoring
data change and the rate of change is:

ET2 = I(), if (RCi(t) > Rt) (9)

This method ensures accurate fault detection, which in
turn triggers data transmission, thereby maximizing
the reduction of energy consumption.

5 Performance Evaluation
To demonstrate the effectiveness of the algorithm, the
performance of the LEACH, DEEC, and the EEWRP
protocol proposed in this paper are compared in terms
of network lifetime, residual energy per round, and
data transmission volume. The initial parameters of
the network are shown in Table 1.

Table 1. Settings of simulation parameters.
The parameter

name
The parameter

value
The network area/(m×m) 100×100

Number of nodes 100
Node initial energy/J 0.5

Send energy consumption ETX/(nJ·bit−1) 50
Received energy consumption ERX/(nJ·bit−1) 50

ξfs/(pJ·bit−1·m−2) 10
ξmp/(pJ·bit−1·m−2) 0.0013

Number of routing execution rounds 6000

Figure 3 illustrates changes in the number of node
deaths over time for the LEACH, DEEC, and EEWRP
algorithm. Table 2 shows the time of the first node
death (FND), the time when 50% of nodes have
died (HNA), and the network lifetime of the three
algorithms, respectively. It can be seen that the LEACH
algorithm leads to the first node death occurring
around 1000 rounds, with all nodes dying within
approximately 2000 rounds; for the DEEC algorithm,
the first node death occurs around 1400 rounds, with
all nodes dying within about 3000 rounds; for the
EEWRP algorithm, the first node death occurs around
1900 rounds, with all nodes dying within about 3600
rounds.

Figure 3. Graph of node death over time.

Table 2. Calculation results comparison of the three
algorithms.

The r name
of algorithm FND HNA The life

cycle
Data

transmission
LEACH 962 1620 1000-2000 1.59×104
DEEC 1405 2136 1400-3000 1.30×105
EEWRP 1896 2818 1900-3600 1.39×105

Figure 4 shows a comparison of the residual energy
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of the networks for the three algorithms. It can be
seen from the figure that compared to the DEEC
and LEACH algorithms, the EEWRP algorithm can
effectively extend the network lifetime and improve
energy efficiency.

Figure 4. Graph of residual energy over time.

Figure 5 compares the data transmission volume of
the three algorithms. It can be seen from the figure
that when all nodes have died, the LEACH algorithm
network has a data transmission volume of about
1.59×104 bits; the DEEC algorithm network has a data
transmission volume of about 1.30× 105 bits; and the
EEWRP algorithm network has a data transmission
on volume of about 1.39 × 105 bits. The total
data transmission volume is the highest for EEWRP,
followed by DEEC, and the least for LEACH. During
the data transmission process, the data transmission
volume of the EEWRP algorithm network is initially
less than that of the DEEC algorithm but becomes
more over time. This is because the EEWRP algorithm
employs an event-triggered mechanism, where data
is only transmitted to the base station when the
event trigger conditions are met, thus reducing the
transmission of redundant data. However, the EEWRP
algorithm has higher network energy efficiency and a
longer lifespan compared to the DEEC algorithm. As
the network lifetime extends, the data transmission
volume of the EEWRP algorithm will also increase.

Figure 5. Graph of data transmission over time.

Based on the analysis above, compared to the LEACH
algorithm, the EEWRP algorithm can improve the

network lifetime by about 80% and increase the data
transmission volume by about 8.74 times; compared to
theDEEC algorithm, it has improved by about 20% and
1.07 times, respectively, as shown in Table 2. Therefore,
compared to both the LEACH and DEEC algorithms,
the EEWRP algorithm has significant improvements
in terms of lifespan and data transmission volume.

6 Conclusion
This paper addresses the issues of redundant data
transmission and high energy consumption often
caused by traditional WSN routing protocols when
used for fault monitoring of wind turbines, by
proposing a new event-triggered energy-efficient
wireless routing protocol (EEWRP). Its effectiveness
has been validated by comparison with the
LEACH and DEEC algorithms, showing significant
improvements in aspects such as network lifetime,
energy consumption, and data transmission. The
newly proposed EEWRP algorithm increases the
network lifetime by about 80% compared to LEACH
and by about 20% compared to DEEC. Due to the
improvement in network lifetime and energy efficiency,
the data transmission volume of the EEWRP algorithm
is also improved, which is about 8.74 times and about
1.07 times that of the LEACH and DEEC algorithm,
respectively.
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