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Abstract
Indoor scene recognition poses considerable hurdles,
especially in cluttered and visually analogous
settings. Although several current recognition
systems perform well in outside settings, there
is a distinct necessity for enhanced precision in
inside scene detection, particularly for robotics and
automation applications. This research presents a
revolutionary deep Convolutional Neural Network
(CNN) model tailored with bespoke parameters
to improve indoor picture comprehension. Our
proprietary dataset consists of seven unique interior
scene types, and our deep CNNmodel is trained to
attain excellent accuracy in classification tasks. The
model exhibited exceptional performance, achieving
a training accuracy of 99%, a testing accuracy of
89.73%, a precision of 90.11%, a recall of 89.73%, and
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an F1-score of 89.79%. These findings underscore
the efficacy of our methodology in tackling the
intricacies of indoor scene recognition. This research
substantially advances the domain of robotics and
automation by establishing a more resilient and
dependable framework for autonomous navigation
and scene comprehension in GPS-denied settings,
facilitating the development of more efficient and
intelligent robotic systems.

Keywords: indoor scene recognition, deep convolutional
neural network (CNN), robotics and automation
autonomous navigation and GPS-Denied environments.

1 Introduction
In recent years, robotic automation has gained Robotic
automation has gained prominence in various sectors,
such as manufacturing, logistics, healthcare, and
domestic assistance [1, 2]. Implementing robots in
interior settings, where they independently execute
activities, has distinct obstacles, particularly in
scene recognition [3, 4]. Indoor spaces, including
residences, workplaces, medical facilities, and
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industrial sites, encompass diverse objects, structures,
and configurations [7–9], hindering the precise
identification and understanding of the surroundings.
The challenge stems from the resemblance of objects in
various interior environments, such as chairs present
in both auditoriums and computer labs, resulting
in recognition problems [10–13]. The intricacy
necessitates enhancing indoor scene identification in
robotic automation [5, 6].

Indoor scene recognition poses significant challenges
due to the visual similarity of objects across various
environments, such as chairs in auditoriums and
computer labs, which leads to recognition errors.
While outdoor scene recognition algorithms have
shown considerable success, their performance
diminishes substantially in indoor settings. This
limitation necessitates the development of a
specialized deep-learning approach tailored for
indoor environments. By leveraging a custom
dataset, this research addresses these challenges.
It demonstrates the effectiveness of the proposed
Sequential Deep CNNmodel for improving accuracy
and robustness in robotic indoor scene recognition.

Conventional rule-based methods and manually
designed scene templates inadequately capture
the complex visual details in many indoor
environments [14, 15]. Enhancing scene recognition
can substantially improve robotic automation by
allowing robots to accurately detect, understand,
and adapt to their environment [16, 17]. This skill
enhances fundamental robotic operations, including
object manipulation, path planning, and semantic
comprehension [18, 19]. Mobile robots necessitate an
elevated degree of semantic comprehension to execute
intricate operations in dynamic indoor settings [20].

In light of these obstacles, effective indoor scene
identification continues to be a significant concern
in robotics [3, 21]. Robots must identify and adjust
to changing environments to traverse and interact
efficiently in GPS-denied contexts [22, 23]. Our
study fulfils this requirement by creating a deep
learning-based system customized for the particular
needs of indoor spaces. We provide a bespoke dataset
comprising seven unique indoor scene categories and
propose a deep Convolutional Neural Network (CNN)
model to extract pertinent characteristics and classify
images with high precision. The model demonstrates
substantial enhancements in classification, as seen by
its elevated training and testing accuracy on the custom
dataset.

Although outside scene recognition algorithms
have achieved success [13, 24, 25], their efficacy
diminishes considerably when utilized in inside
environments [15]. Utilizing a bespoke dataset, our
research illustrates the effectiveness of a deep learning
strategy designed for indoor scene detection. The
suggested technology enhances robotic automation
by augmenting robots’ capacity to understand and
navigate intricate indoor surroundings. This research
advances the creation of more adaptive and intelligent
robotic systems that can surmount the constraints of
current scene detection models [16].

Indoor scene identification holds considerable
importance not just in robotics but also in
healthcare [26–28], industrial automation [29, 30],
and virtual worlds [31–33]. Precise indoor
scene identification improves robots’ capacity to
execute activities autonomously, engage with their
environment, and achieve outcomes more effectively
than humans across multiple domains [19, 34–38].
Our research tackles the shortcomings of existing
methodologies by introducing an innovative deep
CNN model trained on a distinctive dataset. Through
rigorous experimentation, we demonstrate themodel’s
efficiency, accuracy, and durability, establishing it as a
promising alternative for improving robotic autonomy
in practical applications.

Our research presents a comprehensive methodology
for interior scene detection in robotic automation,
employing a bespoke dataset and deep learning
strategies to tackle the complexities of crowded and
visually analogous settings. The suggested method
demonstrates excellent precision, efficiency, and
adaptability, enabling robots to function autonomously
in intricate interior environments.

This manuscript is divided into a total of seven distinct
sections. The introductory background is presented
in Section 1, while prior research contributions
and their inadequacies are discussed in Section 2.
Section 3 delineates the comprehensive technique,
encompassing data collecting, pre-processing,
model construction, and parameter configuration.
Furthermore, the model training and evaluation have
also been included in the same section. Section 4
presents the results obtained by this methodology,
while the technical discussion is contained in Section
5. The comprehensive research is encapsulated in
section 6-conclusion, accompanied by Section 7, which
addresses future directions and recommendations.
The entirety of this break-up is illustrated in Figure 1.
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Figure 1. Organization for this research contribution.

2 Related Work
Indoor scene recognition is an important research
topic. Recent advancements encompass multisensor
models and lightweight deep-learning methodologies.
Reference [13, 39–42] introduced a deep learning
model that combines 1D Sensor DenseNet with LSTM,
attaining an accuracy of over 98%. Afif et al. [3]
created a lightweight vision-based detection system
tailored formobile robots, employingweight-trimming
techniques and attaining 89%accuracy. Singh et al. [43–
48] presented a robust CNN-based methodology for
mobile robots, incorporating neuro-fuzzy inference to
address uncertainties, achieve an accuracy of 94% and
processing 3.1 frames per second.

Deep learning persists in propelling progress [49–
52], with CNN architectures such as ResNet [53–

55] and attention mechanisms [25] demonstrating
remarkable outcomes. Zhou et al. [56] incorporated a
multi-scale pyramid pooling module into a ResNet
architecture, enhancing the accuracy of the SUN
Database. Attention techniques, shown by the
multi-scale attention fusion network introduced by
Cheng et al. [25], improve discriminative feature
extraction, resulting in competitive performance on
datasets such as MIT Indoor 67 and NYU Depth V2.

Notwithstanding the emergence of deep learning,
conventional handcrafted features remain
significant [44]. Specialized datasets such as
ADE20K, which include pixel-level annotations for 150
scene categories, are crucial for enhancing semantic
segmentation identification tasks. Research persists
in investigating innovative techniques for indoor
scene recognition. Zhao et al. [22] utilized Building
Information Modelling (BIM) for object recognition in
interior construction automation, attaining excellent
accuracy in real-time item identification. Zhou et
al. [27] proposed a Bayesian object relation model
to improve contextual object recognition, surpassing
alternative methods in indoor scene detection. Miao
et al. [55] presented the transfer of object knowledge
for scene recognition, with an accuracy of 81.69%
on MIT-67. Glavan et al. [5] created InstaIndoor, a
multi-modal deep learning methodology, attaining
an accuracy of 92.2%. Various research has employed
diverse methods, such as Heikel et al.’s [4] integration
of object detection with TF-IDF for scene identification,
attaining an accuracy of 80.3% on MIT-67. Rafique
et al. [21] employed maximum entropy superpixel
segmentation and deep belief networks for picture
recognition, achieving a 73.85% accuracy on the
PASCAL VOC 2012 dataset [53–58]. Anbarasu
et al. [59] employed augmented SIFT-ScSPM
descriptors for indoor scene detection, attaining an
accuracy of 92.2% for micro aerial vehicle navigation.
Despite substantial advancements in indoor scene
identification algorithms, obstacles persist, especially

Table 1. Studies Related to Indoor Scene Recognition and Understanding.

Reference Approach Dataset Testing Accuracy

[60] End-to-End CNN ScanNet v2 88.00%

[56] Deep Residual Network (ResNet) SUN Database 75%

[61] Multi-Scale Attention Fusion Network MIT Indoor 67 Dataset 80%

[46] AlexNet, VGGNet, and ResNet MIT indoor 67 Dataset 94.42%

[62] VGG-16 Model MIT Indoor 67 Dataset 83%

[20] Spatial Pyramid Pooling (SPP) + Deep Learning SUN Database 88%
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in achieving high accuracy across varied datasets.
Subsequent research must resolve challenges such as
occlusion, dynamic surroundings, and perspective
fluctuation to augment the resilience of indoor scene
recognition systems. A few recent studies related
to indoor scene recognition and understanding are
shown in Table 1.

3 Proposed Method
This proposed methodology is based on several
stages, as shown in Figure 2, in the form of a
research approach. Our research approach has five
steps: custom dataset collection, data pre-processing,
building model and parameters setting, training data,
and evaluation.

Figure 2. Research Framework.

3.1 Data Collection
A custom dataset has been created for data collection
for this research. The images for the custom dataset
were downloaded from various web sources and
standardized through a series of pre-processing steps.
This custom dataset consists of seven indoor scene
classes, including the Auditorium, Bar, Bedroom,
Car Showroom, Computer Lab, Gym, and Research
lab, as shown in Figure 3 on the next page. The
custom-created dataset consists of seven classes, and
overall, seven thousand images in the dataset, one
thousand images of each class, have been collected
through different websites. The focus is to create a
custom dataset on seven different indoor scenes to
train the computer vision’s deep learning model to
recognize similar objects of various scenes (Computer
lab & Research Lab) clearly and cleanly. See details of
the custom-created dataset in Table 2.

3.2 Data Pre-processing
In this research, we created a custom dataset,
pre-processed it, and successively used it to train
a deep convolutional neural network (CNN)

Table 2. Custom created dataset.
Classes Number Repository

Auditorium 1000

Custom Created Dataset

Bar 1000
Bedroom 1000

Car Showroom 1000
Computer Lab 1000

Gym 1000
Research lab 1000

Total 7000

sequential model. This custom-created dataset
encompasses seven distinct indoor scene classes.
In this pre-processing stage, all images have been
renamed by executing the Python script on each
dataset class and specifying the path to the directory
containing images in bulk. Using TensorFlow, the
dataset was loaded. Furthermore, image resizing and
rescaling were performed. All images were resized to
a consistent 256x256 pixel format and organized into
batches size of 16 for efficient processing, ensuring
uniformity and numerical stability by standardizing
pixel values between 0 and 1. Subsequently, the
dataset was divided into training (80%), validation
(10%), and testing (10%) subsets. Data augmentation
techniques, including random horizontal and vertical
flips and random rotations of up to 0.2 radians, were
applied to improve the model’s ability to recognize
a broader range of distinct indoor scene classes.
Caching and prefetching were employed to expedite
data loading and pre-processing during training. The
data pre-processing steps included image resizing,
rescaling, and data augmentation, which were vital in
optimizing the performance of the CNN sequential
model for indoor scene recognition and understanding.
Sample images are shown in Figure 3 after successfully
undergoing the processing steps.

3.3 Build Model and Parameters Setting
The proposed model for this research is carefully
designed and sets parameters to work in indoor
scene recognition on our custom-created dataset.
It adopts a deep Convolutional Neural Network
(CNN) with a sequential architecture for indoor
scene recognition. This architecture comprises a
sequential stack of layers, including convolutional
layers with various filter sizes, batch normalization
layers for data normalization, max-pooling layers for
spatial downsampling, and dense (fully connected)
layers for learning complex patterns. Most layers
in the model employ the ‘relu’ activation function,
while the output layer uses ‘softmax’ to predict
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(A) (B) (C) (D)

(E) (F) (G)
Figure 3. Images data illustrating various settings: (A) Car Showroom, (B) Bedroom, (C) Computer Lab, (D) Bar, (E)

Gym, (F) Auditorium, and (G) Research Lab.

class probabilities. The model is configured with a
specified input shape and is tailored to process images
with a defined batch size, image size, and multiple
channels. The input shape is defined as (BATCH_SIZE,
IMAGE_SIZE, IMAGE_SIZE, CHANNELS), where
BATCH_SIZE represents the batch size of input images,
IMAGE_SIZE signifies the dimensions of input images,
and CHANNELS denotes the number of channels in
the input data.

The model commences with a “resize and rescale”
layer as an initial pre-processing step for input
images. Subsequently, multiple convolutional layers
are sequentially stacked, each employing various
filter sizes and distinct activation functions, ‘relu’
and ‘softmax.’ Batch normalization is applied after
each convolutional layer to enhance training stability
and optimize model performance. Max pooling
with a pool size of (2,2) follows each convolutional
layer to downsample the feature maps. Additionally,
the architecture integrates dense layers with ‘relu’
activation for further feature extraction and culminates
in a final dense layer employing ‘softmax’ activation
for the output of predicted class probabilities. The
model’s input shape, “input_shape,” aligns with the
defined (BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE,
CHANNELS) format to seamlessly accommodate the
input data.

Additionally, these tailored architectural components

work in collaboration to extract essential information
from input images progressively and, through
meticulous parameter settings, enable the model
to recognize distinct indoor scenes precisely. This
model structure has been thoughtfully customized to
a custom dataset. It aligns with the unique demands
of indoor scene recognition within robotic automation,
ensuring the system comprehends its environment and
responds adeptly to diverse indoor scenarios. The
model architecture diagram is shown in Figure 4.

3.4 Model Training
In our model, we’ve specified a resolution of 256x256
pixels. We utilize Python libraries like TensorFlow,
Keras, and Matplotlib for training. The IMAGE_SIZE
is set to 256x256, and the BATCH_SIZE is 32, meaning
the model processes 32 images simultaneously.
CHANNELS are set to 3, indicating that the dataset
contains colourful photos. We train the model for
50 EPOCHS, enhancing accuracy confidence and
minimizing errors. We use the Adam optimizer
and employ the Sparse Categorical Crossentropy loss
function for multilevel classification when classes are
mutually exclusive. The model was trained using a
Kaggle notebook with a P100 GPU and 29 GB of RAM.
The model’s performance improves with each epoch.
It achieves 51% training accuracy in the first epoch,
increasing to 66% in the second. As the number of
epochs increases, the model’s understanding of indoor
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Figure 4. Model Architecture Diagram.

scenes improves. By the fifth epoch, training accuracy
reached 86%. This progress demonstrates the model’s
learning rate enhancement through repeated training
sessions.

Furthermore, the error rate or loss consistently
decreases during training. By the tenth training
iteration, training accuracy reaches about 94%.
Subsequently, from the eleventh to the fifteenth
iteration, the training accuracy gradually increases by
about 2%. At the end of the fifteenth epoch, accuracy
is approximately 96%. However, the learning curve
exhibits fluctuations starting from the sixteenth epoch,
and the accuracy decreases from 98% to 96%. This
decline is attributed to the inherent challenges in
classifying indoor scenes with similar objects, such
as chairs in auditoriums, bars, or computer labs. These
ambiguities make distinguishing between such indoor
scenes challenging for the model.

At the culmination of the fifty epoch, training accuracy
reaches an impressive 99%. This model is trained on
a Kaggle notebook with a disk size of up to 73.1GB
and a maximum RAM of 13GB. Additionally, it utilizes
two T4 GPUs, each with a maximum GPU memory of
14.8GB. Ultimately, the model is trained on a custom
dataset and attains a remarkable training accuracy of
up to 99%, with a testing accuracy of 89.73%. This
achievement represents a significant contribution to
indoor scene recognition and understanding.

3.5 Evaluation
In this experiment, the model evaluation becomes a
vital measure of how efficiently our model works on
our custom-created dataset for training and testing.
Next, the model is trained, and the last step is to
evaluate it. We evaluated themodel performance using
measuring metrics, such as accuracy, precision, recall,
and F1 score [53]. Formulas (1), (2), (3), and (4) are
used to express each metric.

Accuracy score =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

F1 =
2× Precision× Recall
Precision+ Recall

(3)

Recall = TP

TP + FN
(4)

The performance evaluation of the indoor scene
recognition model involves several key metrics. True
Positives (TP) represent the number of correctly
identified instances where the model correctly
recognizes an indoor scene category. False Positives
(FP) correspond to cases where the model incorrectly
identifies an indoor scene category that does not
match the actual scene. True Negatives (TN) indicate
the count of accurately identified non-matching indoor
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scenes. False Negatives (FN) refer to instances where
the model fails to recognize a genuine indoor scene,
misclassifying it as something else. These metrics
are essential for assessing the model’s effectiveness
in identifying indoor scenes within the robotic
automation context.

4 Result
The proposed deep CNN sequential model achieved
high training testing accuracy on the custom-created
dataset; testing accuracy represents the percentage of
correctly predicted samples from a separate. Training
accuracy represents the percentage of correctly
predicted samples from the training data, indicating
the model’s ability to classify samples from the dataset
accurately. The training accuracy, reaching up to
99%, and testing accuracy, which is 89.73%, 90.11%
precision, 89.73% recall, and F1-score of 89.79%, are
much better than comparing previous state-of-the-art
works, as shown in Table 4, studies conducted on
indoor scene recognition and understanding, models
and datasets used and trained by other researchers.
Thus, our proposed model works well in recognizing
and understanding complex indoor scenes on our
custom-created datasets. More details are shown in
Table 3.

Table 3. Performance metrics for model evaluation on the
custom dataset.

Algorithm Training
Accuracy

Testing
accuracy Precision Recall F1 Score

CNN-Seq 99% 89.73% 90.11% 89.73% 89.79%

Figure 5. Model Performance Metrics.

The model’s performance is shown in Table 3. The
testing accuracy reached 89.73%, training accuracy
reached 99%, 90.11% precision, 89.11% recall, and
an F1-score of 89.79%. These results collectively
reflect the strength and reliability of our model on

Figure 6. Model Performance MetricsModel Performance
Metrics.

a custom dataset, precisely indoor scene recognition
and understanding in robotic automation.

Figure 5 shows the model performance metrics
developed across different metrics. The bar plot
illustrates the performancemetrics, including accuracy,
precision, recall, and F1 score. Figure 6(a) graph
demonstrates the relationship between training
accuracy and validation accuracy, showing that
training accuracy increases exponentially with the
number of epochs, reaching 99% by the 50th epoch.
Similarly, validation accuracy initially increases
rapidly in the first five epochs but fluctuates between
80% and 94% after that; due to similarities in the
dataset images, final validation accuracy is recorded
as 92%, as shown in Figure 6(a) graph. Figure 6(b)
graph illustrates the relationship between training
loss and validation loss during the model training
process. Training loss, representing the error between
predicted and actual values, decreases exponentially
as the number of epochs increases, reaching 0.15 from
1.34 by the tenth epoch and 0.01 by the 50th epoch.
Similarly, validation loss initially decreases rapidly
from 2.94 to 0.57 in the first ten epochs but then
fluctuates between 0.47 and 0.67 due to similarities in
the dataset images. Ultimately, the validation loss is
recorded as 0.39 at the end of the training process.

Figure 7 demonstrates themodel’s accurate predictions
for all three scenes. The first scene, a Computer Lab,
aligns with the model’s prediction. Similarly, the
second scene, a Research Lab, is correctly identified as
such by the model. The third scene, another Computer
Lab, is also accurately classified by the model.

Figure 8 demonstrates themodel’s accurate predictions
for all three scenes. The first scene is identified as
a Computer Lab, as is the model’s prediction. The
second scene is labelled a Bar, matching the model’s
prediction. The third scene is recognized as a Research
Lab, which aligns with the model’s prediction.
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Figure 7. Testing results in a random array of images taken from the test dataset.

Figure 8. Testing result from random images taken from the test dataset.

The proposed model in this research achieves a
high training accuracy of 99% and testing accuracy
of 89.73% on our custom dataset containing seven
different indoor scene classes, outperforming other
existing models. Yue et al. [60] achieved a testing
accuracy of 88% on the ScanNet v2 Database using
the End-to-End CNN. Zhou et al. [56] achieved a
testing accuracy of approximately 75% on the SUN
Database using the ResNet model. Chen et al. [61]
reported an 80% testing accuracy on the MIT Indoor
67 dataset using a multi-scale attention fusion network.
Afif et al. [46] achieved a high testing accuracy of
94.42% on the MIT 67 indoor Dataset using AlexNet,
VGGNet, and ResNet. Kim et al. [62] reported an 83%

testing accuracy on the MIT Indoor 67 dataset using
the VGG-16 model. Liu et al. [20] achieved a high
testing accuracy of 88% on the SUN Database using
the Spatial Pyramid Pooling (SPP) and deep learning
approach. So, the suggested model performs better
than most current models, demonstrating its potency
in indoor scene detection.

Figure 9 illustrates the testing mechanism in which
random images from the separate testing dataset,
comprising 10% of the total dataset, are selected. These
images are then tested against the trained dataset to
predict the scene.

Table 4. Proposed model results Comparison with previous state-or-art works.

References Approach Dataset Testing
Accuracy

[60] End-to-End CNN ScanNet v2 88.00%
[56] Deep Residual Network (ResNet) SUN Database 75%
[61] Multi-Scale Attention Fusion Network MIT Indoor 67 Dataset 80%
[46] AlexNet, VGGNet, and ResNet MIT 67 indoor Dataset 94.42%
[62] VGG-16 Model MIT Indoor 67 Dataset 83%
[20] Spatial Pyramid Pooling (SPP) + Deep Learning SUN Database 88%

Our model CNN-Seq Model Custom created dataset 89.73%
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Figure 9. Testing result taken from the test dataset.

5 Discussion
This research introduces a comprehensive method for
indoor scene detection with a bespoke dataset and a
deep convolutional neural network sequential model.
The dataset comprises seven interior scene categories,
with 80% allocated for training and 10% each for
validation and testing. The proposed model attains
a training accuracy of 99% and a testing accuracy of
89.73%. The design employs a deep convolutional
neural network using sequential layers comprising
dense layers, max-pooling, batch normalization, and
convolutional layers with diverse filter sizes. The
‘softmax’ activation function is utilized at the output
layer, whilst ‘relu’ is employed throughout the
model. This architecture facilitates effective feature
extraction and classification, accommodating images
with designated batch sizes, dimensions, and channels.
The model exhibited robust performance metrics:
90.11% precision, 89.73% recall, and an F1-score of
89.79%.

Our method surpasses other models [54, 60, 63]. Yue
et al. [60] attained 88% testing accuracy on the ScanNet
v2 Database, whilst Zhou et al. [56] documented 75%
accuracy utilizing ResNet on the SUN Database. Chen
et al. [61] attained an accuracy of 80% on the MIT
Indoor 67 dataset. Conversely, our model achieved a
superior accuracy of 89.73%. Furthermore, our model
surpasses the performance of Liu et al. [20], who
attained 88% on the SUN Database, and S. Jeong Kim
et al. [62], who secured 83% onMIT Indoor 67 utilizing
VGG-16. Subsequent comparisons indicate that our
model exceeds the results of Miao et al. [55] (72.5%
on MIT-67), Glavan et al. [5](79.8% on SUN-397),
and Heikel et al. [4] (71.8% on MIT-67). Rafique et

al. [21] obtained 77.4% on SUN-397, but Anbarasu
et al. [59] secured 72.4% on the UC Merced dataset.
The model’s enhanced accuracy, relative to these
benchmarks, highlights its applicability in real-world
indoor scene detection.

6 Conclusion
A custom dataset including seven distinct interior
scene classes and images demonstrated strong
performance for the proposed deep learning model
in indoor scene detection and recognition. The model
outperformed the earlier models employed by other
researchers and AI experts, achieving testing accuracy
of 89.73%, training accuracy of up to 99%, 90.11%
precision, 89.73% recall, and an F1-score of 89.79%. The
model was successfully implemented using the deep
learning CNN sequential layers model with unique
parameter settings. As indoor scenes are designed
for the benefit of humans, artificial intelligence-based
systems or models are widely utilized in everyday life,
including the significant fields of machine learning
and deep learning. The main objective is to further
enhance the existing model and custom dataset by
adding different types of classes and images. It
is essential to develop new models and datasets to
address the challenges of indoor scene recognition
and understanding, which are more complex than
outdoor scene recognition. This research highlights
the significance of gaining knowledge about indoor
scenes and their objects, composition, configuration,
and classification to support humans or robots and any
actions they perform within that space. Numerous
innovative and unique solutions have been explored
in this field.

7 Future Directions and Recommendations
This researchwill benefit other researchers researching
this excellent and challenging topic. Such models
can be trained with a massive number of classes in
custom datasets to make the machines more intelligent
to behave and analyze any scene anywhere and in
any environment efficiently and effectively; just like
humans, they could be able tomake rational and sound
decisions by analyzing and understanding all types of
indoor scenes. This model is limited to recognizing
and understanding specific indoor scenes. However,
in the future, it can be made from specific to general
if this model can be trained on a massive number of
classes in this custom dataset and on other datasets
covering a wide range of all real-life indoor scenes.
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