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Abstract
Speaker identification systems have gained
significant attention due to their potential
applications in security and personalized systems.
This study evaluates the performance of various
time and frequency domain physical features for
text-independent speaker identification. Specifically,
four key features—pitch, intensity, spectral flux,
and spectral slope—were examined along with
their statistical variations (minimum, maximum,
and average values). These features were fused
with log power spectral features and trained using
a Convolutional Neural Network (CNN). The
goal was to identify the most effective feature
combinations for improving speaker identification
accuracy. The experimental results revealed that the
proposed feature fusion method outperformed the
baseline system by 8%, achieving an accuracy of
87.18%.

Keywords: speaker identification, prosodic features,

Academic Editor:
Prasun Chakrabarti

Submitted: 16 October 2024
Accepted: 09 December 2024
Published: 31 December 2024

Vol. 2, No. 1, 2025.
10.62762/TIS.2024.649374

*Corresponding author:
� Zahra Shah
zahra.shah@sensifylife.com

physical features, CNN, features fusion.

1 Introduction
Speaker recognition, which utilizes speech signals to
identify and verify a speaker’s identity, is a crucial
aspect of speech processing. It is divided into
two primary applications: Speaker Identification
and Speaker Verification [1]. Speaker identification
is the process of determining the identity of an
unknown speaker by comparing their speech signal
with a database of known speakers. This involves
a one-to-many comparison, where all enrolled
voiceprints are evaluated in parallel to identify
the most likely match [2]. In contrast, the
speaker enrollment phase involves extracting and
storing unique voice features in a database, while
the identification phase performs parallel pattern
matching to identify the speaker [1].
Speaker recognition systems can be classified into two
categories: text-dependent and text-independent. In
text-dependent systems, users are required to speak
specific, pre-defined phrases [3]. On the other hand,
text-independent systems can recognize speakers
regardless of the content they speak, offering greater
flexibility but requiring more sophisticated algorithms.
While text-dependent systems tend to offer higher
accuracy in controlled environments, text-independent
systems aremore adaptable and suitable for real-world
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Figure 1. Baseline Architecture.

applications.

Research in speaker recognition has evolved
significantly, focusing on improving feature extraction
techniques, developing advanced classification
models, and enhancing speaker verification systems,
especially in handling impostor models [4]. The
growing need for robust, versatile, and efficient
speaker recognition systems has driven substantial
progress in this area. However, challenges remain,
particularly in optimizing systems to handle large-scale
datasets and diverse acoustic conditions [15].

Although substantial research has been conducted
in speaker recognition, there remains considerable
potential for further advancements. There are many
opportunities to optimize speaker recognition systems,
including improving front-end processing, recognition
algorithms, and speaker verification methods, as
well as enhancing background models for unknown
speakers [1]. Improvements can also be made in
classification techniques or feature extraction methods
to boost the system’s performance [5, 27, 32]. These
areas present exciting avenues for further improving
the robustness and accuracy of speaker recognition
systems.

In this study, we focus on enhancing the performance
of text-independent speaker identification on a
baseline architecture shown in Figure 1 by performing
a comparative evaluation of various combinations of
time- and frequency-domain features. Specifically, we
explore Mel-frequency cepstral coefficient (MFCC),
log-power spectral features, pitch, intensity, spectral
slope, and spectral flux, in combination with
convolutionally trained spectral features. Our objective
is to evaluate the impact of these feature combinations

on the accuracy of speaker identification systems.
Experiments were conducted using the TIMIT dataset,
where different feature combinations were tested to
identify the most effective set for this task.
Additionally, we introduce a novel approach to
text-independent speaker identification by employing
feature fusion techniques to enhance the performance
of CNNs. While earlier research has focused
on individual features such as MFCCs, this work
integrates acoustic, prosodic, and voice quality
features to create a more comprehensive speaker
representation. By combining these diverse features,
we aim to improve speaker differentiation under
varying conditions. The effectiveness of this feature
fusion approach is demonstrated by its superior
accuracy in speaker identification, which proves more
robust to speech pattern variations compared to
traditional methods [17, 18, 24].

2 Related Work
Feature extraction in speaker recognition involves
both physical and perceptual features, which can
be derived from the time domain or frequency
domain. Some researchers have combined features
from both domains to improve system performance [6,
25]. Classification techniques in speaker recognition
commonly employ Hidden Markov Models (HMM)
and Gaussian Mixture Models (GMM), which are two
of the most prevalent methods in the field. In addition,
hybrid techniques combining HMMwith Deep Neural
Networks (DNN) have been explored, as well as other
models such as neural networks, Vector Quantization
(VQ), and combinations likeHMM-NNandGMM-VQ.
More recent approaches have utilized CNN and
Recurrent Neural Networks (RNN) for classification.
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Among the latest advancements, the i-vector technique
has set new benchmarks in performance.
Smarajit et al. [7] have proposed a fusion of MFCC
and Perceptual Linear Predictive Coefficients (PLPC)
with an ensemble of classifiers, using MFCC-GMM
as the baseline system. Their system models speakers
using GMMandwas evaluated on theNTIMIT dataset,
achieving a maximum accuracy of 70.48%. Jinxi
et al. [8] enhanced speaker identification by fusing
subglottal resonance features with cepstral features.
Their system uses a two-stage process: first, cepstral
features are used to narrow down the candidate
speakers, and then subglottal resonance features are
employed with a multilayer perceptron to identify the
target speaker. The study also investigated the impact
of noise on performance, showing robustness under
varying noise conditions.
In [15], the combination of cepstral and spectral
features with energy and power-related speech signal
features was found effective for scene classification,
demonstrating its utility in speech signal processing
tasks. The production of speech is divided into three
stages: the excitation phase, which provides the power
for speech production; the articulation phase, which
involves the vocal tract shaping the sound; and the
final phase involving the lips and nasal cavity. The
energy from the lungs and the pressure produced
during exhalation are key factors that influence sound
volume and intensity [9].
The study in [16] explores the integration of
MFCC with Power Normalized Cepstral Coefficients
(PNCC), demonstrating enhanced robustness against
background noise and significant improvement in
Speaker Identification Accuracy (SIA). Similarly, the
work in [28] introduces a framework for calculating
semantic similarity by incorporating meronymy and
hyponymy relations within a weighted distance-based
model. By leveragingWordNet’s hierarchical structure,
this method refines semantic distance calculations
to capture nuanced contextual relationships. The
conceptual overlap between these methodologies lies
in the strategic fusion of complementary information
sources—in speaker identification, the combination
of spectral, prosodic, and voice quality features
parallels the semantic feature integration, both aiming
to enhance system performance under diverse and
challenging conditions.
Feature extraction for speaker recognition tasks can
be broadly classified into physical and perceptual
categories. Physical features represent the inherent

characteristics of sound signals without considering
how the sound was produced. These features
can be extracted from various domains, such as
time, frequency, or cepstral domains. For instance,
dynamic features like zero-crossing rates, amplitude,
intensity, loudness, and energy are all time-dependent
characteristics that provide valuable information for
speaker recognition. On the other hand, perceptual
features, which are based on human auditory
perception, help in distinguishing speakers. These
features include pitch, fundamental frequency, jitter,
shimmer, and tonality, and are crucial for speaker
differentiation [11].
Perceptual features, inspired by the structure of
human auditory and vocal organs, play a vital role
in understanding speech signals. These features
are influenced by the way speech is produced and
processed, which varies depending on the species
of the speaker, whether it be a human, animal,
or bird. Prosodic features, often referred to as
suprasegmental phonology, encompass qualities such
as pitch, loudness, and rhythm, which allow humans
to recognize speakers without consciously focusing on
them.
Many studies have explored the use of MFCCs in
isolation for speaker recognition [21], while others
have incorporated additional features like pitch or
formants to improve performance [22]. Recently,
using deep neural networks and hybrid feature sets,
have achieved notable performance improvements
by fusing spectral, prosodic, and voice quality
features [23]. In comparison, our method’s unique
feature fusion approach—integrating not only spectral
but also prosodic and voice quality features—provides
a more robust and accurate system for speaker
identification. Moreover, our model’s ability to
perform well with diverse feature sets in challenging
conditions highlights its superiority over traditional
systems based solely on MFCCs or pitch alone.

3 Methodology
The methodology of this study involved several
key steps to enhance the performance of the
text-independent speaker identification system. The
focus began with the front-end processing of speech
signals, which was critical for extracting the most
relevant features for recognition tasks. The first step
in this process was the segmentation of the speech
signal into overlapping frames. As shown in Figure 2,
the speech signal was preprocessed by dividing it into
overlapping frames, with a frame length of 25ms and a
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Figure 2. Preprocessing of speech signal (A).

hop length of 10 ms (60% overlap). This preprocessing
method was crucial for extracting meaningful features
from the raw speech signal [1, 2].
After segmentation, the extracted features were
divided into time-domain and frequency-domain
features, including pitch, intensity, spectral flux,
and spectral slope, which had been proven to
enhance speaker identification performance [3, 4].
These features were then combined with log-power
spectral features, known for capturing key speaker
characteristics such as voice quality and prosody [5, 6].
Once the features were extracted, a CNNmodel was
employed to train the system using these features. The
baseline system was based on a CNN architecture,
which was trained on a combination of time- and
frequency-domain features. The model was trained
using a standard classification loss function, with
accuracy as the primary performance metric. CNNs
are particularly well-suited for learning hierarchical
patterns in data and have been widely used in speaker
recognition tasks [7, 8]. The performance of the system
was evaluated by comparing the accuracy of speaker
identification using various feature combinations.
In addition to feature extraction and model training,
data augmentation techniques were implemented to
improve the robustness of the model. This involved
dividing each speaker’s data into overlapping snippets
of 90 frames, ensuring that all input data was of
uniform length. This approach not only standardized
the input but also increased the data for each
speaker, enhancing the model’s ability to generalize

across different acoustic conditions [9, 10, 26]. The
proposed system was tested on the TIMIT dataset,
which provided a comprehensive collection of speech
samples from a diverse set of speakers. The system’s
performance was evaluated in terms of classification
accuracy, and the results were compared to baseline
models to highlight the improvements made using the
feature fusion and CNN-based approach.
After the raw speech signal was framed, the number
of frames was determined based on the speech signal’s
length and the amount of overlap. Desired features
were extracted from these frames for further analysis.
Since the number of frames varied depending on
the speaking speed and sentence length, each speech
signal had a different number of frames. To train the
model, it was necessary to ensure that each input had
the same number of frames.
To increase the amount of data for each speaker and
ensure consistent input lengths, data augmentation
was applied by decomposing each audio sample into
overlapping snippets of 90 frames. Each snippet was
treated as a separate input to the model, ensuring
that all inputs were of equal length. This approach
increased the number of data points for each speaker,
with overlapping snippets introducing variability
while preserving the continuity of the original speech
signal. The process was visually illustrated in Figure 3.
This technique not only standardized input lengths
but also helped simulate diverse acoustic variations
through the overlap between snippets.
The features selected for this study included MFCCs,

Figure 3. Preprocessing of speech signal (B).
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prosodic features (such as pitch and speech rate), and
voice quality features (e.g., jitter and shimmer). These
features were chosen for their ability to capture key
speaker-specific characteristics:
1. Mel-frequency cepstral coefficients (MFCCs):

MFCCs are widely used for speaker recognition
due to their ability to capture spectral properties
that are robust across varying acoustic
conditions [19].

2. Prosodic features: These include pitch and
speech rate, which contribute to identifying
speaker-specific intonation and rhythm. Such
features have been shown to improve performance
in noisy environments [20].

3. Voice quality features: Jitter and shimmer
were selected as voice quality features. They
provide additional speaker-specific characteristics,
particularly useful in distinguishing speakerswith
similar speech patterns [19].

Combining these features enabled a more
comprehensive representation of the speaker’s
vocal attributes.
After converting the speech signal into overlapping
frames, several physical features were extracted. The
four selected features—pitch, intensity, spectral slope,
and spectral flux—were chosen for their relevance in
speaker recognition tasks. Specifically:
1. Pitch: Harmonicity is critical to audio signal

classification, and harmonic structure can be
represented by multiple inharmonic peaks [14].
The most common method for pitch detection is
based on the autocorrelation function, where the
highest value within a region of interest is used
to detect pitch [12]. Given a discrete-time signal
x[n], the autocorrelation function [16] Rx(m) can
be written as Equation 1:

Rx(m) = lim
N→∞

1

2N + 1

+N∑
n=−N

(x[n]x[n+m]) (1)

2. Intensity: Intensity is primarily controlled by
the force with which air from the lungs passes
through the larynx. For our calculations, intensity
was computed as energy per unit area, which is
a common approach for measuring intensity in
speech signals.

3. Spectral Flux: Spectral flux is the calculation of
the 2-norm of two normalized power spectra. In

our work, the log of the calculated spectral flux
was used, as using the simple spectral flux did not
yield the desired convergence in the system. The
spectral flux was defined as Equation 2:

spectralFlux = log (l2-norm (PS(frame[i])
− PS(frame[i+ 1]))) (2)

4. Spectral Slope: The spectral slope is a measure
of the spectral slant of a sound signal and is
calculated using linear regression.

Pitch and intensity were extracted using the PRAAT
Parselmouth library in Python [13]. Pretrained
AlexNet was used for model training, with the 5th
convolution layer fine-tuned using log power spectrum
features. The physical features were then concatenated
on the fully connected layer for the final speaker
identification task.

4 Dataset
The TIMIT dataset, utilized in this study, comprises
6,300 sentences spoken by 630 distinct speakers,
including both male and female participants. Each
speaker contributed 10 sentences, representing a
diverse set of phonetic contexts. The speakers are
distributed across eight distinct dialect regions of the
United States, which reflect the geographical areas
where they spent their childhood. These dialect
regions are defined as follows:
• dr1: New England
• dr2: Northern
• dr3: North Midland
• dr4: South Midland
• dr5: Southern
• dr6: New York City
• dr7: Western (geographical boundaries poorly

defined)
• dr8: Army Brat (frequent relocations during

childhood)
These dialect regions were selected to capture a broad
spectrum of linguistic diversity, which is crucial for
evaluating the generalization capabilities of speech
recognition systems. Notably, the dataset provides
valuable insights into how speech characteristics vary
across different regional accents and speaking patterns,
thereby offering a robust framework for phonetic
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Table 1. Dialect Region Distribution by Gender.
Region #Male Male (%) #Female Female (%) Total (%)

1 31 63% 18 27% 49 (8%)
2 71 70% 31 30% 102 (16%)
3 79 67% 23 23% 102 (16%)
4 69 69% 31 31% 100 (16%)
5 62 63% 36 37% 98 (16%)
6 30 65% 16 35% 46 (7%)
7 74 74% 26 26% 100 (16%)
8 22 67% 11 33% 33 (5%)

Total 438 70% 192 30% 630 (100%)

and dialectal research in speech recognition. The
percentage inclusion of male and female speakers by
the above dialect regions is shown in Table 1.

5 Experiments
The TIMIT dataset was used for our experiments,
which contained 6300 sentences spoken by 630
different speakers, including both males and females.
Each speaker provided 10 recordings. Ten recordings
per speaker are a limited amount for training a speaker
model. To address the issue of insufficient training
data, we employed convolutional feature learning
using MFCC and the power spectrum of the sound
signal, along with domain-specific data augmentation
technique [29]. We first extracted features from the
raw audio file by performing a short-time speech signal
analysis. After this analysis, the output consisted of
several frames based on the length of the sound signal.
Our experiments used a 25 ms frame length with a 10
ms hop length.

To mitigate the problem of having too little training
data for each speaker, we sliced each feature vector
into a specific number of frames. We evaluated the
performance of our model with different numbers
of frames and various amounts of frame overlap
to achieve the highest performance. The numbers
of frames used in the analysis were 15, 30, and 90
frames, with overlap percentages of 50% and 70%. The
results obtained using log power spectrum features
of the speech signal, with the mentioned overlap
percentages, and employing fully connected layers as
the recognition model, are shown in Table 2.

We extracted the log power spectrum of the sound
signal using Python’s ‘python_speech_features‘ library.
Pitch and intensity were extracted using the PRAAT
Parselmouth library in Python [13].

Table 2. Results with log power spectrum.
Number of frames Frame overlap Performance (%)

15 65 71.38
15 50 70.11
30 65 73.28
30 50 72.34
90 65 79.38
90 50 78.57

Furthermore, to test the performance, we separated
the training and test data for each speaker. Specifically,
out of the 10 recordings of each speaker, we used 2
recordings as test data and the remaining 8 recordings
for training the speaker model.
By examining the results with different frame overlaps
and numbers of frames, it is evident that using 90
ms frame snippets yields the most reliable results for
the speaker identification system. Additionally, a 65%
overlap of frames provided the best performance for
this system. When using only the log power spectrum,
the highest performance achieved was 79.38%. In
subsequent experiments, we used 90 frames as the
standard for training, considering the effectiveness of
this frame length.
Next, we discuss the concatenation of individual
features, as shown in Figure 4, and their variations,
as well as combinations of various features. While
extracting other features such as pitch, intensity,
spectral slope, and spectral flux, we observed that each
speaker exhibited specific ranges of values for these
features. Based on this observation, we decided to use
these value ranges for further experimentation.

5.1 Results With Spectral Slope
We performed experiments with different variations
of spectral slope concatenated to trained log power
spectral features, as shown in Table 3.
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Figure 4. Model for concatenating individual features.

Table 3. Results with spectral slope.
Type of Feature Frame overlap Performance (%)
min, max, avg 50 83.65
min, max, avg 65 83.88

all values 50 83.11
all values 65 84.09

Min and max 50 83.57
Min and max 65 84.52

From the results, it can be concluded that each speaker
has a very defined range of values for spectral slope,
as the best results were achieved by concatenating the
minimum and maximum values of the slope.

5.2 Results With Intensity
Similar to spectral slope, we performed experiments
with different variations of intensity concatenated
to trained log power spectral features, as shown in
Table 4.

Table 4. Results with intensity.
Type of Feature Frame overlap Performance (%)
Min, avg, max 50 86.32
Min, avg, max 65 85.98

all values 50 84.38
all values 65 85.18

Min and max 50 83.81
Min and max 65 85.06

The best results were achieved by concatenating the
minimum, maximum, and average values of intensity,
as indicated by the performance percentages for each

variation of intensity values.

5.3 Results With Log Spectral Flux

Figure 5. Process of majority vote.

Next, we performed experiments with different
variations of Log Spectral Flux concatenated to trained
log power spectral features, as shown in Table 5.
Initially, we used simple spectral flux values, but the
system could not convergewith these values. However,
we observed some results with concatenating the
log spectral flux pattern over 90 frames, but it only
achieved a 77% performance. After applying the log
transformation to the spectral flux values, we obtained
the following results.
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Table 5. Results with log spectral flux.
Type of Feature Frame overlap Performance (%)
Min, max, avg 50 84.24
Min, max, avg 65 83.52

all values 50 82.98
all values 65 83.34
Min, max 50 83.11
Min, max 65 83.44

The best results were achieved by concatenating
the minimum, maximum, and average values of
log spectral flux, as indicated by the performance
percentages.

5.4 Results With Pitch
We also performed experiments with different
variations of Pitch concatenated to trained log power
spectral features, as shown in Table 6.

Table 6. Results with pitch.
Type of Feature Frame overlap Performance (%)
Min, max, avg 50 81.18
Min, max, avg 65 82.23

all values 50 80.18
all values 65 80.98

min and max 50 81.38
Min and max 65 81.92

The best results were obtained by concatenating the
minimum and maximum values of pitch, as shown by
the performance percentages.

5.5 Results With Majority Voting
After performing experimentswith individual features
and their combinations, we conducted an experiment
with majority voting to compare the results of our
feature combinations with existing methods.
Majority voting is the process in which all models with
individual features are used to predict the test data
after training, as shown in Figure 5. The prediction
given by the majority of the individual models is
considered the actual prediction. The result ofmajority
voting is shown in Table 7.

Table 7. Results with majority voting.
Type of Feature Performance (%)
majority voting 84.54

5.6 Results With Different Combinations Of
Features

After performing experiments with individual
features, we also experimented with combinations of
features, following Figure 6, to identify which
combinations performed best for the task of
text-independent speaker identification. The
results are shown in Table 8.

5.7 Discussion
The findings of this study suggested that combining
spectral slope and intensity features yielded favorable
results in speaker recognition tasks. Specifically,
the highest recognition accuracy was achieved by
integrating Mel-Frequency Cepstral Coefficients

Figure 6. Model for combination of features.
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Table 8. Results with combinations of features concatenated.
Type of Feature Frame overlap Performance (%)

P, I, SS, LSF 50 82.98
P, I, SS 50 85.38
P, I, SF 50 84.34
I, SS 50 87.18
P, LSF 50 83.44

P, SS, LSF 50 81.84
I, SS, LSF 50 84.85

(MFCCs) with prosodic features. This outcome
was attributed to the complementary nature of
these feature sets. MFCCs captured detailed
spectral information essential for speech sound
characterization, while prosodic features, such as
rhythm, pitch, and tempo, helped distinguish speakers
based on vocal patterns. The synergistic use of both
feature types allowed the model to generalize better
across speaker variations, improving recognition
accuracy. Combining spectral and prosodic features
enhanced speaker discrimination by providing
both phonetic (sound-based) and non-phonetic
(tone-based) information, aiding differentiation in
noisy or variable acoustic conditions.
The inclusion of voice quality features improved
performance, especially in distinguishing speakers
with similar-sounding voices. These features,
sensitive to speaker-specific attributes like timbre and
resonance, added differentiation not fully captured
by MFCCs and prosodic features. Combining
spectral, prosodic, and voice quality features enhanced
the robustness of the speaker recognition system.
Moreover, transformer models like mBERT can
enhance speaker recognition by providing robust
multilingual contextual embeddings, improving the
system’s ability to understand and process diverse
linguistic features [30, 31].

6 Conclusion
This study demonstrated the scientific value of feature
fusion techniques in enhancing the performance of
text-independent speaker identification systems. The
proposed method, which combined complementary
features such as spectral slope and intensity, resulted
in a significant improvement in system robustness and
accuracy. By capturing both phonetic and prosodic
speaker characteristics, the feature fusion approach
provided a more comprehensive representation of
the speaker’s identity, crucial for real-world, noisy
environments. The experimental results revealed that
the fusion method outperformed the baseline system

by 8%, achieving an accuracy of 87.18%. These findings
highlight the potential of integrating spectral and
prosodic features with advanced machine learning
techniques to improve speaker recognition systems,
especially in challenging conditions where traditional
methods may struggle.
Although the feature fusion approach outperformed
conventional methods, further investigations are
needed to explore combining additional feature
sets or advanced neural network architectures to
enhance generalization. Future work could expand
the dataset to include more speakers from diverse
acoustic environments to improve robustness.
Additionally, exploring data augmentation techniques
like generative models may boost performance in
data-limited scenarios. These advancements would
help speaker identification systems operate effectively
in real-world conditions, supporting the ongoing
development of speech recognition technologies.
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