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Abstract

Sentiment analysis is the process of identifying
and categorizing opinions expressed in a piece of
text. It has been extensively studied for languages
like English and Chinese but still needs to be
explored for languages such as Urdu and Hindi. This
paper presents an in-depth analysis of Urdu text
using state-of-the-art supervised learning techniques
and a transformer-based technique. We manually
annotated and preprocessed the dataset from various
Urdu blog websites to categorize the sentiments into
positive, neutral, and negative classes. We utilize
five machine learning classifiers: Support Vector
Machine (SVM), K-nearest neighbor (KNN), Naive
Bayes, Multinomial Logistic Regression (MLR), and
the transformer-based multilingual BERT (mBERT)
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model. This model was fine-tuned to capture deep
contextual embeddings specific to Urdu text. The
mBERT model was pre-trained on 104 languages and
optimized for Urdu-specific sentiment classification
by fine-tuning it on the dataset. Owur results
demonstrated that the mBERT model significantly
outperformed traditional classifiers, achieving an
accuracy of 96.5% on the test set. The study
highlights the effectiveness of transfer learning via
mBERT for low-resource languages such as Urdu,
making it a highly promising approach for sentiment
analysis.

Keywords: machine learning,
Urdu language, natural language processing (NLP),
computational linguistics.

sentiment analysis,

1 Introduction

Social media platforms, such as Facebook, Twitter,
Tumblr, and Reddit, have become ubiquitous tools
for communication, experience sharing, and opinion
expression. A recent report by MediaKix reveals that
people spend more time on social media than on
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essential activities like eating, drinking, and socializing
combined [1]. Further, a survey by Smart Insights
indicates that an astonishing 3.3 million posts are
published on Facebook and 4.5 million tweets are
sent on Twitter every minute [2]. These statistics
underscore the profound impact of social media on
modern communication and engagement [3]. Blogs
and social media websites contain various information
types, such as product reviews, messages, news, etc.
[2]. According to a survey, 65 billion messages are
sent and received on WhatsApp per day [4], while
approximately 9000 tweets per second are shared
on Twitter. Another survey indicates that about 4.4
million blog posts are posted on the internet daily [5].
The data on social media platforms and blogs are in
various languages, such as English, Urdu, Chinese, etc
[6]. Text classification is used in multiple applications,
including text filtering, document organization, news
article categorization, web searching for useful data,
etc [7]. These are language-specific systems [8], most
of which are built for English. However, less work has
been done on sentiment analysis of the Urdu language
[9]. Developing a text classification model for the Urdu
language is challenging due to its complex morphology
[10]. Sentiment analysis (SA) can be done on three
levels, i.e., document level, sentence level, and aspect
level sentiment analysis [11]. The whole document
is categorized as positive, negative, or neutral at the
document level. In contrast, sentences are categorized
in sentence-level SA [12].

On the other hand, the process of recognizing
fine-grained opinion polarity towards a specific aspect
associated with a given class is known as aspect-level
SA [13]. Sentiment analysis can be done in two ways,
i.e.,, machine learning and lexicon-based techniques. A
dataset is created and used to train a machine-learning
model [14]. After training, the model is used to predict
the given data category. In the second technique,
sentiment lexicons of the language are created. Every
word in the lexicon is given a degree of positivity
and negativity [15]. This degree indicates their
class, i.e., positive, negative, and neutral [15]. This
degree indicates their class, i.e., positive, negative,
and neutral. Any document or sentence is classified
into these classes based on the sum degrees of all
words used in the sentences or document [16].
In the last decade, sentiment analysis has gained
the attention of researchers. The applications of
SA are everywhere and increasing day by day [6].
Researchers develop a lot of tools and techniques to
analyze various languages [16]. SA models are facing
multiple challenges. These challenges include sarcasm
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detection, negations, compound phrases, repetition
of words, etc. [16]. Like some other languages, the
Urdu language is widely used by individuals for data
sharing on the internet [17, 18].

Itis clear from the literature study that techniques used
in SA for other languages cannot be used to deal with
the Urdu language. Urdu sentiment analysis (UrSA)
has been becoming popular for a few years because of
its increasing rate on the internet [19]. There are a lot
of applications of text analysis. One example of this is
[20], which presents a novel approach to automatically
detect political hate speech in Roman Urdu, a variant
of Urdu written using the Latin alphabet [21]. To
facilitate this task, a comprehensive dataset of Roman
Urdu texts labeled for political hate speech (RU-PHS)
was developed, containing 5002 instances along with
city-level information [22]. To address the challenges
posed by Roman Urdu’s extensive lexical structure,
a novel lexical unification algorithm was developed
specifically for this language [11]. Furthermore, three
vectorization techniques were employed to represent
Roman Urdu text for machine learning: TF-IDE,
word2vec, and fastText [23]. The results demonstrate
that a random forest classifier and the proposed
teedforward neural network achieved an accuracy of
93% when employing fastText word embeddings to
distinguish between neutral and politically offensive
speech. We have used different supervised ML models
for sentiment analysis [24]. Various techniques that
can be used for UrSA are illustrated in Figure 1.

We used supervised ML-based techniques for
the sentiment analysis of Urdu text. The main
contributions of the proposed article are listed below:

e We implemented supervised machine learning
and transformer-based techniques specifically
for sentiment analysis of Urdu text, utilizing
probabilistic and linear classifiers.

e We used a dataset annotated by native Urdu
speakers that ensures reliable sentiment labeling
for enhanced analysis accuracy.

e We conducted comprehensive data preprocessing
and feature extraction to prepare Urdu text for
accurate analysis

e We evaluate the proposed models using various

standard metrics for reliable model evaluations.

2 Related Works

. Exploring the sentiments expressed in text is very
meaningful because the text is one of the easiest
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Figure 1. Techniques used for sentiment analysis.

and most effective ways to interpret and express
emotions. This paper summarizes two types of recent
research studies for textual sentiment analysis, i.e.,
traditional and machine learning techniques. Various
conventional approaches have been employed to
analyze textual data [20].

2.1 Roman Urdu Script

Mehmood et al. [16] aimed at enhancing the accuracy
and effectiveness of sentiment analysis in Roman
Urdu. To this end, they introduced a publicly
available dataset consisting of 9006 features and 3241
sentiments in Roman Urdu. Pre-trained embeddings
were also proposed for Roman Urdu using Word2vec,
FastText, and Glove models. These embeddings can
be utilized to improve the performance of various
deep learning-based tasks related to Roman Urdu
processing. The paper proposed a novel approach
for Roman Urdu sentiment analysis, combining
multiple neural network predictions, recurrent neural
networks, and convolutional neural networks in an
extreme-multi-channel hybrid methodology.

Khan et al. [21] presented a deep learning approach,
combining CNN-LSTM, for sentiment analysis in
both Roman Urdu and English languages. The
analysis is conducted on user-generated text data
from social media platforms. The study evaluated the
performance of different word embedding models,

namely Word2Vec (CBOW and skip-gram), GloVe,
Fast Text, and TF-IDF words-to-vectors models,
specifically for Roman Urdu text classification.
Similarly, Chandio et al. [25] provided a new publicly
available dataset consisting of over 26,824 labeled
instances obtained from Daraz. pk and Twitter,
annotated by field experts. They exploited three
neural word embeddings—word2vec, Glove, and
FastText to propose a novel attention-based BiLSTM
model for sentiment analysis specifically designed for
Roman Urdu.

Li et al. [26] used the combination of attention
mechanisms and transfer learning to improve the
accuracy and effectiveness of sentiment analysis
in Roman Urdu. By emulating the attention
mechanism observed in human brains, they aimed
at prioritizing important words while disregarding
less significant ones. Their approach involves using a
convolutional neural network (CNN) with attention
specifically designed for sentiment analysis in Roman
Urdu. Transfer learning is applied to enhance the
performance of sentiment analysis models when
dealing with small datasets.

2.2 Urdu Script

Khan et al. [27] work presents a study on the sentiment
analysis of Urdu text using ML. Firstly, a new dataset
for Urdu sentiment analysis is introduced, comprising
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user reviews from diverse domains such as food and
beverages, movies and plays, software and apps,
politics, and sports. Secondly, a multilingual BERT
model is fine-tuned specifically for Urdu sentiment
classification. This model has been trained on 104
languages, including Urdu. It is based on a BERT
base architecture with 12 layers, 768 hidden heads,
and 110M parameters. Ahmed et al. [28] establishes
a set of baseline results by evaluating rule-based
approaches, various machine learning algorithms, and
deep learning models, thereby creating a benchmark
for multi-class sentiment analysis using different
text representations. Another similar work [29],
contributes by collecting a new sentiment analysis
corpus in Urdu, manually annotated by experts.
Baseline results are provided for state-of-the-art
machine learning and deep learning models using two
text representations. Additionally, the effectiveness of
pre-trained word embeddings in resource-deprived
languages like Urdu is examined, filling a gap in
existing research.

Ahmed et al. [30] proposed a novel Urdu sentiment
analysis mechanism that combines ML and DL
models into a 2-tier ensemble model. Multiple deep
learning models are trained using benchmark datasets
with varying architectures, and their performance
is compared to the proposed ensemble model. The
study also investigates the impact of different types
of deep learning predictions. It evaluates the efficacy
of the approach in low-resource languages like Urdu,
filling a gap in prior research. Another work by Sehar
et al. [31]introduces novel applications of sentiment
analysis. (SA) framework for the Urdu language,
utilizing a combination of CNN and LSTM to extract
unimodal and multimodal features. A multimodal
Urdu dataset from YouTube is developed, enabling
sentiment analysis implementation. The proposed
framework is applied to determine sentiment polarity
in Urdu videos and compared with a test-based SA
approach.

Nagqvi et al. [27] used a publicly available labeled
dataset consisting of 6000 sentences of Urdu language.
Their proposed framework explores various deep
learning techniques for sentiment classification, with a
focus on LSTM models’ robustness in handling Urdu
text. A Urdu sentiment analysis system using the
RUSA data set was proposed by Mehmood et al. [32].
The data set contained 11,000 reviews of products.
They presented three distinct techniques to achieve
text normalization. They utilized six well-known
phonetic algorithms and TERUN to optimize the
RUSA data set. The resulting data was used for the
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training of machine learning models. According to
the empirical review, the results obtained by TERUN
were statistically significant and comparable to those
obtained by well-known phonetic algorithms. The
study concludes that text normalization enhances
machine learning algorithms” accuracy rate. Another
result was that a phonetic algorithm designed for one
language would not generalize well to other languages
unless it becomes properly updated to fulfill its target
languages” phonological needs.

Ahmed et al. [33] Used the generative adversarial
networks and recurrent neural networks (RNN), this
article suggested a multi-task model called slogan
generative adversarial network systems (Slo-GAN) to
improve coherence and diversity in slogan production.
Slo-GAN filtered the text with the higher reporting
score level, achieving an 87.2% classification accuracy.
Nasim et al. [34] present an article on Urdu sentiment
analysis by combining various linguistic and lexical
features. Their work focuses on developing the UrSA
system for Urdu tweets. A Markov chain model was
used to design the approach in this paper. They
gathered the data with the help of Twitter’s API. The
proposed model was trained on that data, and the
model was able to predict people’s attitudes based
on their tweets. They also discussed the challenges
and limitations of UrSA systems. A word-level
translation framework was proposed by Asghar et
al. [35]to enhance the UrSA lexicon. The framework
was developed by combining different linguistic
and lexicon resources, such as the English word
list, SentiWord Net, the bilingual English-to-Urdu
dictionary, Urdu grammar improvements, and a novel
scoring mechanism. Their model consisted of three
major modules, i.e., the collection of words in English
for an opinion, the translation of English words into
Urdu, and sentiment scoring using SentiWordNet and
manual scoring. Figure 2 illustrates the process of
lexicon-based technique for sentiment analysis.
Mukhtar et al. [37] presented a supervised
machine-learning technique for Urdu SA. The
data of various blogs and categories, i.e., sports,
politics, products, etc., were used for classification
purposes. This study trained three supervised ML
models, namely KNN, LibSVM, and J48, to classify
Urdu data. After the successful training and testing
phases, all models were compared with accuracy,
precision, and recall. Lib SVM was very similar to
KNN in terms of efficiency and its accuracy is on par
with KNN on average, but it is the slowest of the three
classifiers used in the analysis. Table 1 presents the
comparison of previous studies.
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Table 1. Comparison of previous studies.

Authors Study Models Accuracy
Mehmood et al. [16] Roman Urdu ML, DL and Hybrid 84%
Learning
Khan et al. [21] English and Roman Urdu LSTM and SVM 90%
lietal. [26] Roman Urdu Transfer Learning 94%
Khan et al. [38] Urdu ML and DL 82%
Ahmed et al. [33] Urdu RNN 87%
Ahmed et al. [30] Urdu BERT base multilingual  84%
model
Sehar et al. [31] Urdu Multimodal Sentiment 95%
Analysis
Asghar et al. [35] Urdu Statement lexicon Not
Mentioned
Mukhtar et al. [36]  Urdu Sentiment Analyzer 89%
Mukhtar et al. [37]  Urdu Sentiment Ananlysis 83%
khan et al. [38] Urdu Sentiment Classification Not
Techniques Mentioned
Rehman et al. [10] Urdu Sentiment Ananlysis 66%
Rehman et al. [10]proposed a novel framework for
Urdu sentiment analysis using Urdu comment
a7 nathering Data Set data. The polarities were assigned to Urdu
sentence-generated tokens. The lexicon has 7335
Y entries, of which 2607 were negative and 4728 positive.
4@ The absolute polarity of the sentence was calculated

Lexical
Resources

Data Set

[ Positive/Negative J

Figure 2. Lexicon-based technique for sentiment analysis.

Mukhtar et al. [36] discussed that handling intensifiers
is crucial to maintain higher accuracy in Urdu SA.
Urdu intensifiers were gathered and saved in a
different place. Based on the experiments conducted,
accuracy improved by 5%, indicating a statistically
significant improvement in sentence classification
accuracy.

by summing up the contradictions in all the respective
words. Their proposed model got an accuracy of 66on
the testing data set.

Khan et al. [38] discussed that many potential
methodologies are available for SA. Still, little work
has been done on the analysis of Urdu sentiments.
This paper examines the increasing rate of Urdu
language on the internet and the need for UrSA
systems.Their article outlines and summarizes the
most recent SA updates and classification techniques
used in the Urdu language. Various suggestions and
improvements were suggested in this article for UrSA.

3 Proposed System

We present a comprehensive approach for sentiment
analysis of Urdu text employing a diverse set
of machine and deep learning models.  The
methodology encompasses both traditional supervised
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Figure 3. Process of Proposed Model.

machine learning classifiers, including Support Vector
Machine(SVM), K-Nearest Neighbor (KNN), Naive
Bayes, Multinomial Logistic Regression (MLR), and a
state-of-the-art deep learning model using pre-trained
multilingual BERT (mBERT). Feature extraction of
data was done using bag-of-words representations
for traditional classifiers and fine-tuning mBERT for
capturing deep contextual embeddings. The proposed
methodology aims to provide a robust framework for
sentiment analysis for Urdu text, addressing linguistic
nuances and offering insights into the efficacy of
different models. Figure 3 illustrates the proposed
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process of the study.

The proposed approach used for UrSA consists of three
layers. Using a beautiful soup web scraping tool, the
first layer of data was gathered from various Urdu
blogs. After collecting data, it was not in a standard
form. The second layer is data preprocessing; it is
performed in which unnecessary data, like stop words,
URLs, white spaces, etc., are removed from the data.
Various steps were performed in the preprocessing
phase. These layers include filtering URL links,
tokenizing words, removing stop words and blank
spaces, removing redundant letters such as non-Urdu
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Algorithm 1: Preprocessing of Dataset

Input: Raw Dataset

Output: Cleaned Dataset

Function Preprocess(Raw Dataset):

Dataset < Read_Dataset_Reviews;

for sentence in Dataset do

Reviews « sentence.split(" ") ;
sentence into words

Cleaned data < Remove_Noise(Reviews) ;
// Cleaning

Cleaned data +
Remove_English_Alphabets(Cleaned data);

New_Data < Append_data(Cleaned data);

end

// Split

letters and numbers, and normalization of Urdu text.
Algorithm 1 shows the process for preprocessing of
the dataset.

After that, a contiguous sequence of "'n" terms from a
given sequence of text was constructed as a unigram
(n=1), bigram (n=2), and trigram (n==3). Urdu stop
words were used to remove those stop words in this
study. A list of 650 stop words was created for this
purpose. Some of the stop words are shown in Figure 4.

Some Urdu stopwords

o o o S
= s = S
=5 e o L]
S S Sl o
s S S 25

ol jt¥) S S
PRI ol PRI ol

£ M O Sl Sl

(G = e S

& ] o sl

Figure 4. Some Stop Words of Urdu Language.

The data set was divided into training and testing
sets using the sklearn Standard Library. Seventy
percent of the data was used for training of proposed
models, while 30 percent was used for testing purposes.
In the next step, various features were extracted

from the cleaned data to train the proposed models.

Data cleaning, feature extraction, tokenization, and
stemming are done using the Urdu Hack Library. After
feature extraction, model training was done on the

training data set and tested on the testing dataset. The
data set is divided into three categories. From the data,
37% of data was labeled as positive, 35% as Negative,
and 28% as neutral. Figure 5 presents the division of
the dataset.

Dataset Categories

= Positive Negative = Neutral

Figure 5. Division of Dataset.

For the classification of reviews as positive, negative,
or neutral, various supervised ML models, ie.,
Support Vector Machine (SVM), Naive Bayes,
KNN, Multinomial logistic regression, and
transformer-based model, i.e., mBERT are applied. For
the testing of classifiers, the cross-testing technique
was also used for reliable results. The k-10 fold
cross-validation method is used for the evaluation.
We searched thoroughly for all parameters. Algorithm
2 presents the training and testing process of the
proposed models.

3.1 Proposed Models

We have applied various machine learning and a
transformer-based model Urdu text sentiment analysis.
The description of all models is discussed below.

3.1.1 Support Vector Machine
SVM is a flexible algorithm that searches for the best
hyperplane in the feature space to divide multiple
sentiment classes. It works well for Urdu sentiment
analysis because it draws a distinct line between
neutral, negative, and positive opinions. The decision
function for the proposed problem can be explained
by equation (1).

f(z) = argmax(w; - X + b;) (1)

where f(z) represents the decision function of SVM, w;
and b; are the weight vector and bias for each sentiment
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Algorithm 2: Training of Proposed Models

(Traditional Models and mBERT)

Input: Dataset (Reviews)

Output: Labels

Function Preprocess():

Transform(Dataset) ; // Preprocessing step

X_train, X_test, train_y, test_y <
train_test_split(data[ review’],
data[’sentiment’], 0.3) ; // Split dataset

// Model initialization

ML_models < Model.fit(X_train, train_y) ;
// Fitting traditional models

tokenizer «
BertTokenizer.from_pretrained (‘bert-base-

multilingual-cased”);

model +
BertForSequenceClassification.from_pretrained

('bert-base-multilingual-cased’,
num_labels=num_classes);

input_ids, attention_masks, labels
Tokenize_and_Prepare_Data(X_train, y_train,
tokenizer);

dataloader < Create_Dataloader (input_ids,
attention_masks, labels, batch_size);

optimizer, loss_function «
Initialize_Optimizer_and_Loss_Function(model);

// Training mBERT model
model.train();

for epoch to epochs do
for batch to tgdm(dataloader, desc="Training

mBERT") do
optimizer.zero_grad();
// Train mBERT model
end
end
// Evaluate mBERT model
model.eval();
bert_accuracy < accuracy_score(y_test,
predictions);
print("mBERT Evaluation:", bert_accuracy,
precision, recall, F1-score);
// Evaluation for traditional models
Model evaluate + Evaluate_Model(X_fest,
test_y);
Print("Evaluation of ML models:
precision, recall, F1-score);

", accuracy,

class. The model predicts the sentiment class that
maximizes the decision function.
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3.1.2 K-Nearest Neighbors

The KNN algorithm is a popular and flexible
machine-learning method that is mostly employed
for its simple design. The K-NN algorithm locates
the K closest neighbors, using a distance metric like
Euclidean distance, to a given data point. The majority
of votes or the average K neighbors is then used to
establish the class or value of the data item. KNN
can be utilized for sentiment analysis since it uses the
sentiments of its closest neighbors to classify a given
Urdu text. The classification is based on the opinion
that the majority of the k-nearest neighbors hold. This
process can be represented by equation (2).

(2)
where y is the predicted class while x represents the
input text. X and y represent the nearest neighbors.

y = maj_class = k_nearest_neighbors(z, X, y)

3.1.3 Naive Bayes

Naive Bayes is a probabilistic model that calculates the
probability of each sentiment class given the features
of the Urdu text. It’s particularly useful for sentiment
analysis due to its simplicity and efficiency in handling
multiple classes. It can be used to calculate the
probability of each sentiment class given the features
of the Urdu text. The process of Urdu sentiment
analysis can be explained by equation (3).

P(S=i|U) x P(S H (W;|S=1i) (3)
where P(Sentiment = z\UrduT ext) is the posterior
probability of sentiment given the text while

P(Wordj|Sentiment = i) is the likelihood of word ";"
given sentiment "i". The model calculates probablhtles
and selects the sentiment class with the highest

probability.

3.1.4 Multinomial Logistic Regression (MLR)

MLR is a generalized linear model suitable for
multi-class sentiment analysis. It models the
probability of each sentiment class using a softmax
function, making it well-suited for Urdu sentiment
classification with three classes. The process of Urdu
sentiment analysis using MLR can be explained using
equation (4).

ewi~l‘+b7j

S8 ewiatd

P(Sentiment = i | Urdu Text) = (4)
where, P(Sentiment = i|UrduText) is the probability
of sentiment ¢ given the text, and w; and b; are the
weight vector and bias for sentiment class i. The
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Figure 6. Accuracy Comparison of Proposed Models.

softmax function is used to normalize the probabilities,
ensuring they sum to 1.

3.1.5 Multilingual BERT (mBERT)

mBERT is a powerful contextual embedding model
that can be used to capture the contextual information
of words in Urdu text. Fine-tuning mBERT for
sentiment analysis enables it to understand the
nuanced relationships between words in the given
text. The mBERT model was fine-tuned for sentiment
classification using the preprocessed Urdu dataset.
Transfer learning was employed to leverage the
knowledge captured during the multilingual
pre-training phase. Pre-trained multilingual BERT
(mBERT) embeddings were used for training the
mBert Model. mBERT has 12 transformer layers,
whereas BERT large has 24 transformer layers. The
underlying architecture, known as the Transformer, is
a paradigm in natural language processing designed
for sequence-to-sequence tasks with long-range
dependencies. Transformers consist of encoders
and decoders, with each encoder comprising two
components: Multi-Head Attention and Feed Forward
Neural Network. The Decoder includes Masked
Multi-Head Attention along with Multi-Head
Attention Feed Forward Neural Network. Encoders
and decoders are stacked on top of each other in the
implementation. The Transformer heavily relies on
attention mechanisms, particularly self-attention, to
capture the contextual understanding of a word in
a text based on neighboring words in the sentence.
The sentiment classification mBERT model underwent
a two-phase training process. The initial phase

involved pre-training the mBERT language model,
and the subsequent phase focused on fine-tuning
the outermost classification layer. Fine-tuning was
conducted using the training set of the proposed
dataset, comprising labeled user reviews. Specifically,
the fully connected classification layer underwent
training, employing categorical cross-entropy as the
loss function during the training process. The output
of mBERT model can be described as in equation (5).

Output = BERT(Tokenized Urdu Text) (5)

where, the output is the contextual embedding
obtained from mBERT. The Tokenized Urdu text
represents the input text tokenized for mBERT. Table 2
presents the hyperparameters for the proposed mBERT
model.

Table 2. Hyperparameters and their Values.

Hyperparameters Value
Learning rate 0.00002
Batch size 32
Number of epochs 10
Attention heads 8
Gradient accumulation steps 4
Hidden size 512
Hidden layers 6
Maximum sequence length 256
Parameters 85 M

4 Results and Discussion

The features were chosen using the Xlm Roberta
framework. The Urdu data set was trained with
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unigrams and bigrams, SVM, NB, Multinomial logistic
regression, and KNN models. Figure 6 represents
the accuracies of the proposed models for UrSA. The
results are analyzed and compared with previous
studies on UrSA using machine learning models. The
results clearly show that the proposed model mBert
outperforms other models and studies discussed in
the literature review section. One reason for the better
accuracy of the model is the manual annotation of
data, and the second is the usage of both manual
and automatic preprocessing techniques for the Urdu
language. The results can further be improved by using
deep learning techniques for UrSA.

Evaluating the classification model just based on
accuracy is not enough especially in the case of an
imbalanced dataset. We evaluate the models based on
the confusion matrix so that the performance of the
proposed models can be judged easily. A confusion
matrix is a matrix that shows how well a classification
model ("classifier") performs on a set of test data for
which the correct labels are known. The confusion
matrix is a simple and easy way to understand the
performance of machine learning models. This matrix
contains four elements true positive (TP), true negative
(TN), false positive (FP), and false-negative (FN).
Figure 7 presents the confusion matrix for the SVM
model.
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Figure 7. Confusion matrix of SVM.

pos

Figure 7 illustrates the SVM classifier’s confusion
matrix for the proposed Urdu data set. Figure 8
presents the confusion matrix of the KNN model.
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Off-diagonal elements show classification errors, with
0.33 percent of label objective misclassified as negative
and 0.15 percent of label positive misclassified as
negative. Figure 9 presents the confusion matrix for
the Naive Bayes classifier. Nave Basie outperformed
SVM in classifying the majority mark, as seen in
the first element of Figure 9. Since Naive Bayes is
dependent on probabilities, the majority class’s prior
probabilities exceeded the minority classes. Therefore,
for the most part, all data points were categorized
as members of the majority class. Figures 10 and 11
demonstrate the major deficiencies of Multinomial
Logistic Regression and KNN incorrectly classifying
minority instances. SVM also outperforms Naive
Bayes, Multinomial Logistic Regression, and KNN
to classify minority cases correctly. The KNN’s low
performance, shown in Figure 8, is due to its propensity
to overgeneralize the majority instance, specifically
when there is a large class imbalance. Neighbors often
surround minority data points from the majority class,
and the chances of being classified as a majority are
high.
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Figure 9. Confusion matrix for the Naive Bayes.
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Normalized Confusion Matrix
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Figure 10. Confusion matrix for MLR model.

Our proposed mBERT model achieved state-of-the-art
results on UrSA, outperforming all other models on
the proposed dataset. The mBERT model achieved an
accuracy of 96.5%, a precision of 95.35%, and a recall of
94.42% on the test dataset. The results demonstrate the
effectiveness of the mBERT model for Urdu sentiment
analysis. Figure 11 presents the normalized confusion
matrix for the proposed mBERT model.
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Figure 11. Confusion matrix for mBERT model.

5 Discussion

Sentiment analysis can be used for a number of
issues, including evaluating campaign performance,
analyzing stock market patterns, monitoring brand
reputation, and studying consumer feedback. The
increasing significance of sentiment analysis in today’s
information era has led to research on the subject,
particularly in Urdu, which is spoken by over 100
million people globally. With the internet becoming
a ubiquitous platform for expressing opinions and

sharing reviews, the demand for robust sentiment
analysis tools in Urdu has become apparent. However,
existing sentiment analysis techniques, primarily
developed for English, encounter difficulties when
applied to Urdu due to its complex morphological
structure and script disparities. The significant role
of sentiment analysis in guiding decision-making
processes for producers, service providers, and
organizational leaders further propels this research.
User-generated information from blogs and social
media sites is a useful tool for determining public
opinion. For example, in election conditions, social
media sentiment provides information about the
popularity of political leaders and parties, which
can help with strategic preparation. The proposed
study aims to harness this resource by conducting
sentiment analysis in Urdu, thereby facilitating
informed decision-making processes.

As Urdu becomes increasingly prevalent on social
media platforms and blogging websites, UrSA can
serve the purposes mentioned earlier effectively.

Experimental results of the proposed ML models
demonstrate their superiority over traditional models
for UrSA. These models adeptly capture semantic
nuances in text, using word embeddings to incorporate
word meanings in a specific context.

The study’s data is sourced from diverse channels,
as detailed in Section 3. Annotation, a crucial
aspect of model efficiency, involves manual annotation
by three annotators. The proposed mBERT model
demonstrates superior performance compared to
traditional machine learning models, making it
suitable for analyzing Urdu sentiment across multiple
tasks such as assessing customer feedback, monitoring
brand reputation, and tracking campaign effectiveness.
However, to enhance the accuracy of UrSA (SA),
further research utilizing advanced techniques is
imperative, particularly to address challenges like
detecting sarcasm which can undermine automated
model accuracy. Strategies like ensemble learning and
hybrid models hold promise for achieving enhanced
accuracy, especially when dealing with larger datasets.
Data acquisition spans numerous websites catering to
various services and products.

6 Comparison With Previous Studies

Different techniques have been proposed to
understand and interpret the sentiments expressed
in the Urdu language. This section compares various
ML and DL-based techniques with the most efficient
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Models and Authors

Figure 12. Comparison with Previous Studies.

proposed model (mBERT) for the task of UrSA.
Traditional machine learning classifiers have been
widely used in Urdu text analysis. For instance, Khan
et al. [27] reported an accuracy of 89% using SVM,
while Ahmad et al. [15] achieved a 91% accuracy
with a deep attention model. Khan et al. [29] also
evaluated and demonstrated the effectiveness of
mBERT for UrSA. They achieved an F1 score of
81.49% and claimed that mBERT outperformed
other classifiers due to its BERT pre-trained word
embeddings. The finding highlights the capability of
transformer-based models to manage the complicated
processes involved in UrSA. Sehar et al. [31] presented
a hybrid dependency-based technique for Urdu
sentiment analysis that offers a new perspective on the
processing of Urdu text. The approach emphasizes
the possibility of integrating different techniques for
improved accuracy. Ahmed et al. [30] also presented a
contextually enriched meta-learning ensemble model
that combines the strengths of several classifiers to
increase performance. Mustafa et al. [39] focused
on sentiment analysis in Urdu texts using SVM, NB,
and KNN classifiers designed on a dataset of 6,000
tweets. The results of this study showed that SVM
outperformed NB and KNN in terms of accuracy
and other metrics. In our research, we used these
classifiers alongside mBERT and found that, although
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traditional techniques are useful, they fall short in
terms of effectiveness as compared to mBERT. This
is in line with the results of Hussain et al. [39], who
pointed out that deep learning techniques are more
effective at capturing semantic depth than traditional
ML techniques. The performance of mBERT in
our work not only establishes a new standard for
Urdu sentiment analysis but also highlights the
ability of multilingual models for low-resource
language processing. This finding encourages further
exploration of transfer learning and multilingual
models for languages with limited computational
resources. Figure 12 shows the comparison of the
proposed mBERT model with previous studies.

7 Conclusion and Future Work

In this article we focused on Urdu sentiment analysis
using supervised machine-learning techniques. The
data set from various blogs and e-commerce websites
consists of 4712 reviews. These reviews were manually
labeled and annotated by native speakers for better
accuracy. The data was preprocessed using the Urdu
Hack Python Library and divided into training and
testing data sets. The supervised ML algorithms, i.e.,
Naive Bayes, SVM, KNN, MLR, and transformer-based
mBERT were trained and validated within the test
data set. The KNN model performed well by
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obtaining 92.0% KNN (k=3), while the mBERT model
outperformed all models by achieving 96.5% accuracy.
In future work, we will work on sarcasm detection from
Urdu data to enhance the models” accuracy. Domain
adaptation and cultural sensitivity are an issue in
sentiment analysis because the same text might have
a different meaning or connotation based on culture.
Deep learning techniques should also be considered
for UrSA.
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