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Abstract
The global healthcare systems have faced
unprecedented challenges due to the COVID-19
pandemic, necessitating innovative neural
computing solutions to inform critical
decision-making. In this study, we introduce
a neural-inspired machine learning framework
to predict COVID-19 mortality risk, utilizing a
dataset comprising over one million records. We
developed and evaluated a suite of advanced
models—Decision Tree, Random Forest, Logistic
Regression, Support Vector Machine, Gradient
Boost Classifier, and a neural ensemble-based
Voting Classifier—to analyze the influence
of demographics, symptoms, and preexisting
conditions on mortality predictions. Through
meticulous feature engineering and data
preprocessing, our approach yielded profound
insights, with the Voting Classifier achieving
an exceptional 93% accuracy on test data,
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outperforming Random Forest and Logistic
Regression (both at 91%). Key risk factors
identified include age and preexisting conditions,
complemented by nuanced patterns linked to
symptoms and socioeconomic-demographic factors.
Model robustness was rigorously validated using
F1-score and ROC curves, affirming its reliability
and generalization capacity. The Voting Classifier’s
neural ensemble design, integrating diverse model
outputs, exemplifies the power of neural computing
principles in processing complex health data. This
framework not only enhances predictive accuracy
but also provides actionable insights for public
health, enabling optimized resource allocation,
prioritized care for high-risk patients, and improved
survival outcomes. Beyond elucidating COVID-19
mortality dynamics, this research underscores the
transformative potential of neural computing in
tackling global health crises, establishing a robust
foundation for data-driven strategies in future
challenges.
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1 Introduction
The COVID-19 pandemic has unquestionably stressed
the global healthcare systems, showcasing the urgency
for innovative methods for improving patient care
and resource management. Amidst the early days
of the COVID-19 pandemic, we’ve learned a lot, but
there’s still a lot we don’t know about risk factors
for mortality. To do so, this work uses machine
learning to predict the mortality risk from COVID-19.
This research provides actionable insights that allow
clinicians to make better decisions leading to improved
survival outcomes, using demographic characteristics,
symptoms, and preexisting medical conditions.
The COVID-19 pandemic has overwhelmed
healthcare systems, and millions of people have died.
Understanding COVID-19 mortality risk variables
is critical for improving patient outcomes and
allocating related resources. Many of the complicated
demographics, symptoms, and preexisting illnesses
that make people susceptible to dying from COVID-19
are not going to be captured by traditional risk
assessment studies. Finally, analyzing these
parameters using machine learning may result
in identifying high-risk individuals and the ability
to perform targeted therapy. COVID -19 is caused by
Coronavirus type 2. According to the WHO, since it
first emerged in Wuhan, China, in December 2019, this
global epidemic has infected nearly 254 million people
since November 16, 2021. Two years back, when
COVID-19 broke out, the most significant worldwide
health issue. We do not have a cure for this pandemic,
and we know nothing about its dynamics, so it is
very severe. Coronaviruses can occur by causing
colds, MERS, and SARS. On March 30, 2020, the WHO
reported a 4.6% death rate for certified COVID-19
infections. The percentage was Age, immunological
status, and region-dependent, varying from 0.2 to 15%
[1].
Global healthcare systems suffer from COVID-19.
Non-pharmaceutical treatments are crucial national
policies because, despite aggressive immunization
programs, many nations will not have universal
vaccine access until 2023 [2]. 17–45% of COVID-19
cases are symptomless and do not require therapy [3,
4]. On the contrary, the global case death rate ranges
from 2–3% [5]. Fever, persistent cough, anosmia,
and dyspnea are common symptoms between these
extremes and can be managed at home or impatiently.
Limiting the virus’s impact requires knowing which
people aremost susceptible to severe sickness and need
the most significant resources.

The risk of severe disease must be considered in all
decisions. Certain patient traits, comorbidities, and
lifestyle variables increase the chance of mortality or
severe illness after infection [6, 7]. Once SARS-CoV-2 is
contracted, symptoms and vital signs can help predict
prognosis [8]. Laboratory testing and imaging can
stratify risk for early, intensive management, but only
hospital in patients with this data, who are often
already severely affected [9, 10].

Risk classification and population management
at scale are supported by robust, predictive
models for COVID-19 acquisition and prognosis
[11] and resource management [12]. These
models inform organizational decision-making.
A major COVID-19 risk model, COVID, uses
primary care data from 8 million adults and has
external validation19. The NHS uses it for clinical
assessment20. However, the individual is disregarded,
and granular, patient-specific risk-scoring may
unify decision-making at all levels. However,
current individualized risk ratings typically confuse
COVID-19 acquisition risk with infection mortality
risk [13], limiting their use in patient treatment.

Risk factor [14] predictionmodelswill only be effective
if they are, for instance, cheap and easily accessible
to the general public without requiring specialized
testing or trips to the hospital for evaluation. Using risk
prediction techniques, patient triage should improve
efficiency and confidence in reducing hospital burden
with hospital-at-home solutions during the pandemic.
Risk scores should be dynamic and contemporaneous
and include symptoms and vital sign data to benefit
clinical and research teams. The main goal of this
study is to use a large, rich dataset and a selected,
clinically informed approach to create and verify a
population-based prediction model for the dynamic
prediction of COVID-19 mortality risk for confirmed
diagnosis.

The sheer scale of COVID-19 has been both
eye-opening and has laid bare some critical
weaknesses in conventional risk assessment and
resource distribution tools, which have not been
adaptive enough to the fast-evolving and converging
risks we identify in this piece. The issue is that around
the globe, healthcare systems are sorely pressed to
keep care robust yet affordable, with limited resources
available to them. Machine learning brings strong
potential to these challenges with its ability to process
big datasets and find these patterns. This study is
motivated by the need to utilize advanced analytics
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for proper patient prioritization, leading to a better
survival rate and less burden on a healthcare provider.
This research fills a gap between data-driven insights
and their application to further improve global health
responses to the pandemic. This research aims
to design a machine learning-based classification
model that reliably and accurately predicts COVID-19
mortality with high precision.

This study aims to create models to identify the high
and low-risk groups of patients by examining critical
factors like Age, symptoms, and prior medical history,
which will give healthcare professionals additional
decision-making options by taking advantage of
data-driven tools. Such predictive tools are crucial for
identifying vulnerable individuals early on so that they
get prioritized care. Moreover, this research aims to
optimally share scarce healthcare resources (ICU beds,
ventilators, and personnel) with those who need to
be reached. These findings should inform immediate
clinical applications and public health policy that
identify demographic and symptomatic trends that
lead to excess mortality risk. Lastly, this work seeks
to reduce the overall burden of the pandemic by
increasing overall survival, optimizing healthcare
systems, andultimately gaining a better understanding
of the determinants that drive COVID-19 severity.

The paper introduces a machine learning framework
that combines Decision Trees, Random Forests,
Logistic Regression, Support Vector Machines, and
Gradient Boost Classifiers to predict COVID-19
mortality risk. Uses advanced preprocessing and
feature engineering techniques to maximize predictive
accuracy. The Voting Classifier produces 93%
Predictive Accuracy; Random Forest and Logistic
Regression consistently achieve 91% testing accuracy.
It finds that Age and preexisting conditions are the
leading mortality risk factors, yet it reveals nuanced
patterns between symptoms and demographic
variables. Generates actionable insights for healthcare
providers to identify high-risk patients and to develop
measures for wide-scale public health interventions.

The study has been presented systematically, where
the research problem is investigated and solutions
proffered systematically. In the Introduction,
we present the problem, the motivations, the
high-level objectives, and the contributions. The
Literature Review next depicts prior work on
COVID-19 risk prediction and identifies research
gaps. In Methodology, the works mentioned are the
dataset, preprocessing, exploratory data analysis,

machine learning models, and evaluation metrics
(accuracy, F1-score, and ROC AUC). Results and
Discussion include key findings, a comparison of
model performance, and implications. Finally, the
Conclusion and Future Work section summarizes
the findings, research hints, and paths for future
work, such as working with other data features or
developing hybrid modeling.

2 Existing Literature
The COVID-19 pandemic has accelerated research to
discover factors associatedwith increased risk of dying
and develop prediction tools to aid clinical and public
health decision-making. This review synthesizes
current work concerning COVID-19 risk prediction,
risks, machine learning applications applied, and gaps
in the literature that we have studied in this work.
The studies that have repeatedly found factors that
raise the risk of a person catching COVID-19 are indeed
diverse. The most important demographic factor was
found to be Age, with older age groups finding a
higher fatality risk than the expected proportion due
to poorer immune response and greater prevalence
of comorbidity [15]. Redondo et al. [16] have shown
that people above 60 years are much more likely to
face severe outcomes. They also have found that
’gender’ is a risk factor in thatmale patients have higher
mortality than female patients with reasonswhichmay
be a difference in their immune responses to reach
or behaviors, such as smoking. In addition, diabetes,
hypertension, cardiovascular diseases, chronic kidney
disease, and obesity are also described as frequently
as essential contributors to mortality. One example
demonstrates that patients withmany other conditions
are exponentially more likely to have complications
[17]. Further, there are associations between disease
severity and specific symptoms like shortness of breath,
fever, and fatigue. The studies, however, can only study
each factor with a broad focus to see the interactions
without being able to make a holistic risk profile.
It brought machine learning into COVID-19 research to
make impossible analysis of large datasets and digging
for non-linear relationships in the variable series.
Traditional statistical models like logistic regression,
used in some early models [18], were used to identify
predictors of mortality. These methods were effective
for simple relationships but proved effective for high
dimensions and variable interactions.
Evaluation metrics to evaluate the predictive
performance of various models must be robust.
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Popular metrics such as accuracy are insufficient if
we have to evaluate a model with an imbalanced
dataset — look at the COVID-19 mortality prediction
spread. However, F1-score, precision, Recall, and
ROC AUC provide a more balanced estimation
considering false positives and negatives. A study
from Jose et al. [19] also shows the importance of
precision-recall tradeoffs and how misclassification of
high-risk patients in healthcare allows for catastrophic
consequences. Machine learning techniques [20] have
also been effectively applied to classify lung diseases,
showcasing the potential of these methods in medical
diagnostics. However, few studies have systematically
compared models in terms of these metrics. For
example, Rainio et al. [21] just focused on accuracy
and did not consider the potential implications
when choosing a value above all other things. This
is problematic and underscores the requirement
for a comprehensive model evaluation framework
applicable to any reliability over any clinical scenario.

However, the literature in this area has still been
incomplete. These studies demonstrate that first,
limited feature integration is observed, asmost of these
studies analyze isolated variables (i.e., comorbidities
and Age) instead of integrating demographics,
symptoms, and comorbidities into a unified prediction
model. Secondly, there are issues with poorly
selected and executed preprocessing steps since
models do not utilize advanced feature engineering
and preprocessing steps proficiently, especially on the
datasets that scale to the point where missing and
erroneous data render the efficiency of the models
susceptible. Next, although ensemble techniques
have shown promise, the relative benefits of such
techniques compared to single models have not been
thoroughly investigated in COVID-19 risk prediction
studies. Fourth, the evaluation metrics are usually
very narrow and depend mainly on accuracy, while
Recall, F1-score, and ROC-AUC can be important for
such use cases as healthcare. Finally, insufficient
consideration of real-world application is observed,
where current studies only investigate a fraction of
practical challenges in employing machine learning
models in clinical or public health environments and
constrain their translation potential.

The gaps in the literature on integrating demographic
and other features of the patient with their gout
symptoms are addressed in this study by combining
demographic, symptom, and comorbidity features
into one machine-learning model. Features that are
significantly scaled and encoded for advanced

preprocessing techniques to improve model
performance and enable additional model robustness.
Several machine learning algorithms are evaluated
using a comparative approach, including Decision
Tree, Random Forest, Logistic Regression, Support
Vector Machine, Gradient Boost Classifier, and Voting
Classifier. Evaluation metrics are balanced with
comprehensive evaluation metrics, accuracy, F1-score,
Recall, precision, and ROC-AUC. In addition, this
study improves the relationship between predictive
analytics and very localized, real-world healthcare by
providing insights on how to best prioritize patients
and use existing resources.

3 Methodology
In the subsequent section, we present a comprehensive
methodology for predicting COVID-19 mortality risk
through neural-inspired machine learning. It refers
to how we capture data, exploratory data analysis
(EDA), data preprocessing, feature engineering, model
selection and training, evaluation, visualization, etc.
Figure 1 shows the research design workflow.

Figure 1. Research design workflow.

3.1 Data Loading and Exploration
We first looked at the dataset (Mexico General
Directorate of Epidemiology COVID-19 Open Data),
which contained more than a million records, to
check if the records were coherent and complete.
This first exploration taught us something about the
structure and quality of the data. Features with
missing valueswere first examined in essential features
like INTUBED and ICU, and features with lots of
missing values were excluded since they were not
helpful features. I changed the DATE_DIED column
into a binary variable DIED to make an observable
target for prediction where 1 is for deceased patients
and 0 for survivors. Then, we scanned through the data
structure to find AGE, SEX, preexisting conditions, or
other key demographic and health-related features to
use as modeling features.
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3.2 Data Preprocessing
Before training an effective model on the dataset,
it was preprocessed to make it clean. Because
97, 98, and 99 in the PREGNANT feature did not
make sense in a numeric context, and so were
replaced with NaN values. One hot encoding
was used to transform categorical variables such
as MEDICAL_UNIT and CLASIFFICATION_FINAL
so machine learning algorithms could use them.
StandardScaler and RobustScaler were applied to
continuous variables (i.e., AGE), where the range
of values was scaled, reducing the significance of
large-magnitude features on model performance.

For feature selection and engineering, patterns,
anomalies, and trends in the dataset were discovered
with the help of Exploratory Data analysis (EDA). It
was observed that the class distribution of the target
variable DIED is highly imbalanced as far fewer patient
was classified as deceased. This result indicated an
unbalanced dataset, i.e., a need to train with a label
balance dataset. We perform correlation analysis
which shows strong relationships between predictors
(comorbidities and AGE) and the target variable, and
eventually help us choose features. Furthermore,
mortality across different subgroups, such as age
ranges, genders, and preexisting conditions, was
assessed. We visualized these findings using
techniques such as correlation heatmaps and feature
heatmaps, as shown in Figure 2.

During the analysis, several visualizations were
utilized to boost interpretability. Continuous variables
like AGE were shown as histograms, and bar charts
for categorical variables, i.e., SEX and DIABETES,
were used to show the distribution and effect on
the target variable. A correlation heatmap has been
created to visualize relationships between numerical
features, and importantmodeling predictors have been
highlighted. A feature importance bar chart from the
Random Forest model was used to present the most
important predictors in the Feature Engineering phase.
Lastly, in the Evaluation phase, confusion matrices
were detailed to include true positives, false positives,
true negatives, and false negatives for each model, and
a comparative ROC curve was used to compare how
the models balanced the sensitivity and specificity.

A feature correlation heatmap was also created in EDA
to inspect variable relationships. In particular, the
heatmap revealed that advanced Age and respiratory
distress significantly increased the mortality of
COVID-19, indicating that these were the major

predictors. Moreover, it identified redundant features,
which assisted in amore accurate final feature selection
process, increasing predictive accuracy.
The Methodology incorporated these visualizations
and analyses, providing easy-to-interpret and
actionable insights that guided the study.

Figure 2. Feature correlation heatmap.

3.3 Feature Engineering
Feature engineering has proposed creating new
features and refining existing ones to improve the
dataset’s predictive power optimally. Interaction terms
between variables were created through polynomial
features, which captured non-linear relationships.
Feature selection was used to control for predictors
with slight variance or not talking much about the
target variable. In addition, we defined synthetic
features (e.g., age buckets, count of comorbidities) to
express these key risk factors in a way that is easy to
interpret. In addition to improving the performance of
these models, these transformations yielded a richer
understanding of the inherent relationships.

3.4 Class Imbalance Handling
The dataset has a high imbalance between the number
of records of patients who died and patients who
survived, and it was found. To deal with this,
I applied a random under-sampling technique to
balance the dataset by selecting fewer samples of that
majority class. We did this so that the models were
trained over a balanced dataset to minimize the bias
and increase the model’s capacity to generalize to
real-world scenarios. The model’s performance was
tested using the original and imbalanced dataset to
check its applicability.

3.5 Model Selection and Training
• Decision Tree Classifier: Provided an

interpretable baseline with a training accuracy of
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95.7% and testing accuracy of 89.7%.
• Random Forest Classifier: An ensemble method

combining multiple decision trees, achieving 91%
testing accuracy with intense precision and Recall.

• Logistic Regression: A simple yet effectivemodel
for binary classification, delivering an F1-score of
0.91 on both training and testing datasets.

• Support Vector Machine (SVM): Captured
complex decision boundaries, particularly
effective after feature scaling.

• Gradient Boosting Classifier: Utilized boosting
techniques for high precision, Recall, and general
robustness.

3.6 Evaluation Metrics
A suite of metrics was used to evaluate the
performance of each model to ensure a balanced
assessment. As an essential correctness measure, we
use accuracy. Yet, precision, Recall, and F1 score are
even more critical since minimizing false positives and
negatives is of utmost importance in healthcare. First,
we used the ROC-AUC metric to compare the models’
discriminating ability across thresholds to differentiate
between positive and negative cases. Confusion
matriceswere used to give insights into the distribution
of true positives, false positives, and false negatives.
These evaluationswere applied to themodels to ensure
that the models do not only predict accurately but also
are reliable predictions for real-world applications.

3.7 Interpretation and Insights
Based on key insights from analysis, it is found
that Age and comorbidities are good predictors of
survival of COVID-19. Feature importance plots,
created from ensemble methods, such as Random
Forest, indicated that Age was always the most
significant predictor, followed by underlying medical
conditions like diabetes and hypertension. However,
we compared its performancewith individualmethods
and found that the ensemble methods, Random
Forest and Voting Classifier, are better, achieving
higher precision and Recall than individual ones. It
demonstrates how machine learning can be used to
identify high-risk patients or to determine where
resources should go.

4 Results
Based on key insights from analysis, it is found
that Age and comorbidities are good predictors of

survival of COVID-19. Feature importance plots,
created from ensemble methods, such as Random
Forest, indicated that Age was always the most
significant predictor, followed by underlying medical
conditions like diabetes and hypertension. However,
we compared its performancewith individualmethods
and found that the ensemble methods, Random
Forest and Voting Classifier, are better, achieving
higher precision and Recall than individual ones. It
demonstrates how machine learning can be used to
identify high-risk patients or to determine where
resources should go.

5 Results
In this section, confusion matrices of various machine
learning classifiers, such as Decision Tree, Random
Forest, Logistic Regression, and Gradient Boost, are
computed, and key performance metrics like true
positives, false positives, false negatives, and true
negatives are examined. The results display the
strengths and weaknesses of each model to predict
the COVID-19 mortality risk depending on the given
dataset. The results highlight which models perform
better in detecting high-risk patients to achieve that
balance between accuracy and producing fewer errors.

5.1 Performance Overview
This insight is crucial, which is why the feature
importance analysis of the model was conducted
to identify the key factors influencing its prediction
of COVID-19 mortality risk. Among all features,
Patient Type emerged as the most prominent predictor,
indicating a strong impact on mortality risk. This
alignswith clinical observations that patients requiring
hospitalization or critical care are generally at higher
risk. Pneumonia and Age also ranked highly, further
reinforcing their well-established association with
severe COVID-19 outcomes. Elderly patients with
pneumonia are much more vulnerable to weakened
immune responses, for instance. More importantly,
some essential features such as Hypertension and
Diabetes are well-known comorbidities that exert a
negative impact on the COVID-19 prognosis. Despite
lower importance, features like Obesity and Chronic
Conditions were also present in the model, improving
its predictive effect. Surprisingly, there weren’t
too many features (excluding specific medical unit
identifiers) that exhibitedmany contributions. Instead,
patient-specific factors like Age and comorbidities
significantly contributed to predicting outcomes. In
addition to validating the clinical relevance of these
factors, this analysis furnishes actionable insights for

35



IECE Transactions on Neural Computing

healthcare professionals to determine where to focus
their efforts, focusing on high-risk patients where they
can effectively influence weight reduction. Figure 3
indicates the feature importance bar graph used in this
study.

Figure 3. Feature importance.

5.2 Model Performance Analysis
Confusion matrix results from all classifiers reveal
the performance of all the classifiers in predicting
probabilistic COVID-19 mortality risk. Figure 3
Comparison of K Meas for the SVM, Naïve Bayes,
Decision Tree, and Random Forest Classifiers on
the Diabetes Dataset shows how the Decision Tree
Classifier, as shown in Figure 4 (a) and the Random
Forest Classifier,as shown in Figure 4 (b) produce
identical results classifying 13,161 true negatives
(correctly identifying non-deceased patients) and
14,055 true positives (correctly identifying deceased
patients). Both models, however, misclassified
1,786 cases as false positives (non-deceased patients
predicted as deceased) and 966 cases as false negatives
(deceased patients predicted as non-deceased). The
results suggest both models worked fairly well but
could not get false positives to a minimum that would
not waste resources. The Logistic Regression Classifier,
as shown in Figure 4 (c) performed best in terms of the
highest true positive (14,183) and lowest false negative
count (788). Thus, the model worked best at correctly
identifying high-risk patients with a reasonable ’false
alarm’ count of 1,783. This balance makes the protocol
very suitable for healthcare applications where the
cost of missing high-risk patients is high. This model’s
ability to reduce false negatives is critical to making
good, timely decisions. Among other classifiers, the
Gradient Boosting Classifier, as shown in Figure 4 (d)
correctly identified lower-risk patients with the highest
accurate negative count of 13,339 and the lowest false
positive count of 1,608. Although it had 1,113 fewer

false negatives, meaning not all high-risk patients
were caught, it had fewer positives. In less critical
applications, this tradeoff might be acceptable. Still,
it could be problematic in healthcare, where it’s often
a matter of identifying which patients are at high
risk. The Alternative Logistic Regression Classifier,
as shown in Figure 4 (e) attempted to minimize false
positives and achieved the lowest false positives of
1,442. But thismeant we had 1,636more false negatives
and 13,335 fewer true positives. As a result, it is
less appropriate as a healthcare application when the
objective is to recognize as many high-risk patients as
possible.

Finally, considering both the ability to maximize true
positives and minimize false negatives, the Logistic
Regression Classifier, as shown in Figure 4 (c) was
the best-performing model. It performs well enough
to identify high-risk patients correctly, making it the
best option for healthcare applications that use patient
outcomes to life or death. Other models, e.g., Gradient
Boosting, as shown in Figure 4 (d) and Decision
Tree/Random Forest, as shown in Figure 4 (a) and (b),
performed relativelywell in some of these parts but less
well in general more important aspects of healthcare
scenarios.

Different machine learning classifiers were then
evaluated for training and testing data sets based on
their accuracy, F1 score, precision, and Recall. Figure 5
visualize the strengths and limitations of each model
as revealed by the results. From the training given in
the Decision Tree Classifier, as shown in Figure 5 (a),
we observe good performance on the training dataset,
with an accuracy and F1 score of 96%. On the test
set, however, these metrics decreased slightly, with
accuracy and F1 score dropping to 90%. This indicates
a tendency to fit the model to the data slightly more
than it should, with the model performing better on
the training data than on the unseen data. The Random
Forest Classifier, as shown in Figure 5 (b) generally
performed similarly for the training and Testing sets
and achieved the same 91% accuracy and F1 score.
This means that the model does not overfit the original
data and can predict well on unseen data. The Logistic
Regression Classifier, as shown in Figure 5 (c) worked
consistently and returned an accuracy and F1 score
of 91% on both the training and testing datasets. The
metrics are stable, which shows that logistic regression
is a good model for this classification task in terms
of stability and reliability. Moving onto Figure 5 (d),
the Gradient Boosting Classifier exhibited the highest
accuracy and F1-score of 92% on the training dataset
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Figure 4. Confusion matrix for all models.

Figure 5. Model performance.

that stayed intact on the test dataset. In addition,
this model showed excellent precision and Recall and
was very useful for applications that require high
sensitivity and specificity. Finally, Figure 5(e) shows
that the Logistic Regression Classifier with Scaled
Features returned the same accuracy and F1 score as
the standard Logistic Regression model, with accuracy
results of 91% on both training and testing datasets.
Using feature scaling neither improved the model
much nor kept it reliable and consistent.

Overall, the Gradient Boosting Classifier resulted in
the best model performance with the highest accuracy,

highest F1 score, highest precision, and highest Recall.
The random forest classifier and logistic regression
classifier performed very well, and they are both
reliable choices. The Decision Tree Classifier also
exhibited some overfitting, and feature scaling did not
improve the performance of Logistic Regression. This
study’s findings indicate that the Gradient Boosting
Classifier is the most successful model for predicting
COVID-19 death risk, with the performance of all
models presented in Figure 5.

The Receiver Operating Characteristic (ROC) curves
of all classifiers show their discrimination ability to

37



IECE Transactions on Neural Computing

Figure 6. ROC curve for all models.

discriminate between positive (deceased) and negative
(non-deceased) cases. Figure 6 display the ROC
curves of each classifier, which represent the tradeoff
between the true positive rate (sensitivity) and the
false positive rate. The classifiers are evaluated by the
area under the curve (AUC) for the classifier. Figure 6
(a) shows the Decision Tree Classifier, which has great
discriminatory power (high AUC). Looking more
closely at the earlier metrics, we can see that there is
some slight overfitting, but overall, the curve indicates
that the model does well at distinguishing high-risk
from low-risk patients, assuming that generalizability
is not substantially impacted by the overfitting. The
Random Forest Classifier displays an almost identical
ROC curve, as shown in Figure 6 (b) with a similarly
high AUC. This consistency alludes to the fact that
Random Forest utilizes ensemble learning to decrease
variance and provide reliable predictions. The
Logistic Regression Classifier, as shown in Figure 6
(c) also shows high AUC and is, therefore, a robust
classifier for discriminating between the two classes.
Because logistic regression achieves a balanced tradeoff
between sensitivity and specificity, it is a very good
choice for the binary classification task in healthcare
environments. The Gradient Boosting Classifier, as
shown in Figure 6 (d) had the highest AUC among
all models. In addition, the ROC curve is closer
to the top left corner than the others, indicating its
superior ability to correctly recognize true positives
while preventing too many false positives. As can be
seen, Gradient Boosting is a very effective classifier

for this dataset. The ROC curves for all models are
shown in Figure 6. The logistic regression model
with Scaled Features, as shown in Figure 6 (e) also
gave a very similar AUC, indicating its consistent
performance. The model was similar in its ability to
discriminate classes whether or not feature scaling was
employed. Since the alternate Logistic Regression, as
shown in Figure 6 (f) had the same ROC curve as
the scaled Logistic Regression, scaling had no effect
on performance. The model’s stability and reliability
stayed high, and the AUC remained the same.

Finally, conclusions are drawn based on the fact that
all classifiers attained high AUC values, thus enabling
them tomake predictions. Of the committees, Gradient
Boosting, as shown in Figure 6 (d) had the best
performance, as shown in Figure 5, achieving the best
compromise of sensitivity and specificity. On the other
hand, logistic Regression models, as shown in Figure 6
(c), (e), (f) also performed very well and exhibited
desirable properties for tasks that demand readable
and consistent predictions. Gradient Boosting and
Logistic Regression worked better, but not as robustly,
as the Decision Tree and the Random Forest classifiers.
In particular, these findings demonstrate the power of
ensemblemethods and logistic regression in predicting
the risk of COVID-19 mortality.

The evaluated models’ classification reports provide
detailed insights into the performance metrics,
including precision, Recall, and F1-score for classes
(Class 0: Class 1: deceased) and Class 2: non-deceased.
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Figure 7. Classification report for all models.

Moreover, the macro-averaged scores and the overall
accuracy suggest the generality of the models.
The Accuracy of the Decision Tree Classifier, as shown
in Figure 7 (a) was 91%, Class 0 had a Precision of
93%, Recall of 88%, and F1 score of 91%; while Class 1
had a Precision of 89%, Recall of 94%, and F1 score of
91%. These results show good performance but a slight
decrease in Recall for Class 0, meaning some caseswith
zero were not recognized correctly. Similarly, using
the Random Forest Classifier, as shown in Figure 7 (b)
resulted in an overall accuracy of 91%. Class 0 reported
a precision of 93%, Recall of 88%, and F1-score of 91%,
while Class 1 got a precision of 89%, Recall of 94%,
and F1-score of 91%. Random Forest is consistent,
splitting both classes equally and doing well on all
metrics. The Logistic Regression Classifier, as shown
in Figure 7 (c) also produced an accuracy of 91%, with
a precision of 93%, Recall of 88%, and F1-score of 91%
for Class 0. Class 1 performance was 89% precision,
94% recall, and 91% F1 score. The results validate
that Logistic Regression is a robust and consistent tool
for predicting mortality from COVID-19. mong all
classifiers, the Gradient Boosting Classifier, as shown
in Figure 7 (d) improves slightly in terms of accuracy
(92 %), as it enables better balancing of precision,
Recall, and F1-score on both classes. With Class 0,
we got a precision of 92%, a recall of 89%, and an F1
score of 91%, and with Class 1, we got a precision of
90%, a recall of 93%, and an F1 score of 91%. Gradient
Boosting is particularly effective for Class 1 because
the improved Recall for Class 1 allows it to identify
high-risk patients. Similar observations were made

from the Scaled Logistic Regression Classifier, which
had the same overall accuracy as the unscaled Logistic
Regression Classifier, as shown in Figures 7 (e) and
(f). Precision (92%), Recall (89%), and F1-score (91%)
of both Class 0 and Class 1 were balanced, while
their f1 precision (93%) and f1 recall (94%) were even
higher. This consistency showcases that the model’s
predictive performance was not significantly changed
by the feature scaling.

6 Discussion
To evaluate machine learning classifiers in identifying
the risk of COVID-19 mortality, we analyzed their
performance metrics, confusion matrices, ROC curves,
and classification reports and observed each model’s
strengths andweaknesses. In the following, we discuss
these findings and their implications for healthcare
decision-making and resource allocation.

6.1 Model Strengths and Weaknesses
For both the training and testing phases, the Decision
Tree Classifier achieved high values of accuracy and F1
scores (the latter equals 96% and 90%, respectively).
However, the drop in performance is very slight
between training and testing, which hints at somemild
overfit in the training. Confusion matrixes indicated
that the Decision Tree correctly diagnosed almost all
of the deceased and non-deceased patients; however,
1,786 false positives misdiagnosed non-deceased
patients as deceased, and 966 false negatives were
diagnosed as non-deceased. The model, although
strong, appears to have a higher false positive rate,
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implying that unnecessary healthcare resources will be
allocated. The classification report corroborated this;
the Recall serves 88% of non-deceased cases (Class 0),
meaning we have a slight challenge in recognizing all
low-risk patients.

Since this is an ensemble method, the Random Forest
Classifier has slightly better stability than the Decision
Tree. It returns almost similar results for both training
and testing datasets (accuracy and F1 score of 91% for
both). From the confusionmatrix and the classification
report, I got the same performance as with the
Decision Tree: 1,786 false positives and 966 false
negatives. However, compared to a single Decision
Tree, Random Forest performs with reduced variance
and reduces the risk of overfitting or generalizability.
Out of all models, the Logistic Regression Classifier
showed a more balanced model in terms of accuracy
and F1–s score of 91% for both training and testing
datasets. Additionally, for health care domains where
minimizing the number of high-risk cases missed is
crucial, the confusion matrix counts for the lowest
number of false negatives (788) and lower number
of false positives (1,783), therefore, are very suitable.
The performance in the classification report showed
consistent precision, Recall, and F1-scores for both
classes, which verify its robustness and reliability.
Another advantage of Logistic Regression is that it’s
interpretable so that healthcare professionals may
understand the impact of individual features on
mortality risk.

Moreover, the Gradient Boosting Classifier was found
to be the best-performing model in terms of total
accuracy (92%) and F1 scores for continuous and
complete datasets. Across both classes, it had
excellent precision, Recall, and a very low false
positive rate (1,608). Based on the ROC curve,
its outstanding performance was further illustrated
by the curve approaching the top left corner well,
implying good discriminatory power. This means
Gradient Boosting is a great fit for healthcare
applications where we are very sensitive (don’t miss
a high-risk patient) and somewhat sensitive (don’t
waste resources on unneeded tests). Nevertheless,
it is computationally more complex than Logistic
Regression, and thus, it wouldn’t be used in a
time-sensitive or resource-constrained environment
for practical purposes.

For instance, for the Logistic Regression Classifier
with Scaled Features, the accuracy and F1-scores
were identical to Logistic Regression with Unscaled

Features, both at 91%, respectively. Thus, feature
scaling didn’t significantly affect the model’s
performance, implying that Logistic Regression is
intrinsically robust to this dataset’s variances in
feature magnitude. Though consistent, this is not
improving much with scaling, and that might mean
that simpler preprocessing steps would be enough for
this model.

6.2 Comparison and Implications
Comparing all classifiers, we find a tradeoff between
model complexity, interpretability, and performance.
We find that Gradient Boosting is the best-performing
model with the highest accuracy and precision
but at the highest computational requirements.
Similar to Logistic Regression, which strikes a
good balance between strong performance and
simplicity and interpretability, it is a good default
setting for implementation in practice in healthcare
settings. Between models like Decision Trees and the
more computationally intensive Logistic Regression,
Ensemble methods like Random Forests demonstrate
how we can achieve stability and generalization with
minimal effort.
All classifiers have exhibited very high AUC values,
demonstrating that they hold great predictive
power and could benefit healthcare by assisting
decision-making. Despite a slight overfitting in the
Decision Tree, there was reasonable consistency of
performance on the Logistic Regression across folds,
validating that simpler models are better suited for
use on real-world problems where generalizability
cannot be compromised.

6.3 Real-World Application
Choosing a predictive model in healthcare settings,
where decisions sometimes carry life and death
consequences, must balance accuracy, interpretability,
and computational efficiency. Being capable of
minimizing false negatives, Gradient Boosting
excellently handled the task of prioritizing high-risk
patients so that they would be tended to as early
as possible and the resources would be effectively
allocated. This, however, can be computationally
expensive, limiting its utilization in real-time
settings or resource-constrained environments. Low
false negative rate and interpretability of Logistic
Regression as an alternative, offering bold decisions
from healthcare providers based on the output from
the model.
They also demonstrate the need to carefully select
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evaluation metrics. Although accuracy is a general
performance metric, other metrics such as precision,
Recall, and F1 score are more applicable to healthcare
since the cost of false positives and false negatives
is quite different. For example, false negatives, i.e.,
missing high-risk patients, can have dire consequences,
and thus, Recall is a key metric when deciding if a
model will fit the bill.

6.4 Future Directions
Our work demonstrates that machine learning
can be employed for COVID-19 mortality risk
prediction and several hypothesis untested regions.
Incorporating other characteristics, like socioeconomic
considerations or healthcare access, increases
model performance and offers a better contextual
representation of mortality risk. Constructing hybrid
models that amalgamate the best of Gradient Boosting
and Logistic Regression for constructing models will
enhance predictive accuracy and help interpretability.
The generalizability and practical applicability of the
models evaluated in this thesis will be confirmed by
further considering the models on other datasets and
in real-world clinical environments.

7 Conclusion
This paper uses machine learning classifiers to predict
COVID-19 mortality risk with potential applications
in healthcare decision-making. The study performs
performance evaluation given models like Decision
Tree, Random Forest, Logistic Regression, and
Gradient Boosting, based on Accuracy, Precision,
Recall, and F1 score with the support of confusion
matrices and ROC curves. Gradient Boosting yielded
the best accuracy (92%) and F1 scores and an
outstanding balance between sensitivity and specificity
by performing quantitative exercises most among
all classifiers. Because of the low false positives
and low false negatives in its ability to identify
high-risk patients in such a manner, the system will
be able to provide necessary, timely intervention in
finding high-risk patients. However, its computational
complexity may prevent applicability in real time,
particularly in resource-constrained environments.
Although slightly less accurate, Logistic Regression
was consistently strong and interpretable, proving 91%
correct and worst false negative. It is very simple
and robust, making it very suitable for real-world
applications where efficiency and transparency are
of the essence. For instance, slightly more reliable
models with balanced performance were ensemble
methods (e.g., Random Forest). However, they

did not provide significantly better results than
simpler baseline models (e.g., Logistic Regression).
Concurrently, the Decision Tree Classifier showed
a small amount of overfitting, which signifies a
better need for regularization techniques. This work
emphasizes the need for a compromise between
the performance, interpretability, and computational
feasibility of the developed models in healthcare
applications. The results highlight the potential
use of machine learning to create the best possible
resource allocation and better patient outcomes during
pandemics. This work should be expanded to hybrid
models, feature integration, and real-world clinical
validation for predictive models in healthcare.
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