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Abstract
In engineering applications, high-precision tracking
control is crucial for robotic manipulators to
successfully complete complex operational tasks. To
achieve this goal, this study proposes an adaptive
tunable predefined-time backstepping control
strategy for uncertain robotic manipulators with
external disturbances and model uncertainties.
By establishing a novel practical predefined-time
stability criterion, a tunable predefined-time
backstepping controller is systematically presented,
allowing the upper bound of tracking error settling
time to be precisely determined by adjusting only
one control parameter. To accurately address lumped
uncertainty, two updating laws are designed: a
fuzzy weight updating law and a boundary adaptive
updating law, which together reduce dependence
on system model knowledge. In addition, the
singularity problem in the predefined-time design
process is effectively avoided by constructing
the hyperbolic tangent function. The efficacy of
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the proposed control strategy is verified through
numerical simulations.
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1 Introduction
Over the past few decades, robotic manipulators
have been widely applied in various industries
such as manufacturing, material handling, and
space exploration, significantly enhancing automation
levels and work efficiency [1, 2]. However, in
practical operations, robotic manipulators inevitably
face external disturbances and model uncertainties,
which pose severe challenges for achieving high-speed
and high-precision tracking control. To this end,
researchers have proposed various advanced control
strategies, including learning control [3–5], sliding
mode control (SMC) [6], model predictive control
(MPC) [7], adaptive fuzzy/neural control [8–10], and
so on. Unfortunately, these control strategies [3–10]
can only achieve asymptotic convergence of position
tracking errors, meaning that the convergence time for
the errors is infinite, making it difficult to meet tasks
with strict convergence time requirements.

To achieve satisfactory tracking performance for
robotic manipulators, finite-time control [11–13] and
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fixed-time control [14–16] have been proposed and
quickly developed due to its outstanding performance
with respect to rapid convergence rate and high control
accuracy. In [13], a composite learning controller
was designed based on a nonsingular terminal sliding
mode surface, enabling tracking and estimation errors
to converge to zero in finite time. Van et al. [16]
investigated the fixed-time backstepping tracking
control problem to ensure the fixed-time convergence
of tracking errors. However, finite/fixed-time control
(e.g., [11–16]) has the following two limitations: (i)
the convergence time is highly dependent on the
system’s initial conditions, meaning that a larger initial
value results in a longer convergence time; (ii) the
convergence time is a complex function of multiple
control parameters, making it difficult to establish
a direct relationship between convergence time and
control parameters. For example, in automated
assembly lines or precision assembly tasks, robotic
manipulators need to accurately reach the target
position within the expected time to ensure the correct
assembly and alignment of components.

To address the limitations of finite/fixed-time control,
the concept of predefined-time stability was first
proposed in [17], offering the key advantage of
precisely determining the upper bound of convergence
time by adjusting only one control parameter. With
this advantage, researchers have successfully applied
predefined-time control to various nonlinear systems
[18–24]. However, there are mainly two issues
in the previous predefined-time control literature:
(i) an overestimation of the upper bound of the
convergence time, i.e.,

√
2Tc or 2Tc, with Tc being a

predefined-time constant [18–21]; (ii) the introduction
of some piecewise continuous functions to address
the controller singularity problem increases the
complexity of stability analysis [22–24]. More recently,
scholars presented several predefined-time criteria
with the upper bound of the convergence time being Tc

instead of
√
2Tc or 2Tc, which is beneficial for practical

applications [25, 26]. In [26], a predefined-time
robust stabilization strategy was proposed for robotic
manipulators, where the singularity problem was
not considered, and robust approach was adopted
to suppress system uncertainties. Thus, designing
a singularity-free predefined-time control strategy
to avoid overestimating the upper bound of the
convergence time for tracking error is both challenging
and meaningful.

Based on above discussions, an adaptive tunable
predefined-time backstepping tracking control

strategy is proposed for robotic manipulators with
external disturbances and model uncertainties, and
the main contributions are listed as follows.

(i) Compared to finite/fixed-time control [11, 13–
16], a tunable predefined-time controller is devised
by establishing a novel practical predefined-time
stability criterion, ensuring that the upper bound of
convergence time of tracking errors can be precisely
determined by adjusting only one control parameter.

(ii) By constructing a fuzzy weight updating law and
a boundary adaptive updating law, the knowledge of
lumped uncertainty including external disturbances,
model uncertainties, and fuzzy approximation errors,
is no longer required. Moreover, the singularity
problem in the controller can be directly avoided by
constructing the hyperbolic tangent function.

The remainder of this study is organized as follows:
Section II outlines the dynamic model of the robotic
manipulator system and some essential lemmas.
Section III provides the predefined-time control
design process and stability analysis. The simulation
results arevalidated in Section IV. Finally, followed by
conclusions in Section V.

2 Problem Formulation and Preliminaries
2.1 Dynamic model of robotic manipulators
The dynamic model of the n-DOF robotic manipulator
system can be described as [26]

M(q)q̈ +C(q, q̇)q̇ +G(q) = u+ d (1)

where q, q̇, q̈ ∈ ℜn, M(q) ∈ ℜn×n, C(q, q̇) ∈ ℜn×n,
G(q) ∈ ℜn, M(q) = M0(q) + ∆M(q), C(q, q̇) =
C0(q, q̇)+∆C(q, q̇),G(q) = G0(q)+∆G(q), d ∈ ℜn,
u ∈ ℜn, and the corresponding definitions of these
symbols are given in Table 1.

By defining x1 = q and x2 = q̇, the dynamic model of
robotic manipulator system (1) can be rewritten as{

ẋ1 = x2

ẋ2 = F +Υ+M−1
0 (x1)u+D

(2)

where F = −M−1
0

(
C0(x1,x2)x2 + G0(x1)

)
, Υ =

−M−1
0

(
∆C(x1,x2)x2+∆G(x1)+∆Mẋ2

)
, andD =

M−1
0 d.

The control objective of this study is to design
an adaptive tunable predefined-time backstepping
controller for uncertain robotic manipulators with
external disturbances and model uncertainties, such
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Table 1. Definitions of symbols in robotic manipulators.

Symbol Definition
q the joint position
q̇ the joint velocity
q̈ the joint acceleration
M(q) the positive definite inertia matrix
M0(q) the nominal part ofM(q)
∆M(q) the uncertain part ofM(q)
C(q, q̇) the Coriolis/centrifugal torque
C0(q, q̇) the nominal part of C(q, q̇)
∆C(q, q̇) the uncertain part of C(q, q̇)
G(q) the gravity torque
G0(q) the nominal part ofG(q)
∆G(q) the uncertain part ofG(q)
d the bounded external disturbance
u the control torque

that the joint position q can rapidly and accuracyly
track its desired trajectory qd, i.e., the tracking error
e = q − qd can converge to a sufficiently small region
around the origin within the predefined time Ts.

Assumption 1 [27] The desired joint position trajectory
qd, and its first-order derivative q̇d and second-order
derivative q̈d are assumed to be continuous and bounded.

Remark 1 In practice, obtaining an accurate dynamic
model of the robotic manipulator is quite challenging due to
factors such as significant flexibility, coulomb friction, wear,
and other influences. To improve the accuracy of modeling,
this study separates the model into nominal and uncertain
parts, i.e., M(q) = M0(q) + ∆M(q), C(q, q̇) =
C0(q, q̇) + ∆C(q, q̇), andG(q) = G0(q) + ∆G(q).

Remark 2 From the perspective of practical engineering,
the joint position q, the joint velocity q̇ and the joint
acceleration q̈ are bounded due to the mechanic limitations
or the task space limitations of the space manipulator [28].
Moreover, the external disturbance d is bounded, andM(q),
C(q, q̇), G(q) are continuous functions of the coordinates
q and q̇. Thus, it is reasonable to assume thatΥ andD are
bounded.

2.2 Preliminaries
For the convenience of controller design, we first
provide the following essential lemmas.

Lemma 1 For the nonlinear system ẋ = f(t,x), consider
a positive definite function V (x) and the scalars β1 >
0, β2 > 0, κ > 0, b > 1, 0 < γ < 1, Ts > 0, and

0 < ϑ < ∞, which satisfy the following condition

V̇ (x) ≤ − bπ
κγTs

√
β1β2

(
β1V

1− γ
2 (x) + β2κ

2V 1+ γ
2 (x)

)
+ ϑ,

(3)

and the trajectory of ẋ = f(t,x) is practical tunable
predefined-time stable (PTPTS), with the convergence
region being{

lim
t→Ts

x | V (x) ≤ min

{(
bϑκγTs

(b2 − 1)π

√
β2
β1

) 2
2−γ

,

(
bϑκγTs

(b2 − 1)π

√
β1
β2

) 2
2+γ

}}
(4)

where Ts is the predefined-time constant.

Proof The inequality (3) includes the following two
cases, i.e.,

Case I:

V̇ (x) ≤− bπ

κγTs
√
β1β2

[
β1
b2

V 1− γ
2 (x) + β2κ

2V 1+ γ
2 (x)

]
− bπ

κγTs
√
β1β2

[
(1− 1

b2
)β1V

1− γ
2 (x)

]
+ ϑ.

(5)

According to (5), the following inequality

V̇ (x) ≤ − bπ

κγTs
√
β1β2

[
β1
b2

V 1− γ
2 (x) + β2κ

2V 1+ γ
2 (x)

]
(6)

holds for V 1− γ
2 (x) ≥ bϑκγTs

(b2−1)π

√
β2

β1
, which can be

deduced that the convergence region is ∆1 ={
x|V (x) ≤

(
bϑκγTs

(b2−1)π

√
β2

β1

) 2
2−γ

}
.

From the inequality (6), the settling-time function can
be calculated as

T (x0) ≤−
∫ 0

V (x0)

dV (x)

bπ
κγTs

√
β1β2

[
β1

b2
V 1− γ

2 (x) + β2κ2V
1+ γ

2 (x)

]
≤2Ts

π

∫ V (x0)

0

1

1 + β2

β1
κ2b2V γ(x)

d

(√
β2
β1

κbV
γ
2 (x)

)

=
2Ts

π

[
arctan

(√
β2
β1

κbV
γ
2 (x0)

)]
(7)

Due to the fact that x0 is the initial state, 0 <

arctan

(√
β2

β1
κbV

γ
2 (x0)

)
≤ π

2 is ensured. Thus, the

settling time is bounded by T (x0) ≤ Ts.
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Case II:

V̇ (x) ≤− bπ

κγTs
√
β1β2

[
β1V

1− γ
2 (x) +

β2κ
2

b2
V 1+ γ

2 (x)

]
− bπ

κγTs
√
β1β2

[
(1− 1

b2
)β2κ

2V 1+ γ
2 (x)

]
+ ϑ.

(8)

Similar to the proof procedures in Case 1, the
convergence region and the upper-bound settling time

of the system are given by ∆2 =

{
lim
t→Ts

x|V (x) ≤(
bϑκγTs

(b2−1)π

√
β1

β2

) 2
2+γ

}
and T (x0) ≤ Ts, respectively.

Lemma 2 [29] For x ∈ ℜ and ϵ > 0, the following
inequality is satisfied

0 ≤ |x| − x tanh

(
x

ϵ

)
≤ 0.2785ϵ. (9)

Lemma 3 [20] For x ∈ ℜ, y ∈ ℜ, and o1 > 0, o2 >
0, δ > 0, the following relationship holds

|x|o1 |y|o2 ≤ o1
o1 + o2

δ|x|o1+o2 +
o2

o1 + o2
δ
− o1

o2 |y|o1+o2 .

(10)

Lemma 4 [30] For y ≥ x, and γ > 1, one can obtain

x(y − x)γ ≤ γ

1 + γ
(y1+γ − x1+γ). (11)

Lemma 5 [31] For χi > 0, i = 1, 2, ..., n, and γ > 0, the
following inequalities hold

n∑
i=1

χγ
i ≥

(
n∑

i=1
χi

)γ

, if 0 < γ < 1

n∑
i=1

χγ
i ≥ n1−γ

(
n∑

i=1
χi

)γ

, if γ > 1.
(12)

3 Adaptive Tunable Predefined-Time Control
In this section, an adaptive tunable predefined-time
controller is developed for the robotic manipulator
system (2) using the backstepping technique, followed
by the predefined-time stability analysis.

3.1 Controller Design
Step 1: Select the following Lyapunov function as

V1 =
1

2
eTe (13)

where e = [e1, ..., en]
T.

Differentiating (13) yields

V̇1 =eTė

=eTz + eTα (14)

where z = [z1, ..., zn]
T = ė−α is the virtual error, and

α = [α1, ..., αn]
T is the virtual controller given by

αi = −ᾱi tanh

(
eiᾱi

ϖ

)
(15)

ᾱi = k1sig
1−γ(ei) + k2sig

1+γ(ei) + k3ei (16)

where k1 = k̄1(
1
2)

1− γ
2 , k̄1 = bπ

κγTs

√
β1

β2
, k2 = k̄2(

1
2)

1+ γ
2 ,

k̄2 = n
γ
2 2

γ
2 3

γ
2
bπκ
γTs

√
β2

β1
, k3 ≥ 1

2 , Ts > 0, 0 < γ < 1, ϖ >

0, β1 > 0, β2 > 0, κ > 0, b > 1, sigγ(·) = |·|γsign(·)with
sign(·) being the signum function, and i = 1, 2, ..., n.

Differentiating (16) yields

α̇i =− ˙̄αi tanh

(
eiᾱi

ϖ

)
− ᾱi

(
1− tanh2

(eiᾱi

ϖ

))
·

1

ϖ
(ėiᾱi + ei ˙̄αi) (17)

where ˙̄αi is calculated as
˙̄αi = k1(1− γ)|ei|−γ ėi + k2(1 + γ)|ei|γ ėi + k3ėi (18)

From (15)-(18), it can be obtained that when ei =
0, ėi ̸= 0, the term ˙̄αi tanh

(
eiᾱi
ϖ

)
= 0 and the power

of the term ei ˙̄αi = k1(1 − γ)sig1−γ(ei)ėi + k2(1 +
γ)sig1+γ(ei)ėi+k3eiėi is positive. Thus, the singularity
problem cuased by the differentiation of conventional
vitural control ˙̄αi can be directly avoided.

According Lemma 2, one has

eiαi =− eiᾱi tanh

(
eiᾱi

ϖ

)
≤− eiᾱi + 0.2785ϖ (19)

further implies that

eTα ≤ −eTᾱ+ 0.2785nϖ (20)

where ᾱ = [ᾱ1, ..., ᾱn]
T.

Substituting (15), (16), (20) into (14) and using
Lemma 5, one can obtain

V̇1 ≤eTz − eTᾱ+ 0.2785nϖ

≤||e||2

2
+

||z||2

2
− k1(||e||2)1−

γ
2 − k2(||e||2)1+

γ
2−

k3||e||2 + 0.2785nϖ

≤− k̄1V
1− γ

2
1 − k̄2n

− γ
2 V

1+ γ
2

1 + 0.2785nϖ +
||z||2

2
(21)
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Step 2: Define the Lyapunov function as follows

V2 = V1 +
1

2
zTz. (22)

Differentiating (22) results in

V̇2 =V̇1 + zT(ë− α̇)

=V̇1 + zT

[
F +Λ+M−1

0 u+D − q̈d

]
(23)

where the uncertainty Λ = [Λ1, ...,Λn]
T = Υ− α̇ can

be approximated using the fuzzy logic systems (FLSs)
[32], i.e.,

Λi = W i
TSi(Xn) + εi, i = 1, 2, ..., n (24)

where Xn = [xT
1 ,x

T
2 , e

T]T denotes the input vector, εi
represents the approximation error satisfying |εi| ≤
εN with εN being a positive constant, W i and Si

are the weight vector and the basis function of FLSs,
respectively.

Substituting (24) into (23) yields

V̇2 = V̇1 +
n∑

i=1

ziW
T
i Si + zT

[
F +D′ +M−1

0 u− q̈d

]
(25)

where D′ = [D′
1, ..., D

′
n]

T = ε + D is the composite
disturbance, and there is an unknownpositive constant
da, such that ||D′|| ≤ da.

Subsequently, the predefined-time controller u =
[u1, ..., un]

T is designed as

u =−M0

(
h1sig

1−γ(z) + h2sig
1+γ(z) + h3z+

F +
θ̂ηz

2τ2
+

d̂lz

2τ2
− q̈d

)
(26)

where h1 = k1, h2 = h̄2(
1
2)

1+ γ
2 , h̄2 = n

γ
2 2

γ
2 3

γ
2
bπκ
γTs

√
β2

β1
,

h3 ≥ 1
2 , η = diag

{
ST

1 S1, ...,S
T
nSn

}
∈ ℜn×n, τ > 0,

θ = max
{
||W 1||2, ..., ||W n||2

}
, and the fuzzy weight

updating law θ̂ is given by

˙̂
θ =

λ
n∑

i=1
z2i S

T
i Si

2τ2
−m1θ̂ − c1θ̂

1+γ (27)

and the boundary adaptive updating law d̂l is

˙̂
dl =

1

2τ2
||z||2 −m2d̂l − c2d̂

1+γ
l (28)

where λ > 0, m1 = m2 =
(

bπ
κγTs

√
β1

β2

) 2
2−γ , c1 =

3
γ
2 πbκ(2+γ)

γTs2
1+

γ
2 λ

γ
2 (1+γ)

√
β1

β2
, c2 = 3

γ
2 πbκ(2+γ)

γTs2
1+

γ
2 (1+γ)

√
β1

β2
, θ̂ and d̂l

are the estimation of θ and dl, respectively.

Using the Young’s inequality, the following
inequalities hold

n∑
i=1

ziW
T
i Si ≤

θ
n∑

i=1
z2i S

T
i Si

2τ2
+

nτ2

2
(29)

zTD′ ≤||z||2

2τ2
d2a +

τ2

2

=
||z||2

2τ2
dl +

τ2

2
(30)

where dl = d2a.

Substituting (26), (29) and (30) into (25) yields

V̇2 ≤V̇1 +

θ̃
n∑

i=1
z2i S

T
i Si

2τ2
+

nτ2

2
+

||z||2

2τ2
d̃l +

τ2

2
−

h1(||z||2)1−
γ
2 − n− γ

2 h2(||z||2)1+
γ
2 − h3||z||2

≤− k̄1V
1− γ

2
2 − h̄2n

− γ
2 2−

γ
2 V

1+ γ
2

2 +

θ̃
n∑

i=1
z2i S

T
i Si

2τ2

+
d̃l||z||2

2τ2
+ ϑ1 (31)

where θ̃ = θ − θ̂, and ϑ1 = 0.2785nϖ + n+1
2 τ2.

3.2 Stability Analysis
Theorem 1 Consider the robotic manipulator system (1)
in the presence of external disturbances and model
uncertainties. With the virtual controller (15),
predefined-time controller (26), and adaptive update
laws (27) and (28), the tracking error e can converge to
a sufficiently small region around the origin within the
predefined time Ts.

Proof 1 Choose the positive Lyapunov function as

V3 = V2 +
1

2λ
θ̃2 +

1

2
d̃2l . (32)

Differentiating (32) yields

V̇3 =V̇2 −
1

β
θ̃
˙̂
θ − d̃l

˙̂
dl

≤− k̄1V
1− γ

2
2 − h̄2n

− γ
2 2−

γ
2 V

1+ γ
2

2 + ϑ1+

θ̃

( n∑
i=1

z2i S
T
i Si

2τ2
− 1

λ
˙̂
θ

)
+ d̃l

(
||z||2

2τ2
− ˙̂
dl

)
. (33)
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Substituting (27) and (28) into (33) leads to

V̇3 ≤− k̄1V
1− γ

2
2 − h̄2n

− γ
2 2−

γ
2 V

1+ γ
2

2 +
m1

λ
θ̃θ̂+

m2d̃ld̂l +
c1
λ
θ̃θ̂1+γ + c2d̃ld̂

1+γ
l + ϑ1. (34)

Using the Young’s inequality, one has

m1

λ
θ̃θ̂ =

m1

λ
θ̃(θ − θ̃) ≤ −m1θ̃

2

2λ
+

m1θ
2

2λ
(35)

m2d̃ld̂l = m2d̃l(θ − d̃l) ≤ −
m2d̃

2
l

2
+

m2d
2
l

2
. (36)

Substituting (35) and (36) into (34) yields

V̇3 ≤− k̄1V
1− γ

2
2 − h̄2n

− γ
2 2−

γ
2 V

1+ γ
2

2 − m1θ̃
2

2λ
−

m2d̃
2
l

2
+

m1θ
2

2λ
+

m2d
2
l

2
+

c1
λ
θ̃θ̂1+γ + c2d̃ld̂

1+γ
l + ϑ1. (37)

According to Lemma 3, the following two inequalities hold:(
m1θ̃

2

2λ

)1− γ
2

≤ Θ(γ) +
m1θ̃

2

2λ
(38)

(
m2d̃

2
l

2

)1− γ
2

≤ Θ(γ) +
m2d̃

2
l

2
(39)

where Θ(γ) = (γ/2) ·
(
(2− γ)/2

)(2−γ)/γ .

Based on Lemma 4, one has

θ̃θ̂1+γ = θ̃(θ − θ̃)1+γ ≤ 1 + γ

2 + γ
(θ2+γ − θ̃2+γ) (40)

d̃ld̂
1+γ
l = d̃l(dl − d̃l)

1+γ ≤ 1 + γ

2 + γ
(d2+γ

l − d̃2+γ
l ). (41)

Substituting (38)-(41) into (37), one can obtain

V̇3 ≤− k̄1V
1− γ

2
2 − h̄2n

− γ
2 2−

γ
2 V

1+ γ
2

2 −
(
m1θ̃

2

2λ

)1− γ
2

−

21+
γ
2 c1λ

γ
2 (1 + γ)

2 + γ

(
θ̃2

2λ

)1+ γ
2

−
(
m2d̃

2
l

2

)1− γ
2

+

21+
γ
2 c2(1 + γ)

2 + γ

(
d̃2l
2

)1+ γ
2

+ ϑ1

≤− bπ

κγTs
√
β1β2

(
β1V

1− γ
2

3 + β2κ
2V

1+ γ
2
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+ ϑ2

(42)

where ϑ2 = 2Θ(γ) +m1θ
2/(2λ) + c1(1 + γ)θ2+γ/(λ(2 +

γ)) +m2d
2
l /2 + c2(1 + γ)d2+γ

l /(λ(2 + γ)) + ϑ1.

According to Lemma 1, it is concluded from (42) that the
tracking error e can converge into a sufficiently small region

∆ =

{
lim
t→Ts

e | V3 ≤ min

{(
bϑ2κγTs

(b2 − 1)π

√
β2
β1

) 2
2−γ

,

(
bϑ2κγTs

(b2 − 1)π

√
β1
β2

) 2
2+γ

}}
(43)

within a predefined time Ts. The proof is completed.

4 Simulation Results
In this section, to verify the effectiveness of the
proposed control strategy, a two-link robotic
manipulator is considered, in which the configuration
is depicted in Figure 1.

Figure 1. Configuration of a two-link robotic manipulator.

The dynamic of the two-link robotic manipulator is
given by

M(q) =

[
m11 m12

m21 m22

]
,C(q, q̇) =

[
c11 c12
c21 c22

]
G(q) =

[
g1, g2

]T
,d(t) =

[
d1, d2

]T
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where

m11 = (m1 +m2)l
2
1 +m2l

2
2 + 2m2l1l2 cos(q2) + J1,

m12 = m2l
2
2 +m2l1l2 cos(q2),

m21 = m2l
2
2 +m2l1l2 cos(q2),

m22 = m2l
2
2 + J2,

c11 = −m2l1l2 sin(q2)q̇2,

c12 = −m2l1l2 sin(q2)(q̇1 + q̇2),

c21 = m2l1l2 sin(q2)q̇1,

c22 = 0,

g1 = (m1 +m2)l1g cos(q1) +m2l2g cos(q1 + q2),

g2 = m2l2g cos(q1 + q2).

The specific parameters of the manipulator dynamic
model are selected as l1 = 1.0 m, l2 = 0.8 m, m1 =
1.5kg, m2 = 0.5kg, J1 = 5kg.m2, J2 = 5kg.m2,
g = 9.8m/s2. The external disturbances are set as
d1(t) = 0.5 sin(200πt)+ 0.2 sin(t) N · m and d2(t) =
0.5 sin(200πt) + 0.2 cos(2t) N · m. The actual mass
of the two links m1 and m2 are chosen as 1.2kg and
0.4kg, respectively. The desired trajectories are given
as q1d = 1.25 − 1.4e−t + 0.35e−4t rad, and q2d =
1.25 + e−t − 0.25 e−4t rad, respectively.

The parameters of virtual controller (20),
predefined-time controller (26), and adaptive update
laws (27) and (28) are selected as Ts = 5,b = 1.5,
γ = 5/13,β1 = β2 = 1,τ = 2, λ = 1,ϖ = 0.00001.

To verify the impact of initial conditions on the
performance of the robotic manipulator system, we
select three different sets of initial joint positions:
q(0) = [0.6; 0.6], q(0) = [1; 1], and q(0) = [1.5; 1.5].
Moreover, the initial joint velocity is set as q̇(0) =
[0.1; 0.1], and the tunable parameter κ is fixed as κ =
0.4.

Figure 2. Tracking errors under different initial joint
positions.

Figure 3. Virtual errors under different initial joint positions.

Figure 4. Control torques under different initial joint
positions.

Figure 5. Tracking errors under different values of κ.

The corresponding simulation results are shown in
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Figures 2-4. Figure 2 depicts the tracking errors under
different initial joint positions. From Figure 2, it
can be seen that the actual convergence time for the
tracking errors e1 and e2 under different initial joint
positions is 3s, which is independent of those initial
positions. In addition, the actual convergence time of
the tracking errors is shorter than the predefined time
Ts = 5s, implying that the upper bound of tracking
error convergence time can be precisely determined by
adjusting only one control parameter. Figure 3 plots
the virtual errors z1 and z2 under different initial joint
positions. It can be observed from Figure 3 that the
actual convergence time for the virtual errors z1 and
z2 under different initial joint positions also is 3s. The
control torques corresponding to the different initial
joint positions are shown in Figure 4. We can conclude
from Figure 4 that the greater the values of the initial
joint positions, the larger the provided control torques.

Figure 6. Virtual errors under different values of κ.

Figure 7. Control torques under different values of κ.

To assess the influence of the tunable parameter κ on
the performance of the robotic manipulator system,
three groups of different values of κ are selected,
namely κ = 0.3, κ = 0.6, and κ = 0.9. Moreover,
the initial joint position is chosen as q(0) = [1; 1].
The corresponding simulation results are presented
in Figures 5- 7. Figures 5 and 6 illustrate the tracking
errors and virtual errors under different values of κ.
From Figures 5 and 6, it is evident that the actual
convergence time for both tracking and virtual errors is
3s, which is shorter than the predefined time Ts = 5s.
Additionally, the smaller values of the parameter κ
yield higher accuracy in the system’s tracking and
virtual errors. As shown in Figure 7, while a smaller κ
facilitates faster convergence, it also results in increased
control torques. Thus, selecting appropriate values
for Ts and κ requires a balance between tracking
performance and control torque.

5 Conclusion
This study has investigated the adaptive tunable
predefined-time tracking control problem for
uncertain robotic manipulators. By establishing a
novel practical predefined-time stability criterion,
a tunable predefined-time backstepping controller
has been developed to guarantee that the bound
of tracking error settling time can be explicitly
determined in advance by adjusting one control
parameter. The comparative simulation results
validate the effectiveness and superiority of the
proposed control strategy. In the future, we will
focus on the predefined-time optimal tracking control
problem for robotic manipulator systems, considering
both tracking performance and energy costs.
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