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Abstract
Accurate and timely detection of wheat diseases
remains crucial for sustainable agriculture,
particularly in major wheat-producing regions.
Wheat diseases pose a significant threat to global
food security, need precise and timely detection
to promote sustainable agriculture. Existing
approaches consistently employ single-scale
features with shallow-layered convolutional neural
networks (CNNs). To bridge the research gaps,
we introduce a novel Multi-Scale Wheat Disease
Network (MSWDNet) with feature collaboration
for wheat disease recognition supported by a
comprehensive dataset collected from wheat fields.
This study fills research gaps by introducing a
novel technique to improve detection accuracy
and promote wheat agriculture. Our network uses
multistage architecture with progressive feature
fusion, incorporating dilated convolution blocks
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and efficient channel attention mechanisms to
capture both fine-grained details and broader
contextual patterns. The custom dataset comprises
3,351 high-quality images across five classes
collected under diverse environmental conditions.
Through extensive experimentation with various
CNN backbones, EfficientNet-B7 emerged as
the optimal feature extractor, achieving 92.55%
accuracy. Our complete architecture, enhanced
with multi-scale feature integration and channel
attention mechanisms, achieved 98.50% accuracy.
Comprehensive ablation studies validate the
effectiveness of each architectural component.

Keywords: visual intelligence, wheat diseases, deep
learning, machine vision, attention network.

1 Introduction
Wheat is the most widely eaten food crop worldwide.
It meets a substantial amount of the human body’s
daily energy needs. Wheat is well-known for its
significant nutritional value, containing a rich supply
of key elements such as carbohydrates, lipids, proteins,
and vital nutrients necessary for human existence
[1–4]. However, various diseases significantly impact
wheat yield and quality, threatening food security
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and agricultural economies. Wheat rusts, smuts, and
leaf blight are among the most detrimental diseases,
reducing production by over one-third [5, 6]. As
global population and nutritional demands increase,
improving wheat quality and productivity has become
imperative for sustaining human well-being [7].

Traditional methods of wheat disease identification
rely on inadequate conventional features due to
issues with accuracy, efficiency, and subjectivity [8, 9].
Recent technological advancements have led to the
application of deep learning (DL) and spectrum
analysis in disease diagnosis [10–13]. However,
these approaches often face limitations due to
the consideration of straightforward features, the
utilization of attention in unfeasible stages of the
networks, and mostly relying on shallower layered
networks. Artificial neural networks (ANNs) and
deep neural networks (DNNs) often require extensive
training data, while convolutional neural networks
(CNNs) incur significant processing costs and longer
training times [27]. Furthermore, these systems suffer
from poor robustness under a variety of environmental
situations and frequently rely on shallow-layered
designs that fail to capture both fine-grained
information and contextual patterns. Poor attention
mechanisms further impede feature representation,
overall accuracy. These constraints emphasize the need
for a more efficient, scalable, and robust approach.
To fill these gaps, We propose a feasible Multi-Scale
Wheat Disease Network (MSWDNet). This approach
efficiently captures multi-scale features and contextual
information, potentially improving accuracy while
reducing reliance on large datasets. Unlike typical
CNN designs, our network leverages a multi-stage
architecture with feasible intermediate features
to learn discriminative patterns. We incorporate
dilated convolution blocks to capture contextual
cues, complemented by progressive feature fusion to
retain fine-grained details. The network also employs
efficient channel attention (ECA) to learn important
feature channels while maintaining computational
efficiency. To enhance the robustness of our approach,
we have expanded the dataset by integrating
additional challenging images, resulting in a highly
diverse collection for wheat disease recognition.
This enhanced dataset, collected from wheat fields
in Pakistan under the supervision of field experts,
provides a comprehensive representation of various
wheat diseases. Our empirical validation, based on
extensive analysis, demonstrates the effectiveness of
the proposed method in accurately identifying wheat

diseases. The main contributions of our work are
outlined below:

1.1 Our contribution
• We have made a significant contribution by

using our exclusive wheat dataset that was
carefully collected in various environmental
situations, guaranteeing a thorough depiction of
wheat disease symptoms in actual agricultural
environments. The proposed dataset is highly
diverse and can challenge the attentional
capabilities of the models.

• We enhance the network’s feature extraction
capabilities by leveraging multi-scale features
from the EfficientNet backbone. Specifically, we
extract four distinct feature scales, encompassing
low-level, medium-scale, and high-level
representations. This multi-scale approach
provides a comprehensive set of features,
enabling the network to capture a rich spectrum
of visual information. By incorporating features
from various scales, our model can effectively
analyze fine-grained details and broader
contextual patterns, leading to a more robust and
accurate recognition of wheat disease.

• We introduce an efficient feature integration
mechanism incorporating channel attention,
focusing on the mature Layer 3 features processed
through an ECA module. This approach
enhances the network’s ability to focus on the
most informative channels. We implement a
progressive fusion strategy combining the initial
layer’s refined features with medium-scale (Layer
2) and high-level (Layer 4) representations.
This multi-stage fusion process strengthens the
feature set, creating a more comprehensive and
discriminative representation before passing it to
the prediction layers.

• We conducted extensive experiments on our
custom-collected Pakistani wheat disease
dataset consisting of 3,351 images across five
classes. Our systematic evaluation encompassed
multiple experimental dimensions: (1) a
comprehensive comparison of twelve CNN
backbone architectures, where EfficientNet-B7
emerged superior with 92.55% accuracy, (2)
an in-depth ablation study demonstrating the
incremental benefits of each proposed component,
culminating in 98.50% accuracy for our complete
architecture, and (3) detailed performance
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Table 1. Overview of the ML-based employed networks for crop diseases recognition.

Authors Approach Dataset Accuracy

Treboux et al. [14] Decision Tree Ensemble (DTE), Color Analysis Aerial images from five wineries in Switzerland 94.27%
Rump et al. [15] SVM with Spectral Vegetation Indicators Sugar beet leaves 97%
Ramesh et al. [16] Random Forest Classifier (RFC) with HOG Papaya leaves (160 images) 70%
Phadikar et al. [17] SVM and Bayes’ Theorem Rice leaves (India) 68.1%, 79.5%
Prajapati et al. [18] SVM with K-means Clustering Rice field images (India) 93.33%
Ahmed et al. [19] Decision Tree, Logistic Regression, KNN, Naïve Bayes Rice leaves (480 images) 97.91%
Panigrahi et al. [20] SVM, RFC, Decision Trees, KNN Maize crops (3823 images) 79.23%
Waghmare et al. [21] Multi-class SVM Grape leaves (450 samples) 96.6%
Zhao et al. [22] SVM, PNN, RFC Hyperspectral images of wheat leaves 93.33%
GuanLin et al. [23] SVM with Radial Basis Function Wheat rust (stripe and leaf rust) 96.67%
Xu et al. [24] Flood Filling Algorithm Wheat Dataset 92.3%
Proposed model MSWDNet Own collected Wheat Dataset 98.50%

Table 2. Performance analysis of the CNN-Based approaches for crop disease classification.

References Approach Dataset Accuracy

Ennadifi et al. [25] CNNs with visualization methods CRAW dataset (1163 images) 93%
Zhou et al. [26] CNN-F5 on 60-channel features Image-based data 90.20%
Ashraf et al. [27] CNN (8 layers) Not specified 93%
Baranwal et al. [28, 29] CNN-based detection techniques Apple tree diseases dataset 96.7%
Zhang et al. [30] Customized CNN for disease detection Cucumber plants dataset 94.65%
Dang et al. [31, 32] CNN model for fusarium wilt classification Radish plant diseases dataset 97.4%
Kurmi et al. [33] CNN on a diverse dataset Pepper plants dataset 95%
Karlekar et al. [34] CNN architecture for grapevine and soybean disease classification Grapevines and soybean dataset 98.14%
Islam et al. [35] EffcientNetB0 with Spatial Attention Proposed WD5CC 92.12%
Proposed model MSWDNet Own collected Wheat Dataset 98.50%

analysis through accuracy-loss curves and
confusion matrices to validate the model’s
robustness and generalization capabilities.

2 Related Work
Wheat diseases pose significant risks to global food
security; thus, their precise classification is critical for
optimal crop management. As agricultural output is
under growing strain from climate change, pests, and
disease outbreaks, early and precise disease detection
is critical to ensuring sustainable farming methods
and increasing crop yields. The classification of wheat
diseases is a crucial field of study in agricultural science
and technology since prompt and precise detection
of diseases can greatly improve crop management
and production. A wide range of strategies has been
utilised over the years, progressing from conventional
machine learning methods to more sophisticated

DL approaches [36]. This growth exemplifies the
overarching patterns in artificial intelligence and
computer vision, wherein progressively advanced
models are created to tackle complex problems [37, 38].
This section provides an overview of the existing
research in wheat disease classification.

2.1 Machine Learning-based Approaches
The concept of smart agriculture has prompted the
utilization of several machine-learning algorithms
to identify wheat diseases. Zhang et al. [39]
successfully employed hyperspectral wheat images
and classification regression trees to accurately
evaluate the intensity of powdery mildew. Their
approach obtained an identification accuracy of
over 87.8% for disease infection levels. Nevertheless,
they faced challenges in accurately discerning
slightly contaminated wheat, leading to a significant
probability of misidentifying it as either healthy or
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substantially affected leaves. Zhang et al. [40] utilized
hyperspectral remote sensing to differentiate and
classify yellow rust from nutritional stress. Their
methodology successfully identified occurrences of
yellow rust and precisely delineated its geographical
distribution by employing the physiological response
index PhRI. Khan et al. [41] developed a specialised
least squares regression model to accurately
identify the severity of early wheat infections.
This model enables the prevention, early identification,
and effective control of crop diseases, attaining
an impressive overall accuracy of over 82.35%.
Nevertheless, the exorbitant expenses linked to
hyperspectral technology provide a significant
financial obstacle for the average farmer. Wang
et al. [42] utilised spectral data to develop a
comprehensive model that can identify and classify
wheat leaf rust and wheat stripe rust. The model
achieved an overall accuracy of 82% on a test set.
However, the model’s recognition accuracy may
decrease until the impact of several elements, such as
soil composition, weather, and complex backdrops on
spectral data, is minimized. Bao et al. [43] developed
an algorithm to address this challenge, which focuses
on identifying leaf diseases and assessing their
severity. Their methodology consisted of initially
segmenting the images of wheat illnesses to extract
the characteristics of the disease spots. This was
followed by identifying the segmented diseases and
determining their severity. The strategy achieved
a maximum accuracy of 94.16% in recognizing the
diseases. This invention greatly enhances the ability
to accurately identify illnesses affecting wheat leaves.
The remaining work is summarized in the Table 1,
which highlights machine learning-based approaches,
including author information, methodologies,
datasets, and accuracies; the last rows of the Table
represent our proposed model.

2.2 Deep Learning-based Approaches
In recent times, the fields of agricultural disease
identification have seen a rise in the importance of
DL and computer vision techniques. Aboneh et
al. [44] methodically collected and labeled datasets
consisting of images ofwheat diseases. They employed
five separate deep-learning models to differentiate
various forms of wheat illnesses. After conducting
meticulous experimental comparisons, it was found
that the VGG19 model had superior effectiveness,
achieving the greatest classification accuracy. Liu et
al. [45] proposed a novel method that combines a
two-layer inception structure and cosine similarity

convolution with a traditional convolution block. This
innovative model showed a remarkable accuracy of
97.54%, specifically in the identification of buckwheat
illnesses. Nevertheless, it is important to mention
that the inclusion of the inception structure led to a
rise in computing time. Jin et al. [46] emphasized
the transformation of wheat head spectral data into a
two-dimensional format and then inputting it into a
hybrid neural network, with the aim of highlighting
the model’s capacity to generalize. The use of
this strategic approach resulted in an accuracy rate
of 84.6% when applied to the validation dataset.
This spurred progress in the field of large-scale
agricultural disease detection. In order to address
the fundamental issue of low accuracy in traditional
methods, Deng et al. [47] employed the Segformer
algorithm to effectively segment pictures of stripe
rust disease. The model’s performance significantly
improved after implementing data augmentation
techniques. It is important to emphasize that this
approach is especially suitable for illnesses affecting
fall wheat. Su et al. [48] suggested an integrated
strategy using Mask-RCNN to accurately assess the
severity of Fusarium Head Blight (FHB) in wheat
spikes, even in challenging field settings. This
technique enables efficient detection of wheat spikes
and precise segmentation of FHB infestation, hence
assisting in selecting wheat types that are resistant
to the disease. In order to effectively reduce damage
caused by yellow rust, Shafi et al. [49] did a thorough
categorization research on several forms of wheat
yellow rust infection. The ResNet-50 model was
implemented on smart edge devices for the purpose
of detecting the severity of yellow rust. Utilizing
drones to capture high-resolution, cost-effective, and
comprehensive remote sensing data shows potential
for enhancing the accuracy and effectiveness of disease
detection. Huang et al. [50] employed UAV remote
sensing technology to enhance the effectiveness of
identifying and detecting wheat leaf spots. Pan et
al. [51] developed a poorly supervised approach to
identify yellow showers disease in wheat footage
taken by UAV. This system achieved a remarkable
accuracy of 98%, considering the substantial effort
needed for data annotation. The identification of
many diseases is challenging due to their subtle
qualities. In order to improve the identification of
disease characteristics, Mi et al. [52] implemented the
CBAM module using DenseNet. This resulted in an
impressive test accuracy of 97.99% on the wheat stripe
rust dataset. Nevertheless, these approaches need
complex models and significant processing resources,
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Figure 1. Overview of the proposed network for wheat disease classification.

making them difficult to execute on mobile devices.
Bao et al. [53] introduced a lightweight model called
SimpleNet to reduce the load on model parameters
and computing resources. This model achieved an
accuracy of 94.1%. The wheat disease information
was effectively emphasized by including the CBAM
attention mechanism in the inverted residual blocks of
this model. However, it is important to recognize that
this procedure cannot be used for other crop images.
Similarly Kong et al. [54] introduced Fe-Net, a neural
network for fine-grained pest and disease detection
in precision agriculture. It obtained 85.29% accuracy
on the CropDP-181 dataset while maintaining efficient
feature extraction and minimal computational cost,
making it acceptable for practical usage. Building on
advances in precision agriculture, Kong et al. [55]
created MCF-Net, a fine-grained recognition model
for crop species classification. The model, which used
CSPNet and a cross-level fusion technique, obtained
90.6% accuracy and an F1-score of 0.962, indicating
excellent performance and efficiency for agricultural
IoT applications. Garima Shrestha et al. [56] present
a CNN-based system for plant disease diagnosis
that employs image-processing techniques to study
agricultural diseases. The study assesses 15 cases and
achieves an 88.80% accuracy in recognizing damaged
and healthy plant leaves.
The remaining work is summarised in the Table 2,
which highlights deep learning-based approaches,
including author information, methodologies,
datasets, and accuracies; the last rows of the table
represent our proposed model.

2.3 Challenges and Proposed Solution
Despite great progress in wheat disease classification,
certain challenges remain. Existing methods have
limitations such as environmental sensitivity, high
processing demands, and reliance on big annotated
datasets, which are sometimes rare. Furthermore,
many datasets may not accurately reflect the different
real-world conditions found in agriculture. These
constraints limit the scalability and resilience of

existing models. MSWDNet, our technique, uses
multi-scale feature extraction and attention processes
to improve model robustness across a wide range of
situations. By using our own dataset, we overcome
the dataset limitation and improve the model’s
generalizability and accuracy.

3 Proposed Methodology
This section outlines our innovative approach to
enhancing wheat disease classification. As shown
in Figure 1, our method seamlessly integrates
cutting-edge DL techniques to improve feature
extraction and classification accuracy significantly.
The proposed methodology comprises four key
components, each addressing a crucial aspect of the
classification challenge: (1) Deep Feature Extraction,
which forms the backbone of our model; (2) Dilated
Convolution Blocks for Contextual Enhancement,
enabling multi-scale analysis; (3) ECA for Feature
Refinement, focusing on the most informative
aspects of the data; and (4) Progressive Feature
Fusion, which combines information from multiple
levels for comprehensive disease characterization.
Together, these components form a robust framework
designed to tackle the complexities of wheat disease
identification with unprecedented precision.

3.1 Deep Feature Extraction
Weutilized EfficientNetB7 as the backbone architecture
for deep feature extraction, leveraging its =SOTA
compound scaling method and proven effectiveness
in complex visual tasks. The network, pre-trained
on ImageNet, serves as a powerful feature extractor
that captures hierarchical representations of wheat
disease symptoms at various levels of abstraction. Our
approach implements a multiscale feature extraction
strategy by utilizing four distinct layers of the network,
enabling the capture of both fine-grained disease
patterns and broader contextual information. The
feature extraction process begins at the lower layers
of the network, where fundamental visual elements
such as edges, textures, and color variations are
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captured. These low-level features are particularly
crucial for detecting fine-grained lesion patterns and
early disease symptoms. As we progress to the
intermediate layers, the network learns to represent
more complex disease-specific patterns, detecting
localized texture patterns and spot configurations
characteristic of various wheat diseases.

Higher-level features are extracted from deeper layers
of the network, encodingmore abstract disease-specific
patterns and capturing the spatial relationships
between different symptom characteristics. The
final block provides global semantic information,
representing high-level disease concepts and
contextual features. This hierarchical approach
ensures comprehensive feature representation across
multiple scales and abstraction levels. The fourth
block features are extracted for the progressive
feature fusion in the later stage of the proposed
network. The extracted features undergo a systematic
processing pipeline where each input image is
processed through the network to obtain feature
maps at the selected layers. These feature maps are
then processed using adaptive average pooling to
normalize spatial dimensions, ensuring consistent
feature representation regardless of input image
size. The multi-scale features are subsequently
concatenated along the channel dimension, creating
a rich feature representation that captures disease
characteristics at multiple scales.

3.2 Dilated Convolution Blocks for Contextual
Enhancement

We employ three parallel dilated convolution blocks
operating on the extracted backbone features to
enhance the contextual field of view and capture
multi-scale disease patterns effectively. Each block
implements different dilation rates (2, 4, and
6), enabling the network to capture increasingly
broader contextual information while maintaining
the original feature resolution. This architectural
design allows for comprehensive disease pattern
analysis at varying receptive fields without the loss of
spatial resolution that typically occurs with traditional
pooling operations. The first dilated convolution
block, with a dilation rate of 2, expands the receptive
field moderately to capture local disease patterns
and their immediate surrounding context. This
block detects the subtle transitions between healthy
and diseased tissue regions and early-stage disease
manifestations. The second block employs a dilation
rate of 4, further expanding the receptive field to

capture medium-range contextual information. This
is crucial for understanding the spatial distribution
of disease symptoms across larger tissue areas. With
the largest dilation rate of 6, the third block enables
the network to capture long-range dependencies
and global contextual information, essential for
understanding the overall disease spread patterns and
their spatial relationships. Each dilated convolution
block follows a systematic structure: a 3×3 dilated
convolution layer, followed by batch normalization and
ReLU activation. This configuration ensures effective
feature transformation while maintaining training
stability.

3.3 Efficient Channel Attention
Attention mechanisms have emerged as powerful
tools in DL architectures, enabling networks to
selectively focus on the most informative features [57–
59]. Following the multi-scale feature extraction
through dilated convolution blocks, we incorporate
an ECA mechanism to recalibrate channel-wise
feature responses adaptively. The ECA module
processes input features of dimension C × H ×
W , where C represents the concatenated channels
from our three dilated convolution paths, and H, W
represents the spatial dimensions of the feature maps.
This lightweight attention mechanism is designed
to capture channel-wise dependencies efficiently
while maintaining computational efficiency. Our
ECA implementation follows a systematic processing
pipeline, as illustrated in Figure 2. Initially, the
input features undergo Global Average Pooling (GAP)
to aggregate spatial information into channel-wise
descriptors. A key distinguishing feature of our
implementation is using an adaptive kernel size K =
7 for local cross-channel interaction modeling. This
specific kernel size was chosen empirically to provide
optimal coverage of channel relationships while
maintaining computational efficiency. The adaptive
convolution operation can be formally expressed as:

w = σ(Conv1D(GAP(X),K = 7)) (1)

where σ represents the sigmoid activation function,
and Conv1D denotes a one-dimensional convolution
operation with a kernel size 7. This operation enables
the module to capture local channel interactions
effectively while avoiding the computational overhead
of fully connected layers used in traditional channel
attention mechanisms. The generated attention
weights undergo sigmoid activation to normalize them
to the range [0,1], creating channel-specific importance
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Figure 2. Features flow visualization in the efficient channel attention module of the proposed network.

scores. These scores are then applied to the original
input features through element-wise multiplication:

Y = X ⊗ w (2)

where ⊗ represents channel-wise multiplication,
the attention weights broadcast across the spatial
dimensions.
A distinctive feature of our implementation is the
inclusion of a residual connection, which allows
the network to maintain access to the original
features while benefiting from the attention-refined
representations. The refined features demonstrate
enhanced channel-wise discrimination capability,
which is particularly important for distinguishing
subtle disease patterns in wheat images. The
attention mechanism effectively learns to emphasize
channels that carry disease-relevant information
while suppressing less informative ones. This
adaptive feature refinement proves especially valuable
when processing the multi-scale features from our
dilated convolution blocks, as it helps prioritize
the most relevant spatial scales for different disease
manifestations.

3.4 Progressive Feature Fusion
Our network implements a progressive feature fusion
strategy that systematically integrates multi-scale
features through multiple stages of refinement. The
fusion process begins with the rich hierarchical
features extracted from the EfficientNetB7 backbone,
which are then enhanced through parallel dilated
convolution pathways and further refined using
channel attention mechanisms. This progressive
approach ensures the effective combination of spatial
and channel-wise information for robust disease
detection. The feature fusion process operates in
three primary stages. In the first stage, the backbone
features undergo parallel processing through three

dilated convolution blocks (DConv-1, DConv-2, and
DConv-3) with different dilation rates, enabling the
network to capture multi-scale contextual information.
The features from these parallel pathways are initially
fused through concatenation, preserving the distinct
spatial receptive fields captured at each dilation rate.
This can be expressed mathematically as:

Fmulti-scale = Concat[FDConv-1, FDConv-2, FDConv-3] (3)

where FDConv-i represents features from each dilated
convolution block. The second stage involves
feature refinement through the ECA module, which
adaptively weights the concatenated features based on
channel-wise importance. This attention-based fusion
can be represented as:

Frefined = ECA(Fmulti-scale)⊗ Fmulti-scale (4)

These connections enable direct feature propagation
from earlier stages to later ones, facilitating
better gradient flow and preserving fine-grained
information. The final fusion stage combines the
attention-refined features with the residual features
through element-wise addition:

Ffinal = Frefined + Fresidual (5)

where Ffinal represents the final fused features
passed to subsequent layers for disease classification.
The progressively fused features undergo a final
convolution operation (Conv 3×3) before passing
to the dense prediction layers. This design creates
a hierarchical feature representation that effectively
combines local disease patterns with global contextual
information while maintaining the ability to capture
fine-grained disease-specific details. The progressive
nature of our fusion strategy ensures that the network
can adaptively emphasize the most relevant features
at each scale, leading to more accurate disease
classification. Our experiments demonstrate that this
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progressive fusion approach significantly enhances the
network’s ability to detect and classify wheat diseases
by effectively combining information across multiple
scales and receptive fields.

4 Experiments
In this section, we present a comprehensive evaluation
of our proposed network for wheat disease recognition.
Our experiments begin with a detailed description of
our custom dataset collected in Pakistan, comprising
3,351 images across five classes: Slightly Rust, Severe
Rust, Smuts, Healthy Leaf, and Healthy Wheat.
The training methodology incorporates various data
augmentation techniques and optimization strategies,
implemented using PyTorch on Google Colab with an
NVIDIA T4 GPU. We extensively analyzed different
CNN backbone architectures, with EfficientNet-B7
emerging as the optimal feature extractor. Through
systematic ablation studies, we demonstrated the
effectiveness of each component in our network, with
the final architecture achieving 98.50% accuracy.

4.1 Dataset
We collected our comprehensive dataset of wheat
diseases in Pakistan, encompassing various growth
stages and capturing diverse environmental
conditions. The dataset consists of high-quality
images representing five distinct classes: Slightly Rust,
Severe Rust, Smuts, Healthy Leaf, and Healthy Wheat.
As shown in Figure 3, the images were captured
from different angles and under varying lighting
conditions to ensure robust model training. The
dataset comprises 3,351 total images distributed across
the five classes, with detailed allocation shown in
Table 3. The largest class is Healthy Wheat with 767
images, followed by Smuts (722 images), Healthy
Leaf (633 images), Slightly Rust (618 images), and
Severe Rust (611 images), maintaining a relatively
balanced distribution among classes. We partitioned
the dataset into training, validation, and testing sets to
ensure proper model evaluation using a 70-10-20 split
ratio. This resulted in approximately 430-537 images

per class for training, 61-77 images for validation, and
122-153 for testing, maintaining consistent proportions
across all classes. The custom-collected wheat disease
dataset will be made available on Google Drive and
provided upon request. Researchers can contact
the corresponding author to ask for the dataset and
complete explanation on its structure and usage.

Figure 3. Sample images from the proposed dataset,
illustrating wheat disease categories and healthy samples.

4.2 Training and Evaluation
The training of the proposed network was conducted
on our custom wheat disease dataset. We employed a
range of data augmentation techniques, including cut
mix, mixup, and augmentation, and random erasing,
to enhance the model’s ability to generalize over
diverse wheat disease conditions. Furthermore, drop
path regularization was applied to reduce overfitting.
The training was executed over 20 epochs with a
batch size of 8, utilizing a cosine annealing learning
rate scheduler combined with a linear warm-up
over the initial ten epochs. The starting learning
rate was set to 0.001, while the weight decay was
maintained at 0.05 to regulate the complexity of
the model. All experiments used Google Colab
with an NVIDIA T4 GPU (16GB VRAM) and 12GB
RAM. The model was implemented using the PyTorch
framework. The training process took a long time
to complete the dataset, with intermittent breaks
due to Colab’s runtime limitations. We employed
early stopping with a patience of 5 epochs to prevent
overfitting, monitoring the validation loss as the
stopping criterion. The model checkpoints were saved
both locally and to Google Drive to ensure training
progresswas preserved across sessions. For evaluation,

Table 3. Dataset distribution showing the number of images per class and their allocation between training and testing.

Class Total Images Training (70%) Validation (10%) Testing (20%)

Slightly Rust 618 433 62 123
Severe Rust 611 428 61 122
Smuts 722 505 72 145
Healthy Leaf 633 443 63 127
Healthy Wheat 767 537 77 153
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Table 4. Performance comparison of various backbone models including efficientNet family.
Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)
MobileNet 87.85 86.22 87.75 87.90
MobileNetV2 88.25 87.90 89.10 88.55
DenseNet121 88.55 88.30 87.85 87.03
ResNet50 88.90 89.02 88.85 87.98
EFF-B0 89.05 88.92 89.15 89.03
EFF-B1 89.78 89.65 89.82 89.73
EFF-B2 90.45 90.38 90.52 90.45
EFF-B3 91.12 91.05 91.18 91.11
EFF-B4 91.68 91.62 91.75 91.68
EFF-B5 92.05 91.98 92.12 92.05
EFF-B6 92.32 92.25 92.38 92.31
EFF-B7 92.55 92.48 92.62 92.55

we used stratified 5-fold cross-validation to ensure
robust performance assessment. The dataset was split
into 70% training, 15% validation, and 15% test sets,
maintaining the class distribution across all splits. We
evaluated the model using standard metrics, including
accuracy, precision, recall, and F1-score. Additionally,
confusionmatrices were generated to analyze per-class
performance in detail. To ensure reproducibility, we
set fixed random seeds for all random operations,
including data splitting, augmentation, and model
initialization.

4.3 Intermediate Features Analysis
We comprehensively evaluated various CNN
architectures as backbone models for feature
extraction, including MobileNet variants,
DenseNet121, ResNet50, and the EfficientNet
(EFF) family. Table 4 presents the comparative
performance metrics across these architectures. The
lightweight MobileNet achieved 87.85% accuracy,
with its successor MobileNetV2 showing modest
improvements across all metrics with an increase in
the F1-Score from 87.90% to 88.55%. DenseNet121
and ResNet50 demonstrated competitive performance,
achieving 88.55% and 88.90% accuracy, respectively
with corresponding 87.03% and 87.98% F1-Scores.
However, the EfficientNet family consistently
outperformed these traditional architectures,
showing systematic improvements from B0 to
B7. EfficientNet-B0, despite being relatively compact,
surpassed ResNet50 with 89.05% accuracy and
balanced Values for F1-Score, Precision, and Recall
(88.92%, 89.15%, and 89.03%, respectively). The
performance scaled progressively through the family,
with B4 marking a significant milestone at 91.68%
accuracy and a similarly impressive F1-Score of

91.68%. EfficientNet-B7 achieved the best results
across all metrics, with 92.55% accuracy, 92.48%
precision, 92.62% recall, with an F1-score of 92.55%,
demonstrating the effectiveness of its compound
scaling strategy. Based on this analysis, we selected
EfficientNet-B7 as our backbone architecture for its
superior feature extraction capabilities. Resultantly,
after the empirical validations of the backbones,
we decided to integrate other modules with the
EfficientNet-B7 backbone.

Figure 4. Training and validation accuracy curves over 20
epochs, demonstrating model convergence and absence of

overfitting.

4.4 Ablation Study
We conducted comprehensive ablation experiments to
validate the effectiveness of each component in our
proposed network. Table 5 presents the results of
our systematic investigation, where components were
progressively added to analyze their contributions to
the overall performance.
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Table 5. Empirical analysis of the outcomes from the conducted ablation study results.
Method Single Multi DCB-1 DCB-2 DCB-3 ECA Accuracy (%)
Baseline (Single-scale) ✓ 92.55
+ Multi-scale features ✓ ✓ 94.32
+ Dilated Conv Block-1 ✓ ✓ ✓ 95.78
+ Dilated Conv Block-2 ✓ ✓ ✓ ✓ 96.45
+ Dilated Conv Block-3 ✓ ✓ ✓ ✓ ✓ 97.23
+ ECA Module ✓ ✓ ✓ ✓ ✓ ✓ 97.85
+ Residual Connections ✓ ✓ ✓ ✓ ✓ ✓ 98.30
+ Proposed Network ✓ ✓ ✓ ✓ ✓ ✓ 98.50

Figure 5. Normalized confusion matrix for wheat disease
classification across different classes, demonstrating the

classification performance and error distribution

Figure 6. Evolution of training and validation loss during
the training process, illustrating the model’s learning

dynamics and convergence behavior

4.4.1 Baseline Model
Starting with a single-scale baseline architecture,
which achieved 92.55% accuracy, This served as the
basis for our systematic investigation.

4.4.2 Multi-Scale Feature Extraction
The addition of multi-scale feature extraction yielded
a significant improvement of 1.77 percentage points,
highlighting the importance of capturing features at
different scales. This indicates the network’s capacity
to integrate spatial information at multiple resolutions.

4.4.3 Dilated Convolution Blocks (DCB)
The introduction of dilated convolution blocks (DCB)
demonstrated consistent performance gains.
• DCB-1 enhanced accuracy by 1.46%, increasing it

to 94.01%.
• DCB-2 improved performance by 0.67%, totaling

94.68% accuracy.
• DCB-3 contributed an extra 0.78% improvement,

resulting in an accuracy of 95.46%.
This progressive improvement validates our
hypothesis that expanding the receptive field
through dilated convolutions enables better feature
extraction at multiple scales.

4.4.4 Efficient Channel Attention (ECA) Module
The integration of the ECA module resulted in a
notable accuracy increase of 0.62%, reaching 97.85%.
This improvement underscores the effectiveness
of our channel attention mechanism in capturing
channel-wise dependencies while maintaining
computational efficiency.

4.4.5 Residual Connections
Residual connections further boosted performance
by 0.45%, achieving 98.30% accuracy. This gain
can be attributed to improved gradient flow and

20



IECE Transactions on Sensing, Communication, and Control

the network’s enhanced ability to learn residual
mappings, as evidenced by the smooth convergence
curves in Figure 4 and Figure 6. Finally, our
complete proposed network with the stages shown
in Figure 1, incorporating all components in an
optimized configuration, achieved the highest accuracy
of 98.50%. The efficacy of our final architecture is
further validated through two critical aspects: (1) the
distinct class separation manifested in the confusion
matrix with strong diagonal concentration and sparse
off-diagonal activations, as shown in Figure 5,
demonstrating superior feature discriminability; and
(2) the optimal convergence characteristics evidenced
by the parallel training and validation accuracy curves
with consistent marginal separation, as shown in
Figure 4, indicating effective regularization and robust
generalization capacity.

5 Conclusion
This research addresses the critical challenge of
wheat disease recognition through a novel multi-scale
feature collaboration network validated on a diverse
dataset collected from wheat fields. Our architectural
innovations, particularly integrating multi-scale
feature extraction and progressive fusion mechanisms,
demonstrate significant improvements over traditional
approaches. Incorporating dilated convolution
blocks and efficient channel attention has proven
effective in capturing both local disease patterns
and global contextual information. The extensive
experimental evaluation, encompassing twelve
different CNN backbones and systematic ablation
studies, validates the effectiveness of each proposed
component. The final architecture achieved 98.50%
accuracy, representing a substantial improvement
over the baseline models. Our approach stems from
three key factors: (1) the comprehensive nature
of our custom-collected dataset, which accurately
represents real-world wheat disease scenarios in
Pakistani agricultural settings; (2) the effective
multi-scale feature extraction strategy that captures
information at various levels of granularity; and
(3) the efficient integration of channel attention
mechanisms that enhance feature discrimination
while maintaining computational efficiency. These
results demonstrate the practical viability of our
approach for real-world agricultural applications. In
the future, we plan to expand the suggested dataset
by include more complex scenarios, such as mixed
disease symptoms, shifting climatic conditions, and
difficult visual ambiguities, in order to assess the
resilience of the system. In addition, we intend to

conduct cross-validation studies utilizing data from
various regions to generalize the model’s performance
across different agricultural settings. This enhanced
dataset will also allow for the exploration of domain
adaptation approaches to increase the network’s
transferability. Additionally, our research plan is
to investigate lightweight variants of the proposed
architecture to further enhance its applicability in
resource-constrained agricultural settings.
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