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Abstract
Brain tumor detection (BTD) is a crucial task,
as early detection can save lives. Medical
professionals require visual intelligence assistance
to efficiently and accurately identify brain
tumors. Conventional methods often result in
misrecognition, highlighting a critical research
gap. To address this, a novel BTD system is
proposed to predict the presence of a tumor in
a given MRI image. The system leverages a
convolutional neural network (CNN) architecture,
combined with a multi-layer perceptron (MLP)
for feature extraction and understanding complex
pixel patterns. An extensive ablation study was
conducted to empirically analyze and identify
the optimal model for the task. The findings
demonstrate that the proposedmethod outperforms
existing approaches. Notably, the model with two
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convolutional layers achieved an accuracy of 85%,
while a single-layer model attained an impressive
accuracy of 99.6%.
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system, AI.

1 Introduction
The high rates of morbidity and mortality caused
by brain tumors make them a significant public
health concern on a global scale. Brain tumors
are either benign or malignant; the latter group is
characterized by aggressive activity and fast growth,
which frequently leads to a bad prognosis for patients.
To choose the most appropriate treatment, such as
surgery, chemotherapy, or radiation therapy, a prompt
and precise diagnosis is essential. Nevertheless,
identifying brain tumors manually using MRI scans is
an incredibly difficult and expert-level undertaking.
Diagnosis becomes more complicated due to the
heterogeneity of malignancies and the numerous
distinctions between normal brain components and
cancers. Poor patient outcomes may result from
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less-than-ideal treatment options caused by incorrect
or delayed diagnoses. Automatic techniques that can
aid doctors in classifying brain tumors have, thus, been
increasingly popular in recent years [1].

Magnetic Resonance Imaging (MRI) is the standard
imaging modality used for diagnosing brain tumors,
as it provides detailed information about soft
tissues and is non-invasive. While MRI scans offer
high-resolution images, the manual review process is
both time-consuming and prone to variability among
radiologists [2]. Given the large volume of scans
produced in modern healthcare settings, there is an
urgent need for computational tools that can reliably
classify brain tumors and reduce the diagnostic burden
on healthcare professionals [3, 4]. The advancement
of machine learning, particularly deep learning, has
opened new possibilities for the development of
automated systems capable of performing accurate
and efficient image analysis [5]. These techniques
have proven to be especially effective in complex tasks
such as medical image classification and segmentation,
due to their ability to learn and generalize from large
datasets.

In recent years, deep learning algorithms, specifically
Convolutional Neural Networks (CNNs), have
emerged as the leading approach for image
classification tasks. CNNs have revolutionized
the field of computer vision by their capacity to
automatically extract hierarchical features from
input images without the need for extensive manual
feature engineering. This has made them particularly
suitable for medical imaging tasks, where the
inherent complexity and variability of the images
pose significant challenges for traditional machine
learning methods [6, 7]. CNNs are composed of
multiple layers, including convolutional, pooling,
and fully connected layers, which progressively
learn features ranging from simple edge detection to
complex patterns specific to the task at hand. This
enables CNNs to model the intricate relationships
within image data, thereby significantly enhancing
their classification accuracy [8–11].

Use of convolutional neural networks (CNNs)
for MRI-based tumor classification is the
primary emphasis of this research [12, 13]. We
explored two CNN architectures with different
configurations to assess their efficiency in correctly
diagnosing brain cancers as either tumor-positive or
tumor-negative [14]. The first architecture utilizes
single convolutional layers, while the second builds

upon this by introducing double convolutional
layers [15]. The rationale behind this exploration is
to determine whether deeper network architectures,
involving more convolutional operations, can
provide a tangible improvement in classification
performance [16]. Deep networks have the potential
to capture more complex features from the images,
leading to better generalization [17]. However, they
also come with the risk of overfitting, especially when
trained on smaller datasets, which necessitates careful
evaluation and comparison between models [18–20].

In the first model, we implemented a relatively shallow
CNN architecture, consisting of a single convolutional
layer followed by pooling and fully connected
layers. This simple yet effective structure achieved
an outstanding accuracy of 99.6% in classifying
brain tumors. This result underscores the power
of even a single-layered CNN in identifying critical
features within MRI scans [21, 22]. However, as
deep learning models excel at acquiring increasingly
intricate patterns as their training data sets become
more extensive, we extended our study by designing
a second CNN model with double convolutional
layers. This architecture aims to further explore the
performance benefits of deeper feature extraction,
where consecutive convolutional layers may allow
the network to learn more abstract and meaningful
representations of tumor characteristics.

Our investigation provides a thorough comparative
analysis between these two CNN-based me,thods
in terms of classification accuracy, computational
efficiency, and robustness to overfitting. The
performance metrics of these models are evaluated
on a dataset of brain MRI images, containing both
tumor and non-tumor data [26, 27]. By assessing the
outcomes of single-layer versus double-layer CNNs,
we aim to provide valuable insights into the trade-offs
between model simplicity and performance. The
primary contributions of this research are twofold:
first, demonstrating the efficacy of CNNs in brain
tumor classification with high accuracy; and second,
offering a detailed exploration of how network depth
influences classification performance in this context.

The results of this investigation have significant
implications for the design and deployment of
automated diagnostic tools in clinical practice.
Automated brain tumor classification systems have
the potential to augment the diagnostic capabilities of
radiologists, reducing the time required for manual
assessments and improving diagnostic consistency.
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Moreover, these systems could assist in early-stage
tumor detection [23], where subtle abnormalities
may be easily overlooked by the human eye. By
enhancing the speed and accuracy of diagnosis, deep
learning-based systems can contribute significantly
to bettering patient care and results in brain tumor
cases [24, 25].
In the upcoming sections, we will discuss the dataset
and preprocessing methods, the architectures of
the CNN models employed, and the results of our
comparative analysis. Finally, we go over some of
the possible next steps for study in this area and the
consequences of our conclusion.

2 Related Work
Gómez-Guzmán et al. [19] tested seven models of
deep convolutional neural networks using the Msoud
dataset for brain tumor MRI. Their preprocessing
involved resizing, labeling, and data augmentation.
The InceptionV3 model achieved the highest
avg. accuracy of 97.12%, followed by ResNet50
and InceptionResNetV2 with 96.97% and 96.78%,
respectively. A notable limitation of their work is
the reliance on a single dataset, which may hinder
generalization to other data sources. Reyes et al. [1]
worked with the Figshare dataset of 3064 T1-weighted
MRI images and the Kaggle dataset of 3264 MRI slices.
Using neural networks for Feature extraction and
Classification, they achieved a best accuracy of 98.7%
using models like ResNet50 and Vision Transformers.
However, their work was limited by the lack

of diversity in the datasets, which restricts the
applicability of the findings to broader cases.
Srinivasan et al. [2] used a custom dataset with deep
CNNs for classification, hyperparameter tuning via
grid search, and fivefold cross-validation. Their
models achieved high detection and classification
accuracies, including a peak of 99.53%. A significant
drawback of this study is the absence of testing on
varied datasets, limiting its robustness in different
scenarios. Saeedi et al. [3] employed a dataset of
3264 T1-weighted MRI images containing glioma,
meningioma, pituitary, and healthy cases. They used
2D CNNs and convolutional autoencoders for tumor
classification, achieving accuracies of 96.47% and
95.63%, respectively. One challenge in their work
was the relatively low performance of traditional ML
methods compared to deep learning approaches.

Seetha et al. [29] utilized the Radiopaedia and Brats
2015 datasets. They applied CNNs for classification
alongside fuzzy C-means for segmentation, achieving
a classification accuracy of 97.5%. A limitation of their
study is the significant computation time required for
classification, whichmay hinder real-time applications.
Zahoor et al. [18] proposed a novel Res-BRNet
architecture combining residual and regional CNNs
for brain tumor classification. Using datasets like
Kaggle and Figshare, they achieved an accuracy of
98.22% and an F1-score of 0.9641. A weakness
in their approach is the persistence of residual
misclassification rates, which could impact diagnostic
reliability. Younis et al. [13] had used datasets

Table 1. Comparative analysis of existing research.
Ref. No. Author Dataset Method Results Advancement/ Future Directions

2023 [19] Guzmán et. al. Brain Tumor MRI dataset
Msoud

Deep CNN, Preprocessing
with resizing, labeling, data
augmentation

GCNN 81.05%,InceptionV3
97.12%, ResNet50 96.97%,
ResNetV2 96.78%

Diverse dataset, lower computation
cost, Integration of multimodal
imaging data

2024 [1] Reyesa et al. Figshare dataset, Kaggle
dataset: 3264 MRI

Hybrid methods combining
NNs, ML methods

98.7% accuracy in MobileNet
and EfficientNet

extended analysis, additional NNs
for classification

2024 [2] Srinivasan et al. Custom dataset Deep CNN, Grid search, ROC
curve

1st CNN 99.53%, 2nd CNN
93.81%, 3rd CNN 98.56%

Integration of real-time data for
dynamic classification

2023 [3] Saeedi et al. 3264 T1-weightedMRI images 2D CNN, auto encoder, 6MLs,
ROC curve

2D-CNN 96.47%, Roc 0.99,
KNN 86%

Hybrid CNN with MLs.
applications in clinical settings

2018 [29] Seetha et al. Radiopaedia Brats 2015 CNN, Fuzzy-C, LIPC for voxel,
Cellular Automata.

CNNachieved 97.5% accuracy Accuracy Improved, Reduce
compute time

2024 [18] Zahoor et al. Kaggle, Br35H, and Figshare
repositories

novel deep residual and
regional CNNs

Res-BRNet 98.22%, F1-score
0.9641

More advanced augmentation
techniques, with limitations in
misclassification val

2022 [25] Younis et al. BRATS 2013 Dataset, World
Brain Atlas

CNN using VGG16 CNN accuracy 96% Diversity for brain region
approximation

2023 [16] Atasever et al. ImageNet, MICCAI 2012
PROMISE12, COVID-chest
X-ray-dataset

Capsule
Network-based framework

Hybrid model with pr-trained
having 92.68%

AI diagnosing gastrointestinal
diseases using wireless-capsule
endoscopy

2023 [17] Aktera et al. 4 Datasets a, b, c, d CNN with U-Net-based
model

98.7% for merged dataset exploring additional datasets, and
further clinical validation
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like BRATS 2013 and World Brain Atlas to employ
CNNs, particularly VGG16, for tumor identification,
achieving 96% accuracy. Future work involves using
diverse modalities and enhancing ensemble methods
for precision. Atasever et al. [16] used datasets
such as MICCAI 2012 and BraTS for a capsule
network framework. Their hybrid model achieved a
92.68% accuracy in disease diagnosis. However, the
model’s limitations include relatively lower accuracy
compared to state-of-the-art methods and inadequate
generalization across multiple datasets. Akter et
al. [17] worked with individual and merged datasets
to propose CNN-based classification and U-Net-based
segmentation models. Achieving accuracies of 98.7%
and 98.8%, the study’s primary limitation lies in the
insufficient exploration of model efficiency and lack of
thorough clinical validation. The Table 1 illustrates a
comparative analysis of recent research pertaining to
the classifications and segmentation of brain tumors.

3 Methodology
There are many methods present through which we
can perform brain tumor detection; to name some
of them, they are RNN [30], LSTM [31–33], deep
learning [28], and transfer learning [26]. Our model
uses a convolutional neural network to perform the
classification task effectively. The structural flow
followed by the model is as shown in Figure 1.

Figure 1. Process Flow of the proposed Method.

3.1 Data Preprocessing
To ensure uniformity and enhance model performance
while preventing overfitting, MRI images underwent

preprocessing involving rescaling, data augmentation,
and dataset splitting. The images were converted to
grayscale, resized to 150×150 pixels, and normalized to
a [0,1] range, which improved computational efficiency
and ensured consistentweight updates during training.
Data augmentation, essential due to the modest
dataset size of 253 images, artificially increased
diversity by applying random rotations, horizontal and
vertical flips, and zooming, dynamically generating
unique variations in each epoch to reduce overfitting
and enhance generalization. Sections for training
(70%), validation (15%), and testing (15%) were
created from the dataset., using stratified splitting
to maintain balanced class distributions. Slight class
imbalance, with 153 tumor and 98 non-tumor images,
was addressed through oversampling during data
augmentation, ensuring equalized training set sizes.

3.2 Proposed CNNModel Architecture
The CNN architecture, as shown in Figure 2, was
meticulously designed to handle the complexity of
MRI imageswhile being computationally efficient. The
model leverages the hierarchical feature extraction
capability of convolutional layers, progressively
learning to detect features like edges, textures, and
higher-level tumor structures.

3.2.1 Standard CNN Architecture
The model, as depicted by Table 2, consists of three
convolutional blocks with filters starting at 32 and
doubling at each subsequent block (32, 64, 128), where
convolution operations detect spatial features applied
after each convolutional block to downsample feature
maps, reducing computational load while retaining
critical features. The output of the final convolutional
block is flattened into a 1D vector to prepare the data
for dense layers. Activated by ReLU, a fully linked
dense layer consisting of 512 neurons produces a high
degree representation of the features that have been
retrieved. To prevent overfitting, a dropout layer with
a 50% rate is employed after the dense layer, randomly
deactivating neurons during training.
A sigmoid-activated single neuron makes up the
output layer, producing probabilities between 0 and 1,
indicating the likelihood of the input image containing
a tumor.

3.2.2 Multi-layers CNN Architecture
The multilayer CNN architecture, as depicted by
Table 3, begins with an input layer of size 224x224x3 to
process RGB images. To begin extracting basic spatial
characteristics, the first convolutional layer uses 64
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Figure 2. CNN Architecture of the proposed Method.

Table 2. A Summary of Standard CNN Architecture.
Layer Type Filters/Units Output Shape Parameters

Convolutional Layer 32 filters (150, 150, 32) 896
Max Pooling - (75, 75, 32) 0
Convolutional Layer 64 filters (75, 75, 64) 18496
Max Pooling - (37, 37, 64) 0
Convolutional Layer 128 filters (37, 37, 128) 73856
Max Pooling - (18, 18, 128) 0
Flatten - (41472) 0
Dense Layer 512 neurons (512) 21235200
Dropout - (512) 0
Output Layer 1 neuron (1) 513

filters with a 3x3 kernel size and a ReLU activation
function. The spatial dimensions are subsequently
reduced using a max pooling layer with a 2x2 pool size.
The second convolutional layer increases the filters
to 128 with a kernel size of 3x3, followed by another
ReLU activation for deeper feature extraction and a
max pooling layer with a pool size of 2x2. The third
convolutional layer further enhances the network’s
capacity with 256 filters, a kernel size of 3x3, and
ReLU activation, followed by max pooling to reduce
the feature map size.
The output of the convolutional blocks is flattened
and passed to the first fully connected layer with
512 neurons and ReLU activation to combine learned
features. A second fully connected layer with 256
neurons and ReLU activation further refines these
features. Finally, the output layer, with SoftMax
activation, provides the classification probabilities for
the target classes.

Table 3. A Summary of Multi-layer CNN Architecture.
Layer Type Filters/Units Output Shape Parameters

Convolutional Layer 32 filters (150, 150, 32) 896
Max Pooling - (75, 75, 32) 0
Convolutional Layer 64 filters (75, 75, 64) 18,496
Max Pooling - (37, 37, 64) 0
Convolutional Layer 128 filters (37, 37, 128) 73,856
Max Pooling - (18, 18, 128) 0
Convolutional Layer 256 filters (18, 18, 128) 73856
Max Pooling - (9, 9, 256) 0
Flatten - (207,936) 0
Dense Layer 1024 neurons (1024) 214,994,240
Dropout - (1024) 0
Dense Layer 512 neurons (512) 524,800
Dropout - (512) 0
Output Layer 1 neuron (1) 513
Total Parameters - - 214,888,496

The model’s final steps included optimization, loss
computation, and training configuration. The Adam
optimizer was employed for its adaptive learning rate
and computational efficiency, updating weights based
on the first and second moments of gradients for
faster convergence. Binary Cross-Entropy loss, suited
for binary classification, was used to quantify the
error between predicted probabilities and actual labels,
calculated as in equation (1):

Loss = − 1

M

M∑
k=1

[yk log(pk) + (1− yk) log(1− pk)]

(1)
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A batch size of 32 was chosen to strike a balance
between computational efficiency and robust gradient
estimates. The model was trained for 20 epochs,
providing sufficient learning time without risking
overfitting, ensuring it effectively captured patterns
for binary classification tasks.

3.2.3 Comparison between models
Below given Table 4, examines the key aspects such
as network depth, parameter count, generalization
capabilities, accuracy, and training time.

Table 4. Comparison between 2 CNN Architecture.
Aspects Std. CNN Multi-Layer CNN

Depth Shallower network (3
convolutional layers)

Deeper network (e.g.,
5+ layers)

Parameters Lower parameter count Higher parameter count
Generalization Suitable for smaller

Datasets
Better suited for larger
datasets

Accuracy Achieved: 99.60% Achieved: 86%
Training Time Faster Slower due to increased

complexity

4 Results
This section encompasses the dataset utilized in
this research. Performance is evaluated through a
range of indicators, specifically the evaluation metrics.
The following section presents the results through
graphical visualization and precisely classified images.

4.1 Dataset
For this research, we employed a publicly available
MRI brain scan dataset sourced from Kaggle. This
dataset comprises a total of 253 images, with 153
labeled as having brain tumors and 98 as non-tumor
cases. The dataset provides a balanced representation
of both tumor and non-tumor images, facilitating
comprehensive analysis and model training. Utilizing
this data, our study aims to improve classification
accuracy and contribute to the advancement of
automated brain tumor detection methodologies in
clinical settings. Images were resized to 150×150 pixels
for uniformity. The dataset was split into training
(70%), validation (15%), and test (15%) subsets,
maintaining class balance in each set.

4.2 Evaluation Metrices
To evaluate the performance of the brain tumor
classification model, we utilized various classification
metrics, including accuracy, precision, recall, and
F1 score. These metrics were calculated using the

Figure 3. (a) Std CNNModel Confusion matrix; (b)
Multilayer CNNModel Confusion matrix.

confusion matrix, which provides detailed insights
into the model’s predictions.
Accuracy works by measuring the overall correctness
of the model by calculating the ratio of correctly
predicted instances to the total number of instances.
In our project, accuracy indicates how often the model
correctly classifies brain MRI images into tumor and
non-tumor categories. Calculated using Equation (2):

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision measures the proportion of correctly
predicted positive observations out of all predicted
positives. Precision is crucial for minimizing false
positives, which ensures that non-tumor cases are
not incorrectly classified as tumor cases. This is
particularly significant in medical diagnostics to
prevent unnecessary stress for patients. Calculated
using Equation (3):

Precision =
TP

TP + FP
(3)

Recall also known as sensitivity, calculates the
proportion of correctly predicted positive observations
out of all actual positives. In our project, recall is
vital for identifying as many tumor cases as possible,
ensuring that critical cases are not overlooked. High
recall ensures that the model captures most of the
positive cases, which is crucial in medical applications.
Calculated using Equation (4):

Recall =
TP

TP + FN
(4)

F1 Score is the harmonic mean of precision and recall.
It provides a balanced measure, especially when there
is an uneven class distribution. The F1 score ensures
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that both precision and recall are balanced, which
is particularly important when dealing with medical
datasets where both metrics are critical. Calculated
using Equation (5):

F1 Score =
Recall × Precision

Recall + Precision
× 2 (5)

4.2.1 Confusion Matrix
In the confusion matrix as shown in Figure 3, the True
Negatives (TN), located in the top-left (00) cell, are
cases where the model correctly predicts the negative
class, such as "No Tumor" when the actual label is also
"No Tumor." The False Positives (FP), in the top-right
(01) cell, occur when the model incorrectly predicts
the positive class, such as classifying "No Tumor" as
"Tumor," which can lead to over-diagnosis. Conversely,
the False Negatives (FN), found in the bottom-left
(10) cell, represent cases where the model incorrectly
predicts the negative class, such as failing to detect an
actual tumor by predicting "No Tumor."

4.3 Assessment of Outcomes and Efficiency
The performance of the brain tumor classification
model was evaluated using the training and validation
accuracy and loss curves, as shown in Figures 4 and 5.
Thesemetrics provide critical insights into the learning
behavior and generalization capability of two CNN
architectures over 20 epochs.

4.3.1 Accuracy over Epochs
The accuracy curve Figure 4 (a) illustrates the
proportion of correctly classified instances for both
training and validation datasets. Initially, the model
demonstrates moderate accuracy, reflecting its early

Table 5. Outcomes of Standard CNNModel.
Evaluation Metric Score
Accuracy 0.996
Precision 0.9936
Recall 1
F1-Score 0.9968

stage of feature learning. Over successive epochs,
the training accuracy exhibits a steady increase,
converging near 1.0, which indicates effective learning
of distinguishing features. The validation accuracy
closely tracks the training accuracy, showing minor
fluctuations due to dataset variability. By the final
epochs, the near alignment of both curves indicates
minimal overfitting and strong generalization to
unseen data.
In contrast, the accuracy graph Figure 4 (b) of
the multilayer exhibits’ significant fluctuations,
particularly in the early epochs. While the validation
accuracy eventually surpasses the training accuracy,
this sharp difference indicates potential underfitting
during the training phase. Despite the fluctuations,
the final validation accuracy shows a marked
improvement compared to the initial epochs,
indicating that the model is learning, albeit with
instability.

4.3.2 Loss over Epochs
The loss curve Figure 5 (a) represents the error
between predicted and actual outputs for both datasets.
High initial losses decrease significantly during
training, demonstrating the model’s optimization and
convergence. The training loss exhibits a smooth
decline, while the validation loss follows a similar

Figure 4. Accuracy fluctuations over epochs. (a) Standard CNN; (b) Multilayered CNN.
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Figure 5. Train and Validation loss over epochs (a) Standard CNN, (b) Multilayered CNN.

Figure 6. Accurate classification displayed by the model.

trend with minor variability. By the final epochs, both
losses stabilize at low values, indicating that the model
has achieved effective feature extraction and prediction
accuracy.
The multilayered CNNmodel’s loss graph Figure 5 (b)
is characterized by notable fluctuations, particularly
in the validation loss during the early and middle
epochs. Although the training loss decreases steadily,
the validation loss exhibits instability before a sharp
drop in the later epochs. This behavior suggests
potential noise in the dataset, overfitting during some
phases of training, or sensitivity to hyperparameters.
The sharp decline in loss at the end indicates eventual
convergence, but the instability might hinder the
model’s reliability.
These plots have collectively demonstrated that the
CNN-based model exhibits a well-balanced learning
process. The steady increase in accuracy, coupled
with the consistent decrease in loss, highlights the
model’s capacity to learn meaningful features for the
classification of brain MRI images [34]. Moreover, the

convergence of both training and validation metrics at
similar levels indicates that the model is both reliable
and robust, making it suitable for deployment in
medical imaging applications where accurate and
consistent predictions are critical.

5 Discussion

Table 6. Comparison of performance with previous studies.
Previous Articles Model Accuracy

Younis et al. [25] CNN using VGG16 96%
Saeedi et al. [3] 2D-CNN with RoC curve 96.47%
Akter et al. [17] CNN with U-Net CNN 98.7%
Reyes et al. [1] Hybrid methods of ML 98.7%
Our model Std. CNN combined with MLP 99.6%

Firstly, this study proposed a standard convolutional
neural network for the detection of brain tumors,
which are very crucial diseases in the medical domain.
The features used for the classification were extracted
RGB color features, which quantify the relevance
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of a word to a document. The second phase
method is applied using a multilayered CNNmodel,
and various metrics like accuracy and precision are
calculated to evaluate the performance of the classifiers.
These results indicate that the standard CNNmodel
generates better results compared to the multilayered
CNN model, as mentioned in Table 5. If you look
at Table 6, you can see that our model outperforms
the others based on the comparison of performance
metrics with previously published studies. Figure 6
demonstrates the accurate classification of brain tumor
images based on our proposed model.

6 Conclusion
In order to enhance brain cancer care, it is necessary
to understand and integrate the whole scope of cancer
experiences. However, due to the unstructured nature
of medical records, large-scale data integration using
classical methods is very resource expensive. This
void is being filled by DL methods, which have
already transformed the gathering, processing, and
understanding of often-gathered unstructured health
data. This study proves CNNs can detect brain tumors
from MRIs. The standard CNN had 99.60% accuracy
for small datasets and faster training. Multilayer
CNN had an accuracy of 86.17% but needed longer
training and showed moderate overfitting, making it
better for larger datasets but inefficient for smaller
datasets. Stability and consistency make the first
model better for brain tumor identification. The
second model’s sophisticated architecture should
improve performance, but it needs more optimization
to stabilize training and validation metrics.
The model’s future development could include
extending it to handle 3D MRI datasets for improved
diagnosis, incorporating transfer learning techniques
for limited datasets, and incorporating Grad-CAM
for interpretability. Moreover, integrating advanced
data augmentation techniques and hybrid models
combining CNNs with transformers could enhance
accuracy. Expanding dataset diversity and evaluating
the model’s robustness across different imaging
modalities and sensitivity across noisy data could also
be valuable directions.
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