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Abstract
The efficient extraction and fusion of video features
to accurately identify complex and similar actions
has consistently remained a significant research
endeavor in the field of video action recognition.
While adept at feature extraction, prevailing
methodologies for video action recognition
frequently exhibit suboptimal performance in
the context of complex scenes and similar actions.
This shortcoming arises primarily from their
reliance on uni-dimensional feature extraction,
thereby overlooking the interrelations among
features and the significance of multi-dimensional
fusion. To address this issue, this paper introduces
an innovative framework predicated upon a
soft correlation strategy aimed at augmenting
the representational capacity of features by
implementing multi-level, multi-dimensional
feature aggregation and concatenating the
temporal features produced by the network. Our
end-to-end multi-feature encoding soft correlation
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concatenation aggregation layer, situated at the
temporal feature output terminal of the Video
Action Recognition network, proficiently aggregates
and integrates the output temporal features. This
approach culminates in producing a composite
feature that cohesively unifies multi-dimensional
information, markedly enhancing the network’s
competency in differentiating analogous video
actions. Empirical findings demonstrate that the
approach delineated in this paper bolsters the
efficacy of video action recognition networks,
achieving a more thorough depiction of images, and
yielding superior accuracy and robustness.

Keywords: video action recognition, soft correlation,
spatio-temporal feature extraction, concatenation
aggregation structure, bidirectional LSTM.

1 Introduction
In recent years, video action recognition has emerged
as a crucial area of research in computer vision, driven
by its broad range of applications, from surveillance
and security to human-computer interaction and
content recommendation systems [1]. The ability to
accurately identify and differentiate actions within
video sequences is essential for developing intelligent
systems that can interact with and interpret the
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dynamic visual world as humans do. However, despite
significant advances, existing methods often need help
with complex scenes and similar actions, primarily
due to their reliance on single-dimensional feature
extraction and insufficient consideration of feature
interrelationships and multidimensional fusion [2].

The importance of this topic stems from the growing
demand for more precise and efficient video action
recognition systems that can handle the nuances and
intricacies of real-world scenarios. Traditional feature
aggregation algorithms, while performing adequately
under controlled conditions, frequently fall short when
faced with the variability and complexity inherent
in real-life videos. This gap highlights the need for
innovative approaches to capture and utilize multiple
dimensions of feature information, enabling a more
comprehensive and discriminative representation of
actions [3].

Despite the extensive research done in this field, there
remains a notable gap in effectively aggregating and
fusing features at multiple levels to enhance action
recognition accuracy. Many existing studies have
focused on improving individual aspects, such as
spatial or temporal feature extraction, but fewer have
explored holistic approaches that integrate multiple
feature dimensions. For example, Wang et al. [4]
presented a temporal segment network (TSN) that
segments video into uniform parts and extracts
temporal features for each segment individually,
enhancing the temporal dimension’s representation
but largely overlooking the potential benefits of
integrating spatial features. Similarly, Yang et al. [5]
introduced a two-stream inflated 3D ConvNet (I3D),
which provides a robust framework for capturing
spatiotemporal features separately but does not
address the holistic integration of these features.

Moreover, researchers like Tran et al. [6] have
explored using 3D convolutional networks for
learning spatiotemporal features. Their C3D
framework significantly improves action recognition
by simultaneously capturing spatial and temporal
dynamics; however, it lacks a comprehensive method
for multi-dimensional feature fusion. Carreira et
al. [7] extended this concept with the I3D model
that inflates 2D ConvNets, pre-trained on ImageNet,
to 3D. This method achieved state-of-the-art results
by focusing on volumetric spatiotemporal feature
extraction, yet it still treated spatial and temporal
features relatively independently. Another approach
by Feichtenhofer et al. [8] proposed a SlowFast

network architecture that processes video inputs at
different frame rates, effectively balancing spatial and
temporal information. This method moves closer
to a holistic feature aggregation but does not fully
exploit the interrelationships between different feature
dimensions.

These studies collectively highlight advancements
in specific aspects of feature extraction but
also underscore the deficiencies in strategies
for comprehensive feature aggregation and
multi-dimensional fusion. By addressing this
gap, our research aims to develop a method that
captures and effectively integrates multi-dimensional
features, thereby enhancing the discriminative power
and accuracy of video action recognition networks.
Therefore, our research aims to address the following
questions: 1) In what manner can multi-dimensional
features be aggregated and fused to enhance the
discriminative capability of video action recognition
networks? 2) What benefits does a soft-association
strategy offer concerning feature aggregation and
fusion? 3) Is it possible for an end-to-endmulti-feature
encoding layer to improve the network’s proficiency
in distinguishing between similar actions within video
sequences?

This paper introduces an innovative end-to-end
multi-feature encoding soft-association concatenation
aggregation layer. Our contributions are as follows:

1. We propose a novel feature aggregation method
that utilizes soft-association strategies to enhance
the interrelationships between different feature
dimensions.

2. Our method integrates seamlessly with existing
video action recognition networks, enhancing
their capability to effectively process and
aggregate temporal features.

3. We demonstrate that the generated composite
feature can represent the feature distribution
from multiple dimensions, providing a more
comprehensive image description.

We show that our experimental results validate the
effectiveness of the proposed method, showcasing
its potential to advance the field of video action
recognition and provide a robust solution for handling
complex and nuanced video data. The organization
of this paper is as follows: Section 2 offers a
comprehensive review of the existing literature in
the field. Section 3 elaborates on the research
methodology, encompassing the preprocessing for
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data augmentation, the extraction of spatiotemporal
features from videos using the LI3D network, and
the utilization of the LI3D-BiLSTM architecture
for spatiotemporal feature extraction. Section 4
outlines the experimental setup, including the dataset
employed and the presentation of the findings and
analysis. Conclusively, Section 5 summarizes the
paper, highlighting the principal discoveries and the
implications of the research for the field.

2 Related Work
As the complexity and volume of video data
continue to increase, video scenarios have evolved
from simple, isolated settings to more diverse and
intricate environments, bringing video-based motion
pattern recognition closer to real-world applications.
Consequently, the primary challenge in this field has
shifted to extracting and identifying motion features
in noisy environments. Modern algorithms focus on
capturing motion characteristics and strive to improve
accuracy under computational efficiency constraints.

In earlier studies, Saha et al. [9] combined
Convolutional Neural Networks (CNN) with
Support Vector Machines (SVM) to classify human
motion states, highlighting the potential of integrating
deep learning with traditional machine learning
techniques. Building on this, Karpathy et al. [10]
used a fixed-window approach to process stacked
image features in video frames, further enhancing
CNN’s action recognition capabilities. Funke et
al. [11] applied 3D CNNs to the Sports-1M dataset,
successfully capturing spatiotemporal features in
videos, thus significantly improving recognition
accuracy. Additionally, Zha et al. [12] conducted an
in-depth analysis of CNN-based strategies for video
event detection, proposing multiple improvements to
enhance spatiotemporal feature extraction.

In recent years, the combination of CNN and
Long-Short-Term Memory (LSTM) networks has
gained significant attention for motion pattern
recognition. CNNs excel at extracting features
from individual frames, while LSTMs are adept
at handling the temporal relationships between
consecutive frames. Donahue et al. [13] proposed
an LSTM-based autoencoder model that showed a
marked improvement in classification accuracy. Zou
et al. [14] applied regularization techniques to neural
networks, optimizing feature-sharing mechanisms to
ensure better collaboration among different features.

The introduction of Transformer architectures has

opened new possibilities for video understanding.
Bertasius et al. [15] introduced the TimeSformer
model, showcasing the advantages of self-attention
mechanisms in capturing long-range spatiotemporal
dependencies. However, due to its high computational
complexity, this model faced challenges in practical
applications. To address these issues, Fan et al. [16]
proposed the Multiscale Vision Transformer (MViT),
which significantly improved computational efficiency
while maintaining high performance through
hierarchical pooling.

The rise of self-supervised learning has provided new
directions for utilizing large-scale unlabeled video
data. Tong et al. [17] introduced the VideoMAE
model, which notably enhanced data efficiency and
inspired future research in unsupervised learning. At
the same time, Yang et al. [18] proposed a temporal
shift attention mechanism that effectively combines
the advantages of self-attention and the Temporal Shift
Module (TSM), enabling the capture of long-term
dependencies at a low computational cost.

The current trends suggest that future research
will focus on efficiently extracting and combining
spatiotemporal features in video data. This will
involve utilizing Transformer architectures and
self-supervised learning techniques to improve the
performance and effectiveness of video understanding.

This study presents an advanced methodology for the
recognition of video actions, grounded in a lightweight
Inception-3D networks (LI3D) architecture aimed at
the extraction of spatiotemporal features. Moreover,
it introduces a soft-association feature aggregation
module designed to augment the recognition accuracy
of critical video actions. In order to further
augment the network’s capability in recognizing
temporal features within video data, this investigation
expands upon the foundational work of Bidirectional
Long Short-Term Memory networks (Bi-LSTM). The
sequences of video features obtained by the LI3D
network are subjected to processing through Bi-LSTM
for contextual association, thereby bolstering the
network’s proficiency in representing temporal data
features.

In addition, this paper introduces a novel
structure based on a soft-association strategy.
This approach aims to enhance the representational
capacity of features by performing multi-level
and multi-dimensional feature aggregation and
concatenation on the temporal features output by the
network. Our proposed method leverages the concept

62



IECE Transactions on Sensing, Communication, and Control

of soft association, allowing for flexible and adaptive
connections between different feature dimensions.
Unlike hard association methods that enforce rigid
relationships, our soft-association strategy enables the
network to learn and adjust the strength of connections
between various feature aspects dynamically. This
adaptability is crucial when dealing with the complex
and often ambiguous nature of actions in real-world
video sequences.

The multi-level aspect of our approach involves
processing features at different scales of abstraction.
By considering both low-level details and high-level
semantic information, we ensure a comprehensive
representation of the video content. This
multi-level processing helps in capturing both
fine-grained movements and overarching action
patterns. Furthermore, our method emphasizes
multi-dimensional feature aggregation, recognizing
that video actions are characterized by various
attributes such as spatial configuration, temporal
dynamics, and contextual information. We create a
richer and more informative feature representation
by explicitly designing our structure to aggregate and
fuse these multiple dimensions.

The concatenation step in our approach effectively
combines these multi-level and multi-dimensional
features. Rather than simply averaging or pooling
features, concatenation preserves the distinct
information from each level and dimension, allowing
the subsequent layers of the network to leverage
this comprehensive feature set. Ultimately, this
sophisticated feature aggregation and concatenation
process significantly enhances the network’s ability
to distinguish between similar actions and handle
complex scenarios. By improving the overall
representational power of the features, our method
aims to push the boundaries of accuracy and
robustness in video action recognition tasks.

3 Methodology
3.1 The Traditional Feature Encoding
Image characteristics can generally be categorized into
global and local features. Global features encapsulate
the comprehensive content information of an image,
such as color, texture, and shape, whereas local
features encompass the specific information related
to the minute details of an image, including corners,
edges, and lines. In contrast to global features, local
features are characterized by their abundance, low
correlation among features, and reduced susceptibility

to occlusions. In recent years, local features have
gained widespread application in domains such as
face recognition, 3D reconstruction, object recognition,
object detection, and tracking. In the realm of
motion pattern recognition algorithms centered on
video content, the re-encoding of local features to
enhance the representation of spatial and temporal
relationships within each frame directly influences the
efficacy of recognition and classification algorithms.

3.1.1 Bag of Feature
Bag of Features (BOF) is a feature aggregation strategy
derived from the Bag of Words model. Similar to
the Bag of Words model, the idea behind the BOF
algorithm is to create a dictionary that contains all the
local features of an image. These features are obtained
through a clustering algorithm to determine many
cluster centers. These cluster centers are usually highly
representative. For example, for faces, although the
features such as eyes and noses of different people
are not the same, they often have commonalities, and
these cluster centers represent such commonalities.
The aggregation of features at these cluster centers
can achieve a higher-dimensional expression relative
to local features. We combine these cluster centers
to form a dictionary. For each SIFT feature in the
image, we can find the most similar cluster center
in the dictionary and count the occurrences of these
cluster centers to obtain a histogram of the distribution
of feature cluster centers. For images of different
categories, there will be a significant difference in the
distribution of this histogram. Therefore, based on
these differently distributed feature word bands, some
classification models can be trained, and they can be
used to classify images.

The principle of the BOF algorithm is actually very
simple, which can be summarized in one sentence:
create a dictionary, generate a vector, and finally count
the frequency of the words. The specific algorithm for
constructing BOF is shown in Algorithm 1.

Utilizing the Bag of Features (BOF) feature
aggregation strategy, we can obtain the frequency
distribution of local features in a higher dimension
relative to the cluster centers. This is beneficial for
feature recognition and classification. However, the
BOF algorithm has obvious drawbacks:

1. It does not take into account the positional
relationships between features at all, while
positional information is very important for
understanding images.
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Algorithm 1: BOF Feature Aggregation Algorithm
Process
Input: SIFT descriptors extracted from the training
data (M images)
Output: Word frequency vector after aggregating
local features through the BOF algorithm
Objective: To enhance the expression ability of
local features and abstract features that can
comprehensively represent image content.
1. Preprocess the M images, including image

cropping, scaling, and other preprocessing
procedures.

2. Extract SIFT features using the SIFT corner
detection algorithm in OpenCV for each image.
Each image can extract several SIFT descriptors
with a dimension of 128. Assume that a total of
N 128-dimensional SIFT features are extracted
from theM images.

3. Perform K-means clustering on the N SIFT
features extracted in step 2, grouping the N SIFT
keypoints intoK cluster centers, so that the
similarity within the same cluster center is high,
while the similarity between different cluster
centers is low.

4. Calculate the distance of all SIFT keypoints in
each image to the K cluster centers, map all SIFT
keypoints to the nearest cluster center, and
increment the count of that cluster center by 1.

2. BOF only focuses on the quantity of key features,
which is a zero-order statistic. The resulting
feature vector is sparse, so the feature expression
is not rich enough.

3.1.2 Fisher Vector
Fisher Vector (FV) effectively addresses the sparsity
issue of the BOF feature vector, significantly increasing
the dimensionality of image features. In the FV feature
representation, in addition to the zero-order features,
it also includes first-order (mean) and second-order
(variance) features. Therefore, FV can more fully
represent the content of images. Essentially, FV
expresses an image using the gradient vector of the
likelihood function. Since actual data distributions
often follow a mixture of Gaussian distributions, for
an image with N descriptors, it is assumed that
these features conform to a certain distribution and
that these distributions are independent of each
other. We can use a linear combination of N
Gaussian distributions to approximate the distribution
of these features, that is, to represent the probability

Algorithm 2: Fisher Vector (FV) Feature
Aggregation Process
Input: SIFT descriptors extracted from the training
data (M images)
Output: Feature vector obtained after describing
local features with the FV algorithm
Objective: To enhance the expressive power of
local features and to abstract a feature vector that
can comprehensively represent the content of
images.
1. Extract T descriptors from an image, each

descriptor being D-dimensional, to obtain the
image descriptors X = {x1, · · · , xT }.

2. Using a linear combination ofK Gaussian
Mixture Models (GMM) to approximate the
distribution of T descriptors
p(xt | λ) =

∑K
i=1wipi(xt | λi), where λ represents

the prior values obtained in advance through
GMM.

3. The Fisher Vector for the image is obtained by
taking the partial derivative of the Gaussian
model, that is {f−1/2

wi ∂L(X | λ)/∂wi, f
−1/2

µd
i

∂L(X |

λ)/∂µd
i , f

−1/2

σd
i

∂L(X | λ)/∂σd
i }.

4. Perform steps 2 and 3 on all images in the
training set to obtain a set of FV-represented
features for the training set.

distribution of a sample (an image) as the product of
the probability distributions of each feature dimension.
This feature aggregation strategy can better describe
the actual situation of the features. Moreover,
taking the logarithm of the product of probability
distributions turns it into a summation form, which
greatly reduces computational complexity. The
specific steps of the FV algorithm are shown in
Algorithm 2.

3.1.3 VLAD
VLAD, similar to BOF, only considers the closest
cluster center to the feature and records the distance
between the feature and its nearest cluster center. At
the same time, like FV, VLAD takes into account
the information of each dimension of the feature
point, providing a more microscopic depiction of the
image’s local features. VLAD can aggregate statistical
data of local descriptors on the image and store
the residuals and sums of local descriptors to their
corresponding cluster centers. The specific process of
the VLAD algorithm is shown in Algorithm 3. VLAD
ensures a detailed depiction of data features while
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Algorithm 3: VLAD Feature Aggregation Process
Input: SIFT descriptors extracted from the training
data (M images)
Output: Feature vector obtained after describing
local features with the VLAD algorithm

Objective: To compensate for the information loss
in BOF and FV, and to abstract a feature vector
that can comprehensively represent the content
of images.
1. Local feature descriptors are extracted using

traditional methods or deep learning methods,
represented by x.

2. Use the k-means clustering algorithm to obtain a
codebook with k cluster centers C = {c1, · · · , ck}.

3. Assign each descriptor to the closest codebook
entry, and after the assignment, the feature space
will be divided into multiple Voronoi regions.

4. Calculate the sum of residuals of features to their
respective cluster centers within each Voronoi
region x− ci,

vij =
N∑
l=1

ai(xl)(xl(j)− ci(j)),

where i represents the number of cluster centers,
j represents the dimensions of each cluster center
and local feature descriptor, l represents the total
number of local feature descriptors, and ai(xl)
represents the probability that the l-th local
feature descriptor is associated with the i-th
cluster center.

5. Finally, normalize the residual vector to obtain
the final expression form of VLAD v = v

∥v∥2 .

effectively reducing the computational load of feature
aggregation strategies. This feature aggregation
strategy balances the richness of feature expression and
the improvement of computational performance, with
VLAD expressing the relationship between feature
points and cluster centers in the form of residuals.

However, these traditional methods all share a
common drawback: the cluster centers obtained using
algorithms similar to k-means cannot be optimized
according to the needs of the data, which is the
limitation of traditional approaches. Therefore,
based on the study of traditional feature aggregation
strategies, this paper improves the traditional feature
aggregation algorithms in light of the idea that
deep learning can optimize parameters through back
propagation according to the data distribution.

4 Soft Assignment
The traditional feature aggregation strategies
mentioned in the previous section all utilize the
K-means algorithm to obtain the codebook for feature
aggregation, hence the cluster centers are located at the
center of each aggregation area, which clearly cannot
ensure that the distance from local feature descriptors
to the cluster centers is minimized. To address this
issue, this paper proposes a soft association feature
aggregation strategy, the main approach of which is to
rewrite the affiliation degree a of features to cluster
centers in traditional aggregation strategies into a
soft association form. In the BoF, Fisher Vector, and
VLAD strategies, the affiliation degree of features
to cluster centers is a constant a. When a = 1, it
indicates that the current feature belongs to that
cluster center; when a = 0, it indicates that the current
feature does not belong to that cluster center. The soft
association strategy proposed in this paper represents
the affiliation degree with ai(xl), as shown in Equation
(1).

āi(xl) =
e−α∥xl−ci∥2∑
i′ e

−α∥xl−ci′∥2
(1)

where,α is a constant between 0 and 1, representing the
probability value of the possibility that the local feature
descriptor xl belongs to the cluster center ci. The value
of α is inversely proportional to the distance from
the local descriptor to the cluster center. Simplifying
Equation (1) yields Equation (2).

āi(xl) =
ew

T
i xl+bi∑

i′ e
wT

i′xl+bi′
(2)

During the training process, we first initialize the
cluster centers, which vary slightly depending on the
traditional clusteringmethods. For the three clustering
methods of BoF, FV, andVLAD,we initialize the cluster
centers as the frequency distribution of features, the
mean and variance distribution of features, and the
distribution of the sum of residuals of features to each
element of the cluster centers, respectively. During the
network training, the affiliation degree of features to
a certain cluster center is represented by a probability
value between 0 and 1, allowing the affiliation degree
between features and cluster centers to be adjusted
through the backpropagation and gradient descent of
the neural network. That is, these initialized cluster
centers will be adjusted according to the differences
in each batch of input data, making the cluster centers
fit the data distribution better, thereby making the
aggregation degree of the same category features more
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obvious and gradually increasing the distance between
different category features.

We add the affiliation degrees processed by soft
association to the local aggregation formula, and the
complete expression after improvement is shown in
Equation (3). The improved algorithms are called
soft-BOF, soft-FV, and soft-VLAD.

vi,j =
N∑
l=1

āi(xl) (xl(j)− ci(j)) (3)

where, the parameters wi, bi, ci represent the weight,
bias, and vector representation of the initialized cluster
centers, respectively. The parameters wi, bi, ci can
be continuously updated during the training phase,
which makes the feature aggregation layer modified
by the soft association strategy more flexible, enabling
the cluster centers to move in a direction that further
reduces the distance between them and the features.

4.1 Multi-Feature Encoding by Soft Concatenation
Aggregation

Soft-BoF implements the 0th-order frequency statistics
of feature distribution, soft-FV implements the
1st-order mean and 2nd-order variance statistics
of feature distribution, and soft-VLAD directly
implements the residual statistics of feature
distribution with respect to the cluster centers.
After studying the above three feature aggregation
methods, we constructed an end-to-end multi-feature
encoding soft association concatenation aggregation
algorithm. This method uses the three statistical
quantities obtained from soft-BoF, soft-FV, and
soft-VLAD as cluster centers, and uses the soft
association strategy to obtain three forms of feature
representation. Then, these three types of features
are concatenated together to serve as a new feature
descriptor. This soft association concatenation
aggregation layer can continuously adjust the cluster
centers using the network’s backpropagation, making
the cluster centers closer to the distribution of
the actual data. That is, features belonging to the
same category are more compactly aggregated, and
features not belonging to the same category are more
dispersed. This will be more conducive to recognizing
similar actions in videos and improving the network’s
recognition and classification performance.

The multi-feature encoding soft association
concatenation algorithm can fuse features with
three levels of aggregation, finally obtaining a fused
feature that can represent the feature distribution

from multiple dimensions. This feature can provide a
more comprehensive description of the image from
multiple dimensions, and the specific fusion process
is as follows.

1. Fuse the features of the three soft association
clustering methods, where the features are
aggregated through the three clustering methods.
The output dimension is batch_size ∗ output_dim,
where batch_size is the total number of input
samples per batch, and output_dim is the output
feature dimension after clustering. After the
fusion operation, the feature dimension becomes
(merge_classes ∗ batch_size) ∗ output_dim,
where merge_classes is the number of feature
aggregation methods.

2. Perform a reshape operation on the fused features,
changing the feature dimension from the original
(merge_classes ∗ batch_size) ∗ output_dim to
batch_size ∗merge_classes ∗ output_dim.

3. Perform an averaging operation on the
feature dimension merge_classes, reducing
the dimension of merge_classes to 1D.

4. Finally, use the squeeze module in TensorFlow to
compress the 1-dimensional part of the feature
dimension, at which point the final fused feature
dimension becomes batch_size ∗ output_dim
again, the output dimension remains unchanged,
and the features include the three types of
aggregation representations.

The final expression after fusing the three feature
aggregation methods is shown in Equation (4), where
i represents the number of cluster centers, j represents
the dimension of features and cluster centers, l
represents the number of features per batch, classes
represents the number of feature aggregationmethods,
and the aggregated features are represented as V .

V (j, i) =

M∑
classes=1

N∑
l=1

ew
T
i xl+bi∑

i′ e
wT

i′xl+bi′
(xl(j)− ci(j))

(4)

Figure 1 describes the specific process of the
multi-feature encoding soft association concatenation
algorithm, with the red box section comparing
the cluster centers of this algorithm with those of
traditional feature aggregation algorithms. In it,
the black star represents the original cluster center,
and the red star represents the position of the
cluster center after adjustment by the network’s
back propagation during the training process in the

66



IECE Transactions on Sensing, Communication, and Control

Figure 1. Merge Block Cluster Centers and Traditional
Cluster Centers.

multi-feature encoding soft association concatenation
algorithm. It is evident that the adjusted cluster center
is closer to the local features than the original cluster
center, resulting in a stronger feature aggregation
representation capability.

5 Experiments and Analysis
The separability of features is a prerequisite for
the effectiveness of an algorithm. If the extracted
features are inseparable, then it is meaningless to
blindly carry out network training. Many factors can
cause data to be inseparable. In the field of video
content understanding, the main factors are: 1) The
data itself does not have separability, or the features
between the data are too similar, resulting in unclear
distinguishability; 2) The data is separable, but there
is a problem with the feature extraction algorithm,
which prevents the extracted features from adequately
reflecting the distribution of the original data. This
situation can also lead to inseparable features. It can
be seen that the study of feature separability and the
visualization of features are crucial for adjusting the
algorithm structure and deeply analyzing the data.
Dimensionality reducing the extracted features to two
or three dimensions and visualizing them helps to
analyze which data have clear separability and which
data have unclear distinguishability. We can thenmake

targeted algorithm improvements for data with less
obvious separability, which is crucial for reasonably
optimizing the algorithm.

Figure 2 (left) shows the feature distribution of the 101
categories in the UCF101 dataset extracted from the
I3D-BiLSTM model without multi-feature encoding
soft association. Figure 2(right) shows the feature
distribution of the same dataset extracted from the
I3D-BiLSTM model after multi-feature encoding soft
association. It is not difficult to see from the figures
that after the multi-feature encoding soft association
strategy, the distance between different category
features is further apart, and the aggregation of the
same category features is more compact. This indicates
that the multi-feature encoding soft association
strategy can effectively improve the network’s ability
to recognize video features.

Figure 3 shows the visualization of feature distribution
for some similar videos in the UCF101 dataset.
The left side is the feature distribution extracted
by I3D-BiLSTM, and the right side is the feature
distribution after multi-feature encoding soft
association strategy is applied to the features extracted
by I3D-BiLSTM. Each color in the graph represents
a different category of video. It is not difficult to
see from Figure 3 that before feature aggregation,
the distribution of features is quite scattered, the
aggregation of the same category features is not
compact enough, and the distance between different
categories’ features is also close. Overall, although
it is somewhat separable to a certain extent, some
categories are still not separable. The red box in
the graph represents two categories in UCF101,
Boxing PunchingBag and Boxing SpeedBag. These
two categories are inherently similar in appearance,
so without feature aggregation, it is difficult to
distinguish between these two categories. The feature
distribution after feature aggregation is shown on the
right side of Figure 3. It can be seen that after the
feature aggregation strategy, the aggregation of each
category is more obvious, and the features of different
categories are easier to distinguish. In particular,
the previously inseparable Boxing PunchingBag
and Boxing SpeedBag categories have significantly
improved separability after the feature aggregation
strategy.

Figure 4 shows the accuracy curves of the network
training process before and after feature aggregation
with 50 iterations. The green curve represents the
accuracy curve of the proposed model LI3D-BiLSTM
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Figure 2. Feature Distribution Before and After Multi-Feature Encoding Soft Association Concatenation.

Figure 3. UCF101 Partial Category Feature Clustering Visualization.

without implementing the multi-feature encoding
soft association strategy, referred to as LI3D-BiLSTM.
The red curve represents the accuracy curve of
LI3D-BiLSTM after applying the multi-feature
encoding soft association strategy, indicated as
LI3D-BiLSTM(*). From the figure, it can be observed
that after applying the multi-feature encoding
soft association strategy, the model’s accuracy has
significantly improved compared to before. Moreover,
the initial accuracy of the model is already much
higher than that of the basic model, and around the
20th iteration, the proposed model tends to stabilize.

Figure 5 compares the loss functions of the
I3D-BiLSTM model output during the training
process with and without the multi-feature encoding
soft association strategy under 50 iterations. The red

curve represents the loss function curve of the network
after applying the feature aggregation strategy, while
the green curve represents the loss function curve
without the feature aggregation strategy. It can be
observed that after applying the feature aggregation
strategy, the rate of decrease in the loss function is
significantly faster than that of the baseline model.
This indicates that after feature aggregation, the
network model can converge more quickly, resulting
in a more stable model with better robustness.

Table 1 shows the test set accuracy, precision, and
recall for the scenarios with and without feature
aggregation over 50 iterations. The metrics in Table 1
clearly show that after applying feature aggregation,
the network model demonstrates better recognition
performance on the test set. There is an improvement
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Figure 4. Accuracy Curves of the Training Process Before
and After Feature Aggregation Strategy.

Figure 5. Loss Function Curves Before and After Feature
Aggregation Strategy.

of approximately three percentage points across the
three metrics: accuracy, precision, and recall.

Table 2 compares the number of parameters, testing
time, and testing accuracy of the I3D-BiLSTM
network after incorporating themulti-feature encoding
soft association feature aggregation module under
different clustering center parameters. It can be
seen from Table 2 that when the clustering center is
set to 1024 dimensions, the number of parameters
in the network becomes excessively large, and the
testing time is also relatively long. This poses a
significant challenge to the usability of the network.
As the number of clustering centers decreases, both
the number of parameters and the testing time of the
network model decrease substantially. However, when
the clustering center is reduced to 64 dimensions, it
leads to a decrease in testing accuracy, which does

Table 1. Comparison of Test Set Metrics Before and After
Feature Aggregation.

Index Before After

Accuracy 0.90 0.92
Precision 0.91 0.93
Recall 0.90 0.91

Table 2. Effect of the number of clustering centers on soft
association splicing aggregation.

Cluster
center Parameters Test time Test

accuracy

1024 156.78M 8.63s 0.918
256 74.71M 5.17s 0.921
128 11.80M 1.58s 0.921
64 9.64M 1.57s 0.899

not meet the performance requirements for network
recognition. When the number of clustering centers
in the feature aggregation module is reduced to 128
dimensions, the number of parameters is reduced
by 92.47% and 84.21% compared to 1024 and 256
dimensions, respectively, and the testing time gets
closer to real-time requirements. At this point, the
network structure can maintain relatively high testing
accuracy while ensuring the minimum number of
parameters. Thus, having 128 clustering centers
in the feature aggregation module is considered
the optimal strategy. In subsequent experiments,
the default setting for the number of clustering
centers in the multi-feature encoding soft association
feature aggregation module will be 128 dimensions,
which allows for the least aggregate time and higher
aggregation efficiency.

6 Conclusion
In this paper, we conducted an in-depth study
comparing traditional local feature encoding
methods with modern deep learning-based encoding
techniques. Through detailed analyses, we elucidated
the strengths and weaknesses of both approaches.
Building upon these insights and traditional feature
aggregation algorithms, we introduced an innovative
feature aggregation pooling layer utilizing a soft
association strategy. This led to the development of a
spatiotemporal feature soft-association concatenation
aggregation module.Our module integrates three
soft-association feature aggregation strategies:
soft-Bag of Features (soft-BOF), soft-Fisher Vector
(soft-FV), and soft-Vector of Locally Aggregated
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Descriptors (soft-VLAD). By doing so, we effectively
combined the frequency distribution, mean-variance
distribution, and residual distribution of features.
This multi-faceted integration approach is optimized
through the backpropagation of gradients within
the network, allowing the clustering centers to be
iteratively refined. Consequently, this enhances
the clustering of features and facilitates better
differentiation between feature categories.

Significantly, our module’s capacity to unify and
optimize different distribution types of features
marks a considerable scientific advancement. We
demonstrated, through comparative experiments,
that selecting a dimensionality of 128 for the
cluster center parameter of our module strikes an
optimal balance. Under this configuration, our
network model maintains high recognition accuracy
while substantially reducing the number of network
parameters and testing time. Additionally, our
approach helps to mitigate the risks of overfitting,
contributing to more robust and generalizable models.
In conclusion, our proposed spatiotemporal feature
soft-association concatenation aggregation module
stands as a robust contribution to the field of video
action recognition, offering enhanced feature encoding,
improved differentiation, and practical efficiency. This
work lays the groundwork for future explorations
into more dynamic and adaptable feature aggregation
strategies in complex video analysis tasks.
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