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Abstract
Humanoid robots have much weight in many fields.
Their efficient and intuitive control input is critically
important and, in many cases, requires remote
operation. In this paper, we investigate the potential
advantages of inertial sensors as a key element of
command signal generation for humanoid robot
control systems. The goal is to use inertial sensors
to detect precisely when the user is moving which
enables precise control commands. The finger
gestures are initially captured as signals coming
from the inertial sensor. Movement commands
are extracted from these signals using filtering and
recognition. These commands are subsequently
translated into robot movements according to the
attitude angle of the inertial sensor. The accuracy
and effectiveness of the finger movements using
this method are experimentally demonstrated. The
implementation of inertial sensors for gesture
recognition simplifies the process of sending control
inputs, paving the way for more user-friendly and
efficient interfaces in humanoid robot operations.
This approach not only enhances the precision of
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control commands but also significantly improves
the practicality of deploying humanoid robots in
real-world scenarios.

Keywords: inertial sensor, finger gesture, NAO humanoid
robot, quaternions, motion capture.

1 Introduction
Gesture recognition is an essential part of
Human-Computer Interaction (HCI), and it has
become a prominent area of study interest in recent
years [1]. The two primary categories of gesture
recognition methods available today are inertial
sensor-based and visual capture-based [2].
Cameras are used in vision-based gesture
recognition to capture images or videos, followed
by computationally intensive image processing and
computer vision algorithms to interpret these gestures.
Gesture recognition technology can be utilized to
monitor finger movements, thereby enhancing the
security and convenience of biometric authentication
systems commonly found in smartphones [3]. This
approach fails when the line of sight is obstructed,
and RGB cameras can be very limited in their use due
to the large amount of hardware resources required to
handle demanding computational tasks [4–6].
In contrast, inertial sensor-based gesture recognition
offers several advantages. A significant advantage
of this technique is that it is less sensitive to
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environmental variables, including various
light conditions. This means that the inertial
sensor-based gesture recognition system maintains
good performance and accuracy both in bright
sunlight and in dimly lit rooms [7, 8]. By measuring
changes in acceleration and angular velocity, inertial
sensors can accurately identify finger gestures [9, 10].
This approach has been widely used in a variety
of scenarios, an example of which is handwritten
character recognition using a handheld pen. In this
application, inertial sensors are able to accurately
capture the movement trajectory of the pen tip,
enabling real-time recognition and translation of the
written content [11]. In addition, the technology is also
used for TV operation via handheld controllers [12],
enabling users to control channels, volume and other
functions through simple gestures, which greatly
enhances the user experience. In addition to this,
researchers are also exploring another innovative
application of inertial sensors on the forearm to
recognize gestures in active video games. These
algorithms have been developed to provide gamers
with a new way of interacting with each other,
allowing them to control the game through natural
hand movements, which in turn replaces traditional
input devices such as mice or gamepads [13].
Therefore, gesture recognition tasks based on inertial
sensors have very promising applications [14–16].

Recent studies have further advanced the capabilities
of inertial sensor-based gesture recognition [17, 18].
Using wearable sensors, Dong et al. [19] created
a deep learning framework for dynamic hand
gesture identification, demonstrating improved
accuracy and robustness. Lee et al. [20] introduced
a method combining inertial sensors with machine
learning algorithms to enhance the real-time
detection and classification of complex hand gestures.
Additionally, the integration of inertial sensors
with other sensory inputs has been explored to
provide multimodal gesture recognition systems,
as discussed in Theodoridou et al. [21]. Provides
a more reliable and accurate gesture recognition
system through multi-sensor information fusion
technology [22]. At the same time, sensor-based
activity recognition technology using deep learning
methods has also been applied to health monitoring
for chronic disease patients and gesture recognition
in gaming consoles [23]. These systems leverage
the complementary strengths of different sensors to
achieve more reliable and precise gesture recognition.

Similar to applications demonstrated in previous

studies, this research investigates the use of inertial
sensors to recognize changes in finger gestures
and transmit commands wirelessly to a robot. In
order to achieve reliable finger gesture identification,
algorithms with higher precision and faster processing
speed must be developed, given the smaller angles
involved in finger movements. Only four differential
equations must be solved in this study in order
to compute the attitude matrix and determine the
attitude angle thanks to the use of quaternions. This
approach not only reduces computational load but
also circumvents the issue of ‘singularity,’ thereby
enhancing calculation efficiency.
The potential applications for robust and efficient
gesture recognition systems are vast [24, 25]. From
improving user interfaces in consumer electronics to
enabling more intuitive control of robotic systems, the
advancements in this field can significantly enhance
the usability and adaptability of various technologies.
The following sections comprise the substance of this
paper: Section 2 introduces how to calculate the
attitude matrix and reduce the noise by the online
smoothing filter. Section 3 gives the definition of
gestures and discusses how to recognize gestures
by inertial sensor, and the threshold selection.
Experiments demonstrating the functionality of the
developed system are given in Section 4, along with
a demonstration of the robot’s locomotion. The
conclusion is presented in Section 5 along with
recommendations for further investigation.

2 The calculation of attitude matrix
Determining the attitude angle is the primary function
of a wearable multi-sensor system. Processing the
attitude matrix is necessary to get the precise attitude
angle. One method of calculating attitude angle is
Euler algorithm, by which each differential equation
contains many trigonometric functions. Furthermore,
the equation has a "singularity" problem and the
computing speed is slow. Another method is direction
cosine method, in which nine differential equations
need to be calculated and it will lead to large amount
of calculation and poor real-time performance. Finally,
quaternion method is represented by just four scalars.
Consequently, the computation of trigonometric
functions can be circumvented. In addition, compared
to the Euler angle and direction cosine matrix, it
has the benefit of having no singularity as the angle
approaches ninety degrees and having a higher
computing efficiency. Methods using Kalman filtering
(KF) and untraceable Kalman filtering (UKF) can
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Figure 1. Flow diagram of quaternions method.

process sensor data and improve attitude estimation
accuracy, but performance degrades in the face of
nonlinearity [26, 27]. Therefore, based on the above
advantages, this study decided to use quaternions for
the calculation of attitude angle.
The method of calculating the attitude matrix by
quaternion method is as follows [28]:
1) Initialization of quaternions (q0, q1, q2, q3)

q =
[
q0 q1 q2 q3

]T
, q20 + q21 + q22 + q23 = 1 (1)

2) The angular velocity values of each axis ωx, ωy, ωz

are measured by the inertial sensor and construct the
equation (2) in order to get the updated value of
quaternion.

q̇(t) =
1

2
M(ω)q(t) (2)

M(ω) =


0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

 (3)

where ωx, ωy, ωz represent the measurements obtained
from the gyroscope.

3) The differential equation (2) is solved using the
Fourth-order Runge-Kutta method, with the specific
formulation provided in equation (4).

K1 = Γ(t)q(t)

K2 = Γ

(
t+

h

2

)(
q(t) +

h

2
K1

)
K3 = Γ

(
t+

h

2

)(
q(t) +

h

2
K2

)
K4 = Γ

(
t+

h

2

)
(q(t) + hK3)

q(t+ h) = q(t) +
h

6
(K1 + 2K2 + 3K3 +K4)

(4)

whereK represents slope, t is the present moment, h
represents the update step, Γb =

1
2M(ω), M(ω) is the

matrix expression of three-axis angular velocity.
4) After using the Runge-Kutta method to solve the
differential equation and obtain q(t), attitude matrix C
can be expressed in the form of quaternion, as shown
in equation (5).

C =

q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 − q21 − q22 + q23


(5)

To express simply, we rewrite attitude matrix C as
equation (6)

C =

C11 C12 C13

C21 C22 C23

C31 C32 C33

 (6)

And then the attitude angle is calculated by themethod
of inverse trigonometric function, as shown in equation
(7). Flow diagram of algorithm is shown in Figure 1.

θ = arcsin(−C31)

γ = arctan
C32

C33

ψ = arctan
C21

C11

(7)

where ψ, θ, γ denotes yaw, pitch, and roll; specifically,
pitch represents the rotational angle about the X-axis
(illustrated in Figure 2(a)), roll corresponds to
the rotational angle about the Y-axis (illustrated in
Figure 2(b)), and yaw refers to the rotational angle
about the Z-axis (illustrated in Figure 2(c)) [29].
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Figure 2. The sketch map of pitch, yaw and roll.

3 The gesture processing based on the inertial
sensor

3.1 The gesture processing based on the inertial
sensor

Robot movement in complex environments plays
a crucial role, so we introduced a remote control
system [30]. Remote control system here includes
a Nao humanoid robot, an inertial sensor and
the computer, shown in Figure 3. The Nao is
manufactured by Aldebaran Robotics. The company
opens the Nao technology to all higher education
projects and Nao can be visualized by the ready
instruction module. The design of hardware uses
the latest manufacture technology in order to ensure
the smooth operation of Nao. In addition, Nao is
equipped with a variety of advanced sensors, which
enable it to perceive the surrounding environment
more accurately, significantly enhancing the robot’s
interactive capabilities and the flexibility of its
autonomous decision-making [31]. As a classical
robot experiment platform, Nao humanoid robot has
the function to keep itself stable when walking, and
each action of the robot has a corresponding program
code. To enable movement of the robotic arm, the
corresponding program code must be transmitted to
it via a computer [32].

Here the movement of the finger is detected and
through the inertial sensor to send the motion
commands to control the robot. The inertial sensor
is produced by the Beijing iGyro Technology Co., Ltd
and it contains the gyroscope, the accelerometer and
the magnetometer [33]. The inertial sensor can detect
the acceleration, position and attitude of target. In
order to detect finger gestures during the experiment,
the inertial sensor is fastened to the user’s finger. In
Figure 4, the algorithm is illustrated.

The signal of inertial sensor is caught when the finger
moves. Subsequently, a smoothing filter is employed
to process the motion signal [34]. By the quaternion
method the filtered signal is used to obtain the attitude
angle. Then based on the angles, i.e., yaw, pitch and
roll, the command about moving mode is calculated,

Figure 3. The finger attached to the inertial transducer.

seeing details in Section 3.2 and 3.3.
Firstly, we describe the filtering process: we
employ a smoothing filter to denoise the gyroscope
measurements, using a smoothing window size of 50.
Next, we consider the relationship between the user’s
gestures and the robot’s walking commands, and we
design the control strategy for the Nao robot based on
inertial sensor data as follows:
1. when the user’s finger is lifted from a horizontal

position, the robot moves forward;
2. when the user’s finger is turned downward, the

robot stops;
3. when the user directs their finger to the right, the

robot rotates to the right;
4. when the user directs their finger to the left, the

robot rotates to the left.
The finger gestures and corresponding robot
movements are illustrated in Figure 5. Subsequently,
sections 3.2 and 3.3 will be addressed, we will discuss
the methods to accurately extract the correct gesture
based on inertial sensor signals. In Section 3.2, we
will examine the features of different gestures and, to
avoid command errors, how the appropriate threshold
values are selected in Section 3.3.

3.2 Gesture recognition
The key of the system developed here is to recognize
the finger gestures. The first step of gesture recognition
is to determine the starting point of movement, which
will set down the initialization of quaternions and keep
the different equation (2) of quaternion have the right
solution. When the original value of angular velocity
reaches a certain degree, the gesture is recognized.
This approach effectively eliminates interference from
the inertial sensors. As to the signal of inertial sensor
fixed on the finger, when the finger moves, three signal,
calledX,Y, Z axis will be obtained. The inertial sensor
can record the change of angular velocity of the finger
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Figure 4. The diagram of the algorithm.

moving so that the finger gesture can be determined
(the details are shown in Figure 6).

When the finger is up or down, the angular velocity
of the X axis will change. Upward or downward
gestures can be judged by the sequence of peak and
valley. Similarly, when the finger turns right or left, the
angular velocity of the Z axis will change. Gestures to
the left or right can also be judged by the sequence
of peak and valley. The relationship between the
positive and negative changes of angular velocity
and finger gesture, as shown in Table 1. The ’+’
represents the angular velocity is positive, ’-’ on behalf
of angular velocity is negative, ’####’ represents no
change in angular velocity. Here the signal of the
y-axis is omitted, because as to the movement mode

Table 1. The relation between angular speed signals and
gestures.

X axis Z axis
Finger Up +- ####

Finger Down -+ ####
Finger Right #### +-
Finger Left #### -+

we considered, it will change very little.
But we don’t want to detect the gestures based on the
angular velocity x and z directly. Because it’s difficult
to detect the sequence of peak and valley with high
correct rate. Next, we use the quaternion method
to obtain the attitude angles, as shown in Figure 7.
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Figure 5. The relation of gesture and robot movement.

Figure 6. The angular velocity of theX axis when the finger is moving. a. When the finger is lifted, the angular velocity of
X axis is positive. When the finger comes back to its original position, the angular velocity is negative. This process

reflects a peak and a valley in the X axis and the peak is in front of the valley. b. When the finger is downward from the
horizontal position, the angular velocity of X axis is negative, then positive. c. When the user’s finger turns right, the
angular velocity of Z axis will change, and is positive. d. When the user’s finger turns left, the angular velocity of Z is
negative. When the finger comes back to its original position, the angular velocity is positive. This process reflects a

valley and a peak in the Z axis and the valley is in front of the peak.
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(a) The measurement of angular velocity and attitude angle when
the finger is lifted.

(b) The measurement of angular velocity and attitude angle when
the finger is turned down.

(c) The measurement of angular velocity and attitude angle when
the finger turns right.

(d) The measurement of angular velocity and attitude angle when
the finger turns left.

Figure 7. The relation of gestures and the attitude angles.

Figures 7(a) and 7(b) illustrate the relationship
between X-axis angular speed and pitch angle, with
Figure 7(a) depicting a positive pitch and Figure 7(b)
illustrating a negative pitch. Figures 7(c) and 7(d)
demonstrate the relationship between Z-axis angular
speed and yaw angle, where Figure 7(c) presents a
positive yaw and Figure 7(d) presents a negative yaw.
The sequence of peaks and valleys is altered, resulting
in distinct peaks or valleys corresponding to varying
pitch and yaw angles. Then in the next section, we will
discuss how to obtain the control command based the
obtained attitude angle.

3.3 The threshold analysis
In this system, themotion of theNao robot is controlled
through finger gestures, which encompass raising,
lowering, turning right, and turning left. These
movements are defined as Figure_Up, Figure_Down,
Figure_Right and Figure_Left respectively.
Because the inertial sensor is fixed on the finger,
the slight movements of user’s finger result in the
inaccuracy of gesture recognition. Therefore, a
minimum angle is established to minimize the impact
of noise. To determine a reliable minimum angle,
offline experiments are conducted for analysis, and
the recorded angular data are presented in Figure 8.
In the experiments, we discover that the pitch range
between -20 and 20 degrees may be brought on by
a tiny finger jitter, which could result in an incorrect
command. Thus, we established a minimum pitch

angle of ±20 degrees, as shown by the green line in
Figure 8.

Conversely, if the user raises their finger without
paying attention to steer the robot’s movement, the
inertial sensor will measure the data with a large
attitude angle. In order to avoid such a situation, a
maximum angle is established to prevent the robot
from executing incorrect movements. Similar to the
minimum angle, several experiments are carried out
to find a reasonable maximum angle. Finally, the
maximum angle T2 is set as ±50 degrees to avoid the
wrong command when the finger is lifted, which is
seen in Figure 8 by the yellow line. In the event that the
angle is sufficiently greater than the maximum value,
the robot will also stay still. Therefore, a threshold
value can be established between±20 and±50 degrees
to accurately represent the pitch angle.

When the finger rotates to the right, the angle of
the thumb will be expressed as a positive degree;
conversely,When the finger rotates to the left, the angle
will be represented as a negative degree. Similar to
the pitch, we select the threshold T3 as ±20 degrees
and T4 as ±40 degrees to accurately reflect the angle
of yaw. In the Figure 9, the green lines indicate T3 and
the yellow lines indicate T4. The rules to detect the
movement of finger are as shown in the equations (8)
(9).
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Figure 8. The range of pitch angle.

Figure 9. The range of yaw angle.

{
T1 < Pitch < T2 =⇒ Finger_Up

−T2 < Pitch < −T1 =⇒ Finger_Down (8)

{
T3 < Yaw < T4 =⇒ Finger_Right

−T4 < Yaw < −T3 =⇒ Finger_Left (9)

We note that pitch belonging to [T1, T2] means that
the finger is lifted up, pitch belonging to [T1, T2]means
that the finger is down, yawbelonging to [T3, T4]means
that the finger is turned right, and yaw belonging to
[−T4,−T3]means that the finger is turned left.

4 Control for NAO robot
As a classic robot platform, the Nao robot has
a comprehensive self-action module. Upon
receiving movement commands, Nao can walk
while maintaining self-balance. Therefore, our
primary focus is on whether Nao can accurately
receive commands based on finger gestures. The
computer obtains signals from the inertial sensor,
interprets the finger gestures, and then sends the
corresponding movement commands to the Nao
robot. In this study, four commands are described by
character instructions: ‘G’, ‘S’, ‘R’, and ‘L’, with their
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(a) Control the robot to go forward and stop. (b) Instruct the robot to rotate to the right and left.

Figure 10. The finger gestures and robot movements.

Table 2. Definition of commands.

Command Definition
G controlling the robot to go forward
S controlling the robot to stop
R controlling the robot to turn right
L controlling the robot to turn left

definitions listed in Table 2.

When the finger is lifted upwards, the inertial sensor
detects a positive pitch angle, prompting the robot

to receive the corresponding instruction ‘G’, which
triggers forward movement. Conversely, when the
finger is turned downwards, the sensor detects a
negative pitch angle, resulting in the robot receiving
the ‘S’ instruction to stop. For lateralmovements, when
the finger is turned right, the inertial sensor detects
a positive yaw angle, leading to the robot receiving
the ‘R’ instruction to turn right. Similarly, when the
finger is turned left, a negative yaw angle is detected,
prompting the ‘L’ instruction for the robot to turn left.

As illustrated in Figure 10, the inertial sensor detects
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changes in the finger’s angular velocity when it is
lifted, lowered, or turned left or right. The quaternion
method is then employed to convert this angular
velocity into an attitude angle. The robot receives this
angle signal and executes the corresponding action
based on the command.
Figure 10(a) demonstrates that when the finger is
lifted, a positive pitch angle is registered, directing
the robot to move forward. When the finger is lowered,
a negative pitch angle is detected, commanding the
robot to stop. Figure 10(b) shows that when the
finger is turned right, a positive yaw angle is recorded,
instructing the robot to turn right. Conversely, when
the finger is turned left, a negative yaw angle is
detected, prompting the robot to turn left.

5 Conclusion
This paper presents a new method for robot remote
control using gesture detection from inertial sensors.
The principle idea is to use inertial sensors to
track the movements and direction of fingers and
send corresponding commands to the robot through
wireless communication. This approach intends
to deliver an approachable and responsive control
mechanism. Ourmethod computes the attitudematrix
using quaternions to obtain the attitude angles of
finger movement with high accuracy and reliability.
Quaternions are very useful because they reduce
the computation complexity and we solve only 4
differential equations. Moreover, quaternions provide
efficient resolution to the problem of ’singularity,’
which is common with classical methods, enhancing
the overall performance and robustness of the system.
The results show that our proposedmethod is effective
and robust in many environments and lighting
conditions, and that inertial sensor-based gesture
recognition can greatly outperform vision-based
methods. The potential for improving accuracy
and real-time performance, along with providing
adaptability for different user gestures and commands
is demonstrated with a proposed system.
Future work will include extending the scope of
detectable gestures and improving the system’s
adaptability to complicated and intricate finger
movements. Furthermore, because the proposed
method can be embedded in the pipeline for other
sensory units, employing it alongside advanced
machine learning methods can enhance its accuracy
and generalization, making it useful for various
human-computer interaction and robotics applications.
In conclusion, the proposed method marks a

major advancement toward developing intuitive,
accurate, and fast gesture-controlled robots using the
advantages of inertial sensor technology to overcome
the disadvantages of traditional vision-based
approaches.
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