IECE Transactions on Computer Science
ISSN: request pending (Online)
Email: [email protected]
[1] Kumar, T., Mileo, A., & Bendechache, M. (2024, June). Keeporiginalaugment: Single image-based better information-preserving data augmentation approach. In IFIP International Conference on Artificial Intelligence Applications and Innovations (pp. 27-40). Cham: Springer Nature Switzerland.
[2] Roy, A. M., Bhaduri, J., Kumar, T., & Raj, K. (2022). A computer vision-based object localization model for endangered wildlife detection. Ecological Economics, Forthcoming.
[3] Kumar, T., Brennan, R., Mileo, A., & Bendechache, M. (2024). Image data augmentation approaches: A comprehensive survey and future directions. IEEE Access.
[4] Kumar, T., Mileo, A., Brennan, R., & Bendechache, M. (2023). RSMDA: Random Slices Mixing Data Augmentation. Applied Sciences, 13(3), 1711.
[5] Chandio, A., Gui, G., Kumar, T., Ullah, I., Ranjbarzadeh, R., Roy, A. M., ... & Shen, Y. (2022). Precise single-stage detector. arXiv preprint arXiv:2210.04252.
[6] Kumar, T., Turab, M., Raj, K., Mileo, A., Brennan, R. & Bendechache, M. (2023). Advanced Data Augmentation Approaches: A Comprehensive Survey and Future directions. ArXiv Preprint ArXiv:2301.02830.
[7] Kumar, T., Park, J., Ali, M. S., Uddin, A. F. M., & Bae, S. H. (2021). Class specific autoencoders enhance sample diversity. Journal Of Broadcast Engineering, 26(7), 844-854.
[8] Aleem, S., Kumar, T., Little, S., Bendechache, M., Brennan, R., & McGuinness, K. (2022). Random data augmentation based enhancement: a generalized enhancement approach for medical datasets. arXiv preprint arXiv:2210.00824.
[9] Kumar, T., Park, J., Ali, M. S., Uddin, A. S., Ko, J. H., & Bae, S. H. (2021). Binary-classifiers-enabled filters for semi-supervised learning. IEEE Access, 9, 167663-167673.
[10] Chandio, A., Shen, Y., Bendechache, M., Inayat, I., & Kumar, T. (2021). AUDD: audio Urdu digits dataset for automatic audio Urdu digit recognition. Applied Sciences, 11(19), 8842.
[11] Turab, M., Kumar, T., Bendechache, M., & Saber, T. (2022). Investigating multi-feature selection and ensembling for audio classification. arXiv preprint arXiv:2206.07511.
[12] Raj, K., Singh, A., Mandal, A., Kumar, T., & Roy, A. M. (2023). Understanding EEG signals for subject-wise definition of armoni activities. arXiv preprint arXiv:2301.00948.
[13] Kumar, T., Park, J., & Bae, S. H. (2020). Intra-Class Random Erasing (ICRE) augmentation for audio classification. In Proceedings Of The Korean Society Of Broadcast Engineers Conference (pp. 244-247). The Korean Institute of Broadcast and Media Engineers.
[14] Park, J., Kumar, T., & Bae, S. H. (2020). Search for optimal data augmentation policy for environmental sound classification with deep neural networks. Journal Of Broadcast Engineering, 25(6), 854-860.
[15] Park, J., Kumar, T., & Bae, S. H. (2020). Search of an optimal sound augmentation policy for environmental sound classification with deep neural networks. In Proceedings Of The Korean Society Of Broadcast Engineers Conference (pp. 18-21). The Korean Institute of Broadcast and Media Engineers.
[16] Kumar, T., Turab, M., Mileo, A., Bendechache, M., & Saber, T. (2023). AudRandAug: Random Image Augmentations for Audio Classification. arXiv preprint arXiv:2309.04762.
[17] Singh, A., Raj, K., Meghwar, T., & Roy, A. M. (2024). Efficient Paddy Grain Quality Assessment Approach Utilizing Affordable Sensors. AI, 5(2), 686-703.
[18] Khan, W., Kumar, T., Zhang, C., Raj, K., Roy, A. M., & Luo, B. (2023). SQL and NoSQL database software architecture performance analysis and assessments—a systematic literature review. Big Data and Cognitive Computing, 7(2), 97.
[19] Silva, P. B., Andrade, M., & Ferreira, S. (2020). Machine learning applied to road safety modeling: A systematic literature review. Journal of traffic and transportation engineering (English edition), 7(6), 775-790.
[20] Gebresenbet, R. F., & Aliyu, A. D. (2019). Injury severity level and associated factors among road traffic accident victims attending emergency department of Tirunesh Beijing Hospital, Addis Ababa, Ethiopia: a cross sectional hospital-based study. PLoS One, 14(9), e0222793.
[21] Ahmed, S. K., Mohammed, M. G., Abdulqadir, S. O., El-Kader, R. G. A., El-Shall, N. A., Chandran, D., ... & Dhama, K. (2023). Road traffic accidental injuries and deaths: A neglected global health issue. Health science reports, 6(5), e1240.
[22] Behzadi Goodari, M., Sharifi, H., Dehesh, P., Mosleh-Shirazi, M. A., & Dehesh, T. (2023). Factors affecting the number of road traffic accidents in Kerman province, southeastern Iran (2015–2021). Scientific reports, 13(1), 6662.
[23] Lin, D. J., Yang, J. R., Liu, H. H., Chiang, H. S., & Wang, L. Y. (2022). Analysis of environmental factors on intersection accidents. Sustainability, 14(3), 1764.
[24] Nižetić, S., Šolić, P., Gonzalez-De, D. L. D. I., & Patrono, L. (2020). Internet of Things (IoT): Opportunities, issues and challenges towards a smart and sustainable future. Journal of cleaner production, 274, 122877.
[25] Satla, S. P., Sadanandam, M., & Suvarna, B. (2020). Dangerous Prediction in Roads by Using Machine Learning Models. Ingénierie des Systèmes d’Information, 25(5).
[26] Sharma, A., Awasthi, Y., & Kumar, S. (2020, October). The role of blockchain, AI and IoT for smart road traffic management system. In 2020 IEEE India Council International Subsections Conference (INDISCON) (pp. 289-296). IEEE.
[27] Tonhauser, M., & Ristvej, J. (2021). Implementation of new technologies to improve safety of road transport. Transportation research procedia, 55, 1599-1604.
[28] Kumar, T., Bhujbal, R., Raj, K., & Roy, A. M. (2024). Navigating Complexity: A Tailored Question-Answering Approach for PDFs in Finance, Bio-Medicine, and Science.
[29] Barua, M., Kumar, T., Raj, K., & Roy, A. M. (2024). Comparative Analysis of Deep Learning Models for Stock Price Prediction in the Indian Market.
Portico
All published articles are preserved here permanently:
https://www.portico.org/publishers/iece/