IECE Transactions on Intelligent Systematics
ISSN: 2998-3355 (Online) | ISSN: 2998-3320 (Print)
Email: [email protected]
[1] Ahmed, M. J., Afridi, U., Shah, H. A., Khan, H., Bhatt, M. W., Alwabli, A., & Ullah, I. (2024). CardioGuard: AI-driven ECG authentication hybrid neural network for predictive health monitoring in telehealth systems. SLAS technology, 29(5), 100193.
[2] Posetti, J., & Matthews, A. (2018). A short guide to the history of ‘fake news’ and disinformation. International Center for Journalists, 7(2018), 2018-07.
[3] Tschiatschek, S., Singla, A., Gomez Rodriguez, M., Merchant, A., & Krause, A. (2018, April). Fake news detection in social networks via crowd signals. In Companion proceedings of the the web conference 2018 (pp. 517-524).
[4] Khan, H., Ullah, I., Shabaz, M., Omer, M. F., Usman, M. T., Guellil, M. S., & Koo, J. (2024). Visionary vigilance: Optimized YOLOV8 for fallen person detection with large-scale benchmark dataset. Image and Vision Computing, 149, 105195.
[5] Mattos, D. M. F., Velloso, P. B., & Duarte, O. C. M. B. (2019). An agile and effective network function virtualization infrastructure for the Internet of Things. Journal of Internet Services and Applications, 10(1), 6.
[6] Ribeiro, F. N., Saha, K., Babaei, M., Henrique, L., Messias, J., Benevenuto, F., ... & Redmiles, E. M. (2019, January). On microtargeting socially divisive ads: A case study of russia-linked ad campaigns on facebook. In Proceedings of the conference on fairness, accountability, and transparency (pp. 140-149).
[7] Usman, M. T., Khan, H., Singh, S. K., Lee, M. Y., & Koo, J. (2024). Efficient deepfake detection via layer-frozen assisted dual attention network for consumer imaging devices. IEEE Transactions on Consumer Electronics.
[8] Tardáguila, C., Benevenuto, F., & Ortellado, P. (2018). Fake News Is Poisoning Brazilian Politics. WhatsApp Can Stop It. International New York Times, NA-NA.
[9] Ullah, I., Ali, F., Khan, H., Khan, F., & Bai, X. (2024). Ubiquitous computation in internet of vehicles for human-centric transport systems. Computers in Human Behavior, 161, 108394.
[10] Zhou, X., & Zafarani, R. (2020). A survey of fake news: Fundamental theories, detection methods, and opportunities. ACM Computing Surveys (CSUR), 53(5), 1-40.
[11] Wang, W. Y. (2017). “ liar, liar pants on fire”: A new benchmark dataset for fake news detection. arXiv preprint arXiv:1705.00648.
[12] Rubin, V. L. (2010). On deception and deception detection: Content analysis of computer-mediated stated beliefs. Proceedings of the American Society for Information Science and Technology, 47(1), 1-10.
[13] Rubin, V. L., Conroy, N., Chen, Y., & Cornwell, S. (2016, June). Fake news or truth? using satirical cues to detect potentially misleading news. In Proceedings of the second workshop on computational approaches to deception detection (pp. 7-17).
[14] Gottfried, J., & Shearer, E. (2016). News use across social media platforms 2016.
[15] Campan, A., Cuzzocrea, A., & Truta, T. M. (2017, December). Fighting fake news spread in online social networks: Actual trends and future research directions. In 2017 IEEE International Conference on Big Data (Big Data) (pp. 4453-4457). IEEE.
[16] Lazer, D. M., Baum, M. A., Benkler, Y., Berinsky, A. J., Greenhill, K. M., Menczer, F., ... & Zittrain, J. L. (2018). The science of fake news. Science, 359(6380), 1094-1096.
[17] Chadwick, A., & Vaccari, C. (2019). News sharing on UK social media: Misinformation, disinformation, and correction.
[18] Kogan, S., Moskowitz, T. J., & Niessner, M. (2019). Fake news: Evidence from financial markets. Available at SSRN, 3237763.
[19] Zafarani, R., Zhou, X., Shu, K., & Liu, H. (2019, July). Fake news research: Theories, detection strategies, and open problems. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 3207-3208).
[20] Allcott, H., & Gentzkow, M. (2017). Social media and fake news in the 2016 election. Journal of economic perspectives, 31(2), 211-236.
[21] Thompson, S. A. (2017, December 14). President Trump’s lies, the definitive list. The New York Times - Breaking News, US News, World News and Videos. https://www.nytimes.com/interactive/2017/06/23/ opinion/trumps-lies.html
[22] Ur Rehman, I., Ullah, I., Khan, H., Guellil, M. S., Koo, J., Min, J., ... & Lee, M. Y. (2024). A comprehensive systematic literature review of ML in nanotechnology for sustainable development. Nanotechnology Reviews, 13(1), 20240069.
[23] Graauwmans, V. V. (2016). Fake News in the Online World: An Experimental Study on Credibility Evaluations of Fake News depending on Information Processing Bachelor Thesis Tilburg University.
[24] Guderlei, M., & Aßenmacher, M. (2020, December). Evaluating unsupervised representation learning for detecting stances of fake news. In Proceedings of the 28th international conference on computational linguistics (pp. 6339-6349).
[25] Khan, H., Usman, M. T., Rida, I., & Koo, J. (2024). Attention enhanced machine instinctive vision with human-inspired saliency detection. Image and Vision Computing, 152, 105308.
[26] Shu, K., Sliva, A., Wang, S., Tang, J., & Liu, H. (2017). Fake news detection on social media: A data mining perspective. ACM SIGKDD explorations newsletter, 19(1), 22-36.
[27] Anderson, J. (1983). Lix and rix: Variations on a little-known readability index. Journal of Reading, 26(6), 490-496.
[28] Amorim, E., Cançado, M., & Veloso, A. (2018, June). Automated essay scoring in the presence of biased ratings. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers) (pp. 229-237).
[29] An, J., & Weber, I. (2016). # greysanatomy vs.# yankees: Demographics and Hashtag Use on Twitter. In Proceedings of the International AAAI Conference on Web and Social Media (Vol. 10, No. 1, pp. 523-526).
[30] Ahmed, H., Traore, I., & Saad, S. (2017). Detection of online fake news using n-gram analysis and machine learning techniques. In Intelligent, Secure, and Dependable Systems in Distributed and Cloud Environments: First International Conference, ISDDC 2017, Vancouver, BC, Canada, October 26-28, 2017, Proceedings 1 (pp. 127-138). Springer International Publishing.
[31] An, J., & Kwak, H. (2017, May). What gets media attention and how media attention evolves over time: large-scale empirical evidence from 196 countries. In Proceedings of the International AAAI Conference on Web and Social Media (Vol. 11, No. 1, pp. 464-467).
[32] Srivastava, A. (2020). Real time fake news detection using machine learning and NLP. Int. Res. J. Eng. Technol.(IRJET), 7(06).
[33] Khan, H., Jan, Z., Ullah, I., Alwabli, A., Alharbi, F., Habib, S., ... & Koo, J. (2024). A deep dive into AI integration and advanced nanobiosensor technologies for enhanced bacterial infection monitoring. Nanotechnology Reviews, 13(1), 20240056.
[34] Lakshmanarao, A., Swathi, Y., & Kiran, T. S. R. (2019). An effecient fake news detection system using machine learning. International Journal of Innovative Technology and Exploring Engineering, 8(10), 3125-3129.
[35] Hiramath, C. K., & Deshpande, G. C. (2019, July). Fake news detection using deep learning techniques. In 2019 1st International Conference on Advances in Information Technology (ICAIT) (pp. 411-415). IEEE.
[36] Mahir, E. M., Akhter, S., & Huq, M. R. (2019, June). Detecting fake news using machine learning and deep learning algorithms. In 2019 7th international conference on smart computing & communications (ICSCC) (pp. 1-5). IEEE.
[37] Granik, M., & Mesyura, V. (2017, May). Fake news detection using naive Bayes classifier. In 2017 IEEE first Ukraine conference on electrical and computer engineering (UKRCON) (pp. 900-903). IEEE.
[38] Ali, D., Iqbal, S., Mehmood, S., Khalil, I., Ullah, I., Khan, H., & Ali, F. (2024). Unleashing the Power of AI in Communication Technology: Advances, Challenges, and Collaborative Prospects. In Artificial General Intelligence (AGI) Security: Smart Applications and Sustainable Technologies (pp. 211-226). Singapore: Springer Nature Singapore.
[39] Gadekar, P. S. (2019). Fake News Identification using Machine Learning. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 7(V).
[40] Ivancová, K., Sarnovský, M., & Maslej-Krcšñáková, V. (2021, January). Fake news detection in Slovak language using deep learning techniques. In 2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI) (pp. 000255-000260). IEEE.
[41] Meesad, P. (2021). Thai fake news detection based on information retrieval, natural language processing and machine learning. SN Computer Science, 2(6), 425.
[42] Cai, Y., Pan, S., Wang, X., Chen, H., Cai, X., & Zuo, M. (2020). Measuring distance-based semantic similarity using meronymy and hyponymy relations. Neural Computing and Applications, 32, 3521-3534.
[43] Bali, A. P. S., Fernandes, M., Choubey, S., & Goel, M. (2019). Comparative performance of machine learning algorithms for fake news detection. In Advances in Computing and Data Sciences: Third International Conference, ICACDS 2019, Ghaziabad, India, April 12–13, 2019, Revised Selected Papers, Part II 3 (pp. 420-430). Springer Singapore.
[44] Ali, D., Huque, M. T., Godhuli, J. J., & Ahmed, N. (2022). Detection of Face Emotion and Music Recommendation System using Machine Learning. International Journal of Research and Innovation in Applied Science, 7(11), 05-08.
[45] Bangyal, W. H., Qasim, R., Rehman, N. U., Ahmad, Z., Dar, H., Rukhsar, L., ... & Ahmad, J. (2021). Detection of Fake News Text Classification on COVID-19 Using Deep Learning Approaches. Computational and mathematical methods in medicine, 2021(1), 5514220.
[46] Wu, J., Huang, C., & Chen, Y. (2020, October). Patent Text Classification Study Based on Bi-LSTM-A Model. In 2020 5th international conference on control, Robotics and Cybernetics (CRC) (pp. 1-5). IEEE.
[47] Ganesh, P., Priya, L., & Nandakumar, R. (2021, June). Fake news detection-a comparative study of advanced ensemble approaches. In 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI) (pp. 1003-1008). IEEE.
IECE Transactions on Intelligent Systematics
ISSN: 2998-3355 (Online) | ISSN: 2998-3320 (Print)
Email: [email protected]
Portico
All published articles are preserved here permanently:
https://www.portico.org/publishers/iece/