IECE Transactions on Intelligent Unmanned Systems
ISSN: 2998-9140 (Online)
Email: [email protected]
[1]World Health Organization. (2019). Global status report on road safety 2018. World Health Organization.
[2]Zheng, W. L., Gao, K., Li, G., Liu, W., Liu, C., Liu, J. Q., ... & Lu, B. L. (2019). Vigilance estimation using a wearable EOG device in real driving environment. IEEE Transactions on Intelligent Transportation Systems, 21(1), 170-184.
[3]Alkinani, M. H., Khan, W. Z., & Arshad, Q. (2020). Detecting human driver inattentive and aggressive driving behavior using deep learning: Recent advances, requirements and open challenges. IEEE Access, 8, 105008-105030.
[4]Kamran, M. A., Mannan, M. M. N., & Jeong, M. Y. (2019). Drowsiness, fatigue and poor sleep’s causes and detection: a comprehensive study. IEEE Access, 7, 167172-167186.
[5]Mittal, A., Kumar, K., Dhamija, S., & Kaur, M. (2016, March). Head movement-based driver drowsiness detection: A review of state-of-art techniques. In 2016 IEEE international conference on engineering and technology (ICETECH) (pp. 903-908). IEEE.
[6]Pratama, B. G., Ardiyanto, I., & Adji, T. B. (2017, July). A review on driver drowsiness based on image, bio-signal, and driver behavior. In 2017 3rd International Conference on Science and Technology-Computer (ICST) (pp. 70-75). IEEE.
[7]Ramzan, M., Khan, H. U., Awan, S. M., Ismail, A., Ilyas, M., & Mahmood, A. (2019). A survey on state-of-the-art drowsiness detection techniques. IEEE Access, 7, 61904-61919.
[8]Chowdhury, A., Shankaran, R., Kavakli, M., & Haque, M. M. (2018). Sensor applications and physiological features in drivers’ drowsiness detection: A review. IEEE sensors Journal, 18(8), 3055-3067.
[9]Trenta, F., Conoci, S., Rundo, F., & Battiato, S. (2019, May). Advanced motion-tracking system with multi-layers deep learning framework for innovative car-driver drowsiness monitoring. In 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019) (pp. 1-5). IEEE.
[10]Kim, J., & Shin, M. (2019). Utilizing HRV-derived respiration measures for driver drowsiness detection. Electronics, 8(6), 669.
[11]Fu, R., Wang, H., & Zhao, W. (2016). Dynamic driver fatigue detection using hidden Markov model in real driving condition. Expert Systems with Applications, 63, 397-411.
[12]Belakhdar, I., Kaaniche, W., Djmel, R., & Ouni, B. (2016, March). Detecting driver drowsiness based on single electroencephalography channel. In 2016 13th International Multi-Conference on Systems, Signals & Devices (SSD) (pp. 16-21). IEEE.
[13]Poorna, S. S., Arsha, V. V., Aparna, P. T. A., Gopal, P., & Nair, G. J. (2018). Drowsiness detection for safe driving using PCA EEG signals. In Progress in Computing, Analytics and Networking: Proceedings of ICCAN 2017 (pp. 419-428). Springer Singapore.
[14]Ma, Z., Li, B. C., & Yan, Z. (2016, January). Wearable driver drowsiness detection using electrooculography signal. In 2016 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet) (pp. 41-43). IEEE.
[15]Mahmoodi, M., & Nahvi, A. (2019). Driver drowsiness detection based on classification of surface electromyography features in a driving simulator. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 233(4), 395-406.
[16]Albousefi, A. A., Ying, H., Filev, D., Syed, F., Prakah-Asante, K. O., Tseng, F., & Yang, H. H. (2017). A two-stage-training support vector machine approach to predicting unintentional vehicle lane departure. Journal of Intelligent Transportation Systems, 21(1), 41-51.
[17]Li, Z., Li, S. E., Li, R., Cheng, B., & Shi, J. (2017). Online detection of driver fatigue using steering wheel angles for real driving conditions. Sensors, 17(3), 495.
[18]Li, C., Wang, Y., Liu, C., Liang, S., Li, H., & Li, X. (2021). GLIST: Towards in-storage graph learning. In 2021 USENIX Annual Technical Conference (USENIX ATC 21) (pp. 225-238).
[19]Fang, F., & Xiong, Y. (2014). Event-driven-based water level control for nuclear steam generators. IEEE Transactions on Industrial electronics, 61(10), 5480-5489.
[20]Mandal, B., Li, L., Wang, G. S., & Lin, J. (2016). Towards detection of bus driver fatigue based on robust visual analysis of eye state. IEEE Transactions on Intelligent Transportation Systems, 18(3), 545-557.
[21]Shi, S. Y., Tang, W. Z., & Wang, Y. Y. (2017). A review on fatigue driving detection. In ITM Web of Conferences (Vol. 12, p. 01019). EDP Sciences.
[22]Zhuang, Q., Kehua, Z., Wang, J., & Chen, Q. (2020). Driver fatigue detection method based on eye states with pupil and iris segmentation. IEEE Access, 8, 173440-173449.
[23]You, F., Li, X., Gong, Y., Wang, H., & Li, H. (2019). A real-time driving drowsiness detection algorithm with individual differences consideration. IEEE Access, 7, 179396-179408.
[24]Akrout, B., & Mahdi, W. (2016, November). Yawning detection by the analysis of variational descriptor for monitoring driver drowsiness. In 2016 International Image Processing, Applications and Systems (IPAS) (pp.1-5). IEEE.
[25]Yang, C., Wang, X., & Mao, S. (2020). Unsupervised drowsy driving detection with RFID. IEEE transactions on vehicular technology, 69(8), 8151-8163.
[26]Zhao, L., Wang, Z., Wang, X., & Liu, Q. (2018). Driver drowsiness detection using facial dynamic fusion information and a DBN. IET Intelligent Transport Systems, 12(2), 127-133.
[27]Huo, X. Q., Zheng, W. L., & Lu, B. L. (2016, July). Driving fatigue detection with fusion of EEG and forehead EOG. In 2016 international joint conference on neural networks (IJCNN) (pp. 897-904). IEEE.
[28]Gielen, J., & Aerts, J. M. (2019). Feature extraction and evaluation for driver drowsiness detection based on thermoregulation. Applied Sciences, 9(17), 3555.
[29]McDonald, A. D., Lee, J. D., Schwarz, C., & Brown, T. L. (2018). A contextual and temporal algorithm for driver drowsiness detection. Accident Analysis & Prevention, 113, 25-37.
[30]Li, Z., Zhang, Q., & Zhao, X. (2017). Performance analysis of K-nearest neighbor, support vector machine, and artificial neural network classifiers for driver drowsiness detection with different road geometries. International Journal of Distributed Sensor Networks, 13(9), 1550147717733391.
[31]Guo, J. M., & Markoni, H. (2019). Driver drowsiness detection using hybrid convolutional neural network and long short-term memory. Multimedia tools and applications, 78, 29059-29087.
[32]Savaş, B. K., & Becerikli, Y. (2020). Real time driver fatigue detection system based on multi-task ConNN. IEEE Access, 8, 12491-12498.
[33]Amirudin, N. A. B., Saad, N., Ali, S. S. A., & Adil, S. H. (2018, December). Detection and analysis of driver drowsiness. In 2018 3rd International Conference on Emerging Trends in Engineering, Sciences and Technology (ICEEST) (pp. 1-9). IEEE.
[34]Abbas, Q. (2020). HybridFatigue: A real-time driver drowsiness detection using hybrid features and transfer learning. International Journal of Advanced Computer Science and Applications, 11(1).
[35]Yang, S., J. Xi, and W. Wang. 2019. "Driver drowsiness detection through a vehicle’s active probe action." In 2nd IEEE Connected and Automated Vehicles Symposium, CAVS 2019. Institute of Electrical and Electronics Engineers Inc.
[36]Subha, R., Aravind, J., Santhalingam, V., & Sweetlin, J. D. (2018, March). Drowsy driving detection system by analyzing and classifying brain waves. In 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA) (pp. 667-672). IEEE.
[37]Cheon, S. P., & Kang, S. J. (2017, June). Sensor-based driver condition recognition using support vector machine for the detection of driver drowsiness. In 2017 IEEE Intelligent Vehicles Symposium (IV) (pp. 1517-1522). IEEE.
[38]de Naurois, C. J., Bourdin, C., Bougard, C., & Vercher, J. L. (2018). Adapting artificial neural networks to a specific driver enhances detection and prediction of drowsiness. Accident Analysis & Prevention, 121, 118-128.
[39]Shahrudin, N. N., & Sidek, K. A. (2020, March). Driver drowsiness detection using different classification algorithms. In Journal of Physics: Conference Series (Vol. 1502, No. 1, p. 012037). IOP Publishing.
[40]DROZY. ’The ULg Multimodality Drowsiness Database’. http://www.drozy.ulg.ac.be/.
[41]Romera,E. 2016. ’The UAH-DriveSet’. http://www.robesafe.uah.es/personal/eduardo.romera/uah-driveset/.
[42]Vu, T. H., Dang, A., & Wang, J. C. (2019). A deep neural network for real-time driver drowsiness detection. IEICE TRANSACTIONS on Information and Systems, 102(12), 2637-2641.
[43]Bamidele, A. A., Kamardin, K., Abd Aziz, N. S. N., Sam, S. M., Ahmed, I. S., Azizan, A., ... & Kaidi, H. M. (2019). Non-intrusive driver drowsiness detection based on face and eye tracking. International Journal of Advanced Computer Science and Applications, 10(7).
[44]Chirra, V. R. R., Uyyala, S. R., & Kolli, V. K. K. (2019). Deep CNN: A Machine Learning Approach for Driver Drowsiness Detection Based on Eye State. Rev. d’Intelligence Artif., 33(6), 461-466.
[45]Park, S., Pan, F., Kang, S., & Yoo, C. D. (2016, November). Driver drowsiness detection system based on feature representation learning using various deep networks. In Asian conference on computer vision (pp. 154-164). Cham: Springer International Publishing.
[46]Yu, J., Park, S., Lee, S., & Jeon, M. (2018). Driver drowsiness detection using condition-adaptive representation learning framework. IEEE transactions on intelligent transportation systems, 20(11), 4206-4218.
[47]Jabbar, R., Shinoy, M., Kharbeche, M., Al-Khalifa, K., Krichen, M., & Barkaoui, K. (2020, February). Driver drowsiness detection model using convolutional neural networks techniques for android application. In 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT) (pp. 237-242). IEEE.
[48]Deng, W., & Wu, R. (2019). Real-time driver-drowsiness detection system using facial features. IEEE Access, 7, 118727-118738.
[49]Shakeel, M. F., Bajwa, N. A., Anwaar, A. M., Sohail, A., & Khan, A. (2019, May). Detecting driver drowsiness in real time through deep learning based object detection. In International work-conference on artificial neural networks (pp. 283-296). Cham: Springer International Publishing.
[50]Junaedi, S., & Akbar, H. (2018, September). Driver drowsiness detection based on face feature and PERCLOS. In Journal of Physics: Conference Series (Vol. 1090, p. 012037). IOP Publishing.
[51]Jeyasekar, A., & Iyengar, V. R. (2019). Driver’s drowsiness detection based on behavioural changes using resnet’. International Journal of Recent Technology and Engineering, 8, 5708-12.
[52]Liu, Z., Luo, P., Wang, X., & Tang, X. (2018). Large-scale celebfaces attributes (celeba) dataset. Retrieved August, 15(2018), 11.
[53]Wang, N., Fang, F., & Feng, M. (2014, May). Multi-objective optimal analysis of comfort and energy management for intelligent buildings. In The 26th Chinese control and decision conference (2014 CCDC) (pp. 2783-2788). IEEE.
[54]Liu, J., Zeng, D., Tian, L., Gao, M., Wang, W., Niu, Y., & Fang, F. (2015). Control strategy for operating flexibility of coal-fired power plants in alternate electrical power systems. Proceedings of the CSEE, 35(21), 5385-5394.
[55]Qu, S., Li, B., Wang, Y., Xu, D., Zhao, X., & Zhang, L. (2020, July). RaQu: An automatic high-utilization CNN quantization and mapping framework for general-purpose RRAM accelerator. In 2020 57th ACM/IEEE Design Automation Conference (DAC) (pp. 1-6). IEEE.
[56]Wang, Y., Deng, J., Fang, Y., Li, H., & Li, X. (2017). Resilience-aware frequency tuning for neural-network-based approximate computing chips. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(10), 2736-2748.
[57]Fang, F., & Wu, X. (2020). A win–win mode: The complementary and coexistence of 5G networks and edge computing. IEEE Internet of Things Journal, 8(6), 3983-4003.
[58]Lv, Y., Lv, X., Fang, F., Yang, T., & Romero, C. E. (2020). Adaptive selective catalytic reduction model development using typical operating data in coal-fired power plants. Energy, 192, 116589.
[59]Lv, Y., Fang, F. A. N. G., Yang, T., & Romero, C. E. (2020). An early fault detection method for induced draft fans based on MSET with informative memory matrix selection. ISA transactions, 102, 325-334.
[60]Fang, F., Jizhen, L., & Wen, T. (2004). Nonlinear internal model control for the boiler-turbine coordinate systems of power unit. PROCEEDINGS-CHINESE SOCIETY OF ELECTRICAL ENGINEERING, 24(4), 195-199.
[61]Fang, F. A. N. G., Tan, W., & Liu, J. Z. (2005). Tuning of coordinated controllers for boiler-turbine units. Acta Automatica Sinica, 31(2), 291-296.
Portico
All published articles are preserved here permanently:
https://www.portico.org/publishers/iece/