IECE Transactions on Sensing, Communication, and Control
ISSN: 3065-7431 (Online) | ISSN: 3065-7423 (Print)
Email: [email protected]
[1] Banham, M. R., & Katsaggelos, A. K. (1997). Digital image restoration. IEEE signal processing magazine, 14(2), 24-41.
[2] Bao, W., Xu, B., & Chen, Z. (2019). Monofenet: Monocular 3d object detection with feature enhancement networks. IEEE Transactions on Image Processing, 29, 2753-2765.
[3] Barabas, I., Todoruţ, A., Cordoş, N., & Molea, A. (2017, October). Current challenges in autonomous driving. In IOP conference series: materials science and engineering (Vol. 252, No. 1, p. 012096). IOP Publishing.
[4] Li, J., Yang, B., Chen, C., Huang, R., Dong, Z., & Xiao, W. (2018). Automatic registration of panoramic image sequence and mobile laser scanning data using semantic features. ISPRS Journal of Photogrammetry and Remote Sensing, 136, 41-57.
[5] Liao, Y., Li, J., Kang, S., Li, Q., Zhu, G., Yuan, S., ... & Yang, B. (2023). SE-Calib: Semantic Edge-Based LiDAR–Camera Boresight Online Calibration in Urban Scenes. IEEE Transactions on Geoscience and Remote Sensing, 61, 1-13.
[6] Wang, J. G., & Zhou, L. B. (2018). Traffic light recognition with high dynamic range imaging and deep learning. IEEE Transactions on Intelligent Transportation Systems, 20(4), 1341-1352.
[7] Melotti, G., Premebida, C., Gonçalves, N. M. D. S., Nunes, U. J., & Faria, D. R. (2018, November). Multimodal CNN pedestrian classification: a study on combining LIDAR and camera data. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC) (pp. 3138-3143). IEEE.
[8] Wang, K., Ma, S., Ren, F., & Lu, J. (2021). SBAS: Salient bundle adjustment for visual SLAM. IEEE Transactions on Instrumentation and Measurement, 70, 1-9.
[9] Kurihata, H., Takahashi, T., Ide, I., Mekada, Y., Murase, H., Tamatsu, Y., & Miyahara, T. (2005, June). Rainy weather recognition from in-vehicle camera images for driver assistance. In IEEE Proceedings. Intelligent Vehicles Symposium, 2005. (pp. 205-210). IEEE.
[10] Webster, D. D., & Breckon, T. P. (2015, September). Improved raindrop detection using combined shape and saliency descriptors with scene context isolation. In 2015 IEEE International Conference on Image Processing (ICIP) (pp. 4376-4380). IEEE.
[11] Zhang, W., Wang, Z., & Change Loy, C. Multi-modality cut and paste for 3d object detection. arXiv 2020. arXiv preprint arXiv:2012.12741.
[12] Filgueira, A., González-Jorge, H., Lagüela, S., Díaz-Vilariño, L., & Arias, P. (2017). Quantifying the influence of rain in LiDAR performance. Measurement, 95, 143-148.
[13] Rasshofer, R. H., Spies, M., & Spies, H. (2011). Influences of weather phenomena on automotive laser radar systems. Advances in radio science, 9, 49-60.
[14] Abro, G. E. M., Zulkifli, S. A. B., Kumar, K., El Ouanjli, N., Asirvadam, V. S., & Mossa, M. A. (2023). Comprehensive review of recent advancements in battery technology, propulsion, power interfaces, and vehicle network systems for intelligent autonomous and connected electric vehicles. Energies, 16(6), 2925.
[15] Feng, D., Haase-Schütz, C., Rosenbaum, L., Hertlein, H., Glaeser, C., Timm, F., ... & Dietmayer, K. (2020). Deep multi-modal object detection and semantic segmentation for autonomous driving: Datasets, methods, and challenges. IEEE Transactions on Intelligent Transportation Systems, 22(3), 1341-1360.
[16] Wei, Z., Zhang, F., Chang, S., Liu, Y., Wu, H., & Feng, Z. (2022). Mmwave radar and vision fusion for object detection in autonomous driving: A review. Sensors, 22(7), 2542.
[17] Svenningsson, P., Fioranelli, F., & Yarovoy, A. (2021, May). Radar-pointgnn: Graph based object recognition for unstructured radar point-cloud data. In 2021 IEEE Radar Conference (RadarConf21) (pp. 1-6). IEEE.
[18] Ulrich, M., Braun, S., Köhler, D., Niederlöhner, D., Faion, F., Gläser, C., & Blume, H. (2022, October). Improved orientation estimation and detection with hybrid object detection networks for automotive radar. In 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC) (pp. 111-117). IEEE.
[19] Kim, Y., Choi, J. W., & Kum, D. (2020, October). Grif net: Gated region of interest fusion network for robust 3d object detection from radar point cloud and monocular image. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 10857-10864). IEEE.
[20] Chadwick, S., Maddern, W., & Newman, P. (2019, May). Distant vehicle detection using radar and vision. In 2019 International Conference on Robotics and Automation (ICRA) (pp. 8311-8317). IEEE.
[21] Nobis, F., Geisslinger, M., Weber, M., Betz, J., & Lienkamp, M. (2019, October). A deep learning-based radar and camera sensor fusion architecture for object detection. In 2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF) (pp. 1-7). IEEE.
[22] John, V., & Mita, S. (2019). RVNet: Deep sensor fusion of monocular camera and radar for image-based obstacle detection in challenging environments. In Image and Video Technology: 9th Pacific-Rim Symposium, PSIVT 2019, Sydney, NSW, Australia, November 18–22, 2019, Proceedings 9 (pp. 351-364). Springer International Publishing.
[23] Li, L. Q., & Xie, Y. L. (2020, December). A feature pyramid fusion detection algorithm based on radar and camera sensor. In 2020 15th IEEE International Conference on Signal Processing (ICSP) (Vol. 1, pp. 366-370). IEEE.
[24] Chang, S., Zhang, Y., Zhang, F., Zhao, X., Huang, S., Feng, Z., & Wei, Z. (2020). Spatial attention fusion for obstacle detection using mmwave radar and vision sensor. Sensors, 20(4), 956.
[25] Nabati, R., & Qi, H. (2021). Centerfusion: Center-based radar and camera fusion for 3d object detection. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 1527-1536).
[26] Li, Y., Zeng, K., & Shen, T. (2023). CenterTransFuser: radar point cloud and visual information fusion for 3D object detection. EURASIP Journal on Advances in Signal Processing, 2023(1), 7.
[27] Long, Y., Kumar, A., Morris, D., Liu, X., Castro, M., & Chakravarty, P. (2023, June). RADIANT: Radar-image association network for 3D object detection. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 37, No. 2, pp. 1808-1816).
[28] Li, P., Zhao, H., Liu, P., & Cao, F. (2020, August). Rtm3d: Real-time monocular 3d detection from object keypoints for autonomous driving. In European Conference on Computer Vision (pp. 644-660). Cham: Springer International Publishing.
[29] Zhang, Y., Lu, J., & Zhou, J. (2021). Objects are different: Flexible monocular 3d object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 3289-3298).
[30] Simonelli, A., Bulo, S. R., Porzi, L., López-Antequera, M., & Kontschieder, P. (2019). Disentangling monocular 3d object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 1991-1999).
[31] Brazil, G., & Liu, X. (2019). M3d-rpn: Monocular 3d region proposal network for object detection. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 9287-9296).
[32] Cai, Y., Li, B., Jiao, Z., Li, H., Zeng, X., & Wang, X. (2020, April). Monocular 3d object detection with decoupled structured polygon estimation and height-guided depth estimation. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 07, pp. 10478-10485).
[33] Chen, H., Huang, Y., Tian, W., Gao, Z., & Xiong, L. (2021). Monorun: Monocular 3d object detection by reconstruction and uncertainty propagation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 10379-10388).
[34] Chen, Y., Tai, L., Sun, K., & Li, M. (2020). Monopair: Monocular 3d object detection using pairwise spatial relationships. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 12093-12102).
[35] Heylen, J., De Wolf, M., Dawagne, B., Proesmans, M., Van Gool, L., Abbeloos, W., ... & Reino, D. O. (2021). Monocinis: Camera independent monocular 3d object detection using instance segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 923-934).
[36] Liu, Z., Wu, Z., & Tóth, R. (2020). Smoke: Single-stage monocular 3d object detection via keypoint estimation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops (pp. 996-997).
[37] Liu, L., Lu, J., Xu, C., Tian, Q., & Zhou, J. (2019). Deep fitting degree scoring network for monocular 3d object detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 1057-1066).
[38] Luo, S., Dai, H., Shao, L., & Ding, Y. (2021). M3dssd: Monocular 3d single stage object detector. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 6145-6154).
[39] Wang, T., Zhu, X., Pang, J., & Lin, D. (2021). Fcos3d: Fully convolutional one-stage monocular 3d object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 913-922).
[40] Lu, Y., Ma, X., Yang, L., Zhang, T., Liu, Y., Chu, Q., ... & Ouyang, W. (2021). Geometry uncertainty projection network for monocular 3d object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 3111-3121).
[41] Mousavian, A., Anguelov, D., Flynn, J., & Kosecka, J. (2017). 3d bounding box estimation using deep learning and geometry. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (pp. 7074-7082).
[42] Brazil, G., Pons-Moll, G., Liu, X., & Schiele, B. (2020). Kinematic 3d object detection in monocular video. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIII 16 (pp. 135-152). Springer International Publishing.
[43] Simonelli, A., Bulo, S. R., Porzi, L., Ricci, E., & Kontschieder, P. (2020). Towards generalization across depth for monocular 3d object detection. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXII 16 (pp. 767-782). Springer International Publishing.
[44] Li, B., Ouyang, W., Sheng, L., Zeng, X., & Wang, X. (2019). Gs3d: An efficient 3d object detection framework for autonomous driving. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 1019-1028).
[45] Qin, Z., Wang, J., & Lu, Y. (2019, July). Monogrnet: A geometric reasoning network for monocular 3d object localization. In Proceedings of the AAAI conference on artificial intelligence (Vol. 33, No. 01, pp. 8851-8858).
[46] Shi, X., Chen, Z., & Kim, T. K. (2020). Distance-normalized unified representation for monocular 3d object detection. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIX 16 (pp. 91-107). Springer International Publishing.
[47] Hu, H. N., Cai, Q. Z., Wang, D., Lin, J., Sun, M., Krahenbuhl, P., ... & Yu, F. (2019). Joint monocular 3D vehicle detection and tracking. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 5390-5399).
[48] Ku, J., Pon, A. D., & Waslander, S. L. (2019). Monocular 3d object detection leveraging accurate proposals and shape reconstruction. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 11867-11876).
[49] Lian, Q., Ye, B., Xu, R., Yao, W., & Zhang, T. (2022). Exploring geometric consistency for monocular 3d object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 1685-1694).
[50] Zeeshan Zia, M., Stark, M., & Schindler, K. (2014). Are cars just 3d boxes?-jointly estimating the 3d shape of multiple objects. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3678-3685).
[51] Chabot, F., Chaouch, M., Rabarisoa, J., Teuliere, C., & Chateau, T. (2017). Deep manta: A coarse-to-fine many-task network for joint 2d and 3d vehicle analysis from monocular image. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2040-2049).
[52] He, T., & Soatto, S. (2019, July). Mono3d++: Monocular 3d vehicle detection with two-scale 3d hypotheses and task priors. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 8409-8416).
[53] Rogage, K., & Doukari, O. (2024). 3D object recognition using deep learning for automatically generating semantic BIM data. Automation in Construction, 162, 105366.
[54] Manhardt, F., Kehl, W., & Gaidon, A. (2019). Roi-10d: Monocular lifting of 2d detection to 6d pose and metric shape. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 2069-2078).
[55] Beker, D., Kato, H., Morariu, M. A., Ando, T., Matsuoka, T., Kehl, W., & Gaidon, A. (2020). Monocular differentiable rendering for self-supervised 3d object detection. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXI 16 (pp. 514-529). Springer International Publishing.
[56] Zakharov, S., Kehl, W., Bhargava, A., & Gaidon, A. (2020). Autolabeling 3d objects with differentiable rendering of sdf shape priors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 12224-12233).
[57] Jörgensen, E., Zach, C., & Kahl, F. (2019). Monocular 3d object detection and box fitting trained end-to-end using intersection-over-union loss. arXiv preprint arXiv:1906.08070.
[58] Naiden, A., Paunescu, V., Kim, G., Jeon, B., & Leordeanu, M. (2019, September). Shift r-cnn: Deep monocular 3d object detection with closed-form geometric constraints. In 2019 IEEE international conference on image processing (ICIP) (pp. 61-65). IEEE.
[59] Shi, X., Ye, Q., Chen, X., Chen, C., Chen, Z., & Kim, T. K. (2021). Geometry-based distance decomposition for monocular 3d object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 15172-15181).
[60] Wang, T., Pang, J., & Lin, D. (2022, October). Monocular 3d object detection with depth from motion. In European Conference on Computer Vision (pp. 386-403). Cham: Springer Nature Switzerland.
[61] Wang, Y., Chao, W. L., Garg, D., Hariharan, B., Campbell, M., & Weinberger, K. Q. (2019). Pseudo-lidar from visual depth estimation: Bridging the gap in 3d object detection for autonomous driving. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 8445-8453).
[62] You, Y., Wang, Y., Chao, W. L., Garg, D., Pleiss, G., Hariharan, B., ... & Weinberger, K. Q. (2019). Pseudo-lidar++: Accurate depth for 3d object detection in autonomous driving. arXiv preprint arXiv:1906.06310.
[63] Ding, M., Huo, Y., Yi, H., Wang, Z., Shi, J., Lu, Z., & Luo, P. (2020). Learning depth-guided convolutions for monocular 3d object detection. In Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition workshops (pp. 1000-1001).
[64] Weng, X., & Kitani, K. (2019). Monocular 3d object detection with pseudo-lidar point cloud. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (pp. 0-0).
[65] Wang, L., Du, L., Ye, X., Fu, Y., Guo, G., Xue, X., ... & Zhang, L. (2021). Depth-conditioned dynamic message propagation for monocular 3d object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 454-463).
[66] Ma, X., Wang, Z., Li, H., Zhang, P., Ouyang, W., & Fan, X. (2019). Accurate monocular 3d object detection via color-embedded 3d reconstruction for autonomous driving. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 6851-6860).
[67] Park, D., Ambrus, R., Guizilini, V., Li, J., & Gaidon, A. (2021). Is pseudo-lidar needed for monocular 3d object detection?. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 3142-3152).
[68] Ma, X., Liu, S., Xia, Z., Zhang, H., Zeng, X., & Ouyang, W. (2020). Rethinking pseudo-lidar representation. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIII 16 (pp. 311-327). Springer International Publishing.
[69] Chang, J., & Wetzstein, G. (2019). Deep optics for monocular depth estimation and 3d object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 10193-10202).
[70] Li, P., Chen, X., & Shen, S. (2019). Stereo r-cnn based 3d object detection for autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 7644-7652).
[71] Sun, J., Chen, L., Xie, Y., Zhang, S., Jiang, Q., Zhou, X., & Bao, H. (2020). Disp r-cnn: Stereo 3d object detection via shape prior guided instance disparity estimation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 10548-10557).
[72] Liu, Y., Wang, L., & Liu, M. (2021, May). Yolostereo3d: A step back to 2d for efficient stereo 3d detection. In 2021 IEEE international conference on Robotics and automation (ICRA) (pp. 13018-13024). IEEE.
[73] Qin, Z., Wang, J., & Lu, Y. (2019). Triangulation learning network: from monocular to stereo 3d object detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 7615-7623).
[74] Chen, Y., Liu, S., Shen, X., & Jia, J. (2020). Dsgn: Deep stereo geometry network for 3d object detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 12536-12545).
[75] Guo, X., Shi, S., Wang, X., & Li, H. (2021). Liga-stereo: Learning lidar geometry aware representations for stereo-based 3d detector. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 3153-3163).
[76] Guo, X., Wang, S. S. X., & Li, H. Supplementary Materials of LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector.
[77] Su, K., Yan, W., Wei, X., & Gu, M. (2022). Stereo VoVNet-CNN for 3D object detection. Multimedia Tools and Applications, 81(25), 35803-35813.
[78] Xu, Z., Zhang, W., Ye, X., Tan, X., Yang, W., Wen, S., ... & Huang, L. (2020, April). Zoomnet: Part-aware adaptive zooming neural network for 3d object detection. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 07, pp. 12557-12564).
[79] Shi, Y., Guo, Y., Mi, Z., & Li, X. (2022). Stereo CenterNet-based 3D object detection for autonomous driving. Neurocomputing, 471, 219-229.
[80] Chen, L., Sun, J., Xie, Y., Zhang, S., Shuai, Q., Jiang, Q., ... & Zhou, X. (2021). Shape prior guided instance disparity estimation for 3d object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(9), 5529-5540.
[81] Peng, W., Pan, H., Liu, H., & Sun, Y. (2020). Ida-3d: Instance-depth-aware 3d object detection from stereo vision for autonomous driving. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 13015-13024).
[82] Peng, X., Zhu, X., Wang, T., & Ma, Y. (2022). Side: Center-based stereo 3d detector with structure-aware instance depth estimation. In Proceedings of the IEEE/CVF winter conference on applications of computer vision (pp. 119-128).
[83] Qian, R., Garg, D., Wang, Y., You, Y., Belongie, S., Hariharan, B., ... & Chao, W. L. (2020). End-to-end pseudo-lidar for image-based 3d object detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 5881-5890).
[84] Liu, Y., Yixuan, Y., & Liu, M. (2021). Ground-aware monocular 3d object detection for autonomous driving. IEEE Robotics and Automation Letters, 6(2), 919-926.
[85] Peng, L., Liu, F., Yu, Z., Yan, S., Deng, D., Yang, Z., ... & Cai, D. (2022, October). Lidar point cloud guided monocular 3d object detection. In European conference on computer vision (pp. 123-139). Cham: Springer Nature Switzerland.
[86] Wang, X., Yin, W., Kong, T., Jiang, Y., Li, L., & Shen, C. (2020, April). Task-aware monocular depth estimation for 3d object detection. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 07, pp. 12257-12264).
[87] Ye, X., Du, L., Shi, Y., Li, Y., Tan, X., Feng, J., ... & Wen, S. (2020). Monocular 3d object detection via feature domain adaptation. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IX 16 (pp. 17-34). Springer International Publishing.
[88] Wang, L., Zhang, L., Zhu, Y., Zhang, Z., He, T., Li, M., & Xue, X. (2021). Progressive coordinate transforms for monocular 3d object detection. Advances in Neural Information Processing Systems, 34, 13364-13377.
[89] Meng, H., Li, C., Chen, G., & Chen, L. (2023). Efficient 3D Object Detection Based on Pseudo-LiDAR Representation. IEEE Transactions on Intelligent Vehicles.
[90] Tao, C., Cao, C., Cheng, H., Gao, Z., Luo, X., Zhang, Z., & Zheng, S. (2023). An efficient 3D object detection method based on fast guided anchor stereo RCNN. Advanced Engineering Informatics, 57, 102069.
[91] Xia, Y., Shi, L., Ding, Z., Henriques, J. F., & Cremers, D. (2024). Text2loc: 3d point cloud localization from natural language. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 14958-14967).
[92] Königshof, H., Salscheider, N. O., & Stiller, C. (2019, October). Realtime 3d object detection for automated driving using stereo vision and semantic information. In 2019 IEEE Intelligent Transportation Systems Conference (ITSC) (pp. 1405-1410). IEEE.
[93] Tao, C., He, H., Xu, F., & Cao, J. (2021). Stereo priori RCNN based car detection on point level for autonomous driving. Knowledge-Based Systems, 229, 107346.
[94] Chen, X., Ma, H., Wan, J., Li, B., & Xia, T. (2017). Multi-view 3d object detection network for autonomous driving. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (pp. 1907-1915).
[95] Zhou, Y., Sun, P., Zhang, Y., Anguelov, D., Gao, J., Ouyang, T., ... & Vasudevan, V. (2020, May). End-to-end multi-view fusion for 3d object detection in lidar point clouds. In Conference on Robot Learning (pp. 923-932). PMLR.
[96] Rubino, C., Crocco, M., & Del Bue, A. (2017). 3d object localisation from multi-view image detections. IEEE transactions on pattern analysis and machine intelligence, 40(6), 1281-1294.
[97] Yang, Z., & Wang, L. (2019). Learning relationships for multi-view 3D object recognition. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 7505-7514).
[98] Wang, C., Pelillo, M., & Siddiqi, K. (2019). Dominant set clustering and pooling for multi-view 3d object recognition. arXiv preprint arXiv:1906.01592.
[99] Deng, J., & Czarnecki, K. (2019, October). MLOD: A multi-view 3D object detection based on robust feature fusion method. In 2019 IEEE intelligent transportation systems conference (ITSC) (pp. 279-284). IEEE.
[100] Choy, C. B., Xu, D., Gwak, J., Chen, K., & Savarese, S. (2016). 3d-r2n2: A unified approach for single and multi-view 3d object reconstruction. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VIII 14 (pp. 628-644). Springer International Publishing.
[101] Ku, J., Pon, A. D., Walsh, S., & Waslander, S. L. (2019, November). Improving 3d object detection for pedestrians with virtual multi-view synthesis orientation estimation. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 3459-3466). IEEE.
[102] Hong, C., Yu, J., You, J., Chen, X., & Tao, D. (2015). Multi-view ensemble manifold regularization for 3D object recognition. Information sciences, 320, 395-405.
[103] Philion, J., & Fidler, S. (2020). Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3d. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIV 16 (pp. 194-210). Springer International Publishing.
[104] Wang, Y., Guizilini, V. C., Zhang, T., Wang, Y., Zhao, H., & Solomon, J. (2022, January). Detr3d: 3d object detection from multi-view images via 3d-to-2d queries. In Conference on Robot Learning (pp. 180-191). PMLR.
[105] Lin, J., Rickert, M., & Knoll, A. (2021, May). Deep hierarchical rotation invariance learning with exact geometry feature representation for point cloud classification. In 2021 IEEE international conference on robotics and automation (ICRA) (pp. 9529-9535). IEEE.
[106] Zhang, K., Hao, M., Wang, J., Chen, X., Leng, Y., de Silva, C. W., & Fu, C. (2021, November). Linked dynamic graph cnn: Learning through point cloud by linking hierarchical features. In 2021 27th international conference on mechatronics and machine vision in practice (M2VIP) (pp. 7-12). IEEE.
[107] Zhang, J., Liu, J., Liu, X., Wei, J., Cao, J., & Tang, K. (2021). Feature interpolation convolution for point cloud analysis. Computers & Graphics, 99, 182-191.
[108] Shi, S., Wang, X., & Li, H. (2019). Pointrcnn: 3d object proposal generation and detection from point cloud. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 770-779).
[109] Liu, Z., Tang, H., Lin, Y., & Han, S. (2019). Point-voxel cnn for efficient 3d deep learning. Advances in neural information processing systems, 32.
[110] Chen, C., Chen, Z., Zhang, J., & Tao, D. (2022, June). Sasa: Semantics-augmented set abstraction for point-based 3d object detection. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 36, No. 1, pp. 221-229).
[111] Ngiam, J., Caine, B., Han, W., Yang, B., Chai, Y., Sun, P., ... & Vasudevan, V. (2019). Starnet: Targeted computation for object detection in point clouds. arXiv preprint arXiv:1908.11069.
[112] Yang, Z., Sun, Y., Liu, S., & Jia, J. (2020). 3dssd: Point-based 3d single stage object detector. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 11040-11048).
[113] Yang, H., Liu, Z., Wu, X., Wang, W., Qian, W., He, X., & Cai, D. (2022, October). Graph r-cnn: Towards accurate 3d object detection with semantic-decorated local graph. In European Conference on Computer Vision (pp. 662-679). Cham: Springer Nature Switzerland.
[114] NShi, W., & Rajkumar, R. (2020). Point-gnn: Graph neural network for 3d object detection in a point cloud. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 1711-1719).
[115] Zhou, D., Fang, J., Song, X., Liu, L., Yin, J., Dai, Y., ... & Yang, R. (2020). Joint 3d instance segmentation and object detection for autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 1839-1849).
[116] He, Q., Wang, Z., Zeng, H., Zeng, Y., & Liu, Y. (2022, June). Svga-net: Sparse voxel-graph attention network for 3d object detection from point clouds. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 36, No. 1, pp. 870-878).
[117] Zarzar, J., Giancola, S., & Ghanem, B. (2019). PointRGCN: Graph convolution networks for 3D vehicles detection refinement. arXiv preprint arXiv:1911.12236.
[118] Feng, M., Gilani, S. Z., Wang, Y., Zhang, L., & Mian, A. (2020). Relation graph network for 3D object detection in point clouds. IEEE Transactions on Image Processing, 30, 92-107.
[119] Pan, X., Xia, Z., Song, S., Li, L. E., & Huang, G. (2021). 3d object detection with pointformer. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 7463-7472).
[120] Liu, Z., Zhang, Z., Cao, Y., Hu, H., & Tong, X. (2021). Group-free 3d object detection via transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 2949-2958).
[121] Fayyad, J., Jaradat, M. A., Gruyer, D., & Najjaran, H. (2020). Deep learning sensor fusion for autonomous vehicle perception and localization: A review. Sensors, 20(15), 4220.
[122] Wang, Q., Chen, J., Deng, J., & Zhang, X. (2021). 3D-CenterNet: 3D object detection network for point clouds with center estimation priority. Pattern Recognition, 115, 107884.
[123] Wang, D. Z., & Posner, I. (2015, July). Voting for voting in online point cloud object detection. In Robotics: science and systems (Vol. 1, No. 3, pp. 10-15).
[124] Engelcke, M., Rao, D., Wang, D. Z., Tong, C. H., & Posner, I. (2017, May). Vote3deep: Fast object detection in 3d point clouds using efficient convolutional neural networks. In 2017 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1355-1361). IEEE.
[125] Cui, Y., Zhang, Y., Dong, J., Sun, H., Chen, X., & Zhu, F. (2024). Link3d: Linear keypoints representation for 3d lidar point cloud. IEEE Robotics and Automation Letters.
[126] Bai, L., Li, Y., Cen, M., & Hu, F. (2021). 3D instance segmentation and object detection framework based on the fusion of LIDAR remote sensing and optical image sensing. Remote Sensing, 13(16), 3288.
[127] Wang, B., Zhu, M., Lu, Y., Wang, J., Gao, W., & Wei, H. (2021). Real-time 3D object detection from point cloud through foreground segmentation. IEEE Access, 9, 84886-84898.
[128] Yang, B., Liang, M., & Urtasun, R. (2018, October). Hdnet: Exploiting hd maps for 3d object detection. In Conference on Robot Learning (pp. 146-155). PMLR.
[129] Zhou, Y., & Tuzel, O. (2018). Voxelnet: End-to-end learning for point cloud based 3d object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4490-4499).
[130] Yan, Y., Mao, Y., & Li, B. (2018). Second: Sparsely embedded convolutional detection. Sensors, 18(10), 3337.
[131] Lang, A. H., Vora, S., Caesar, H., Zhou, L., Yang, J., & Beijbom, O. (2019). Pointpillars: Fast encoders for object detection from point clouds. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 12697-12705).
[132] Wang, Y., Fathi, A., Kundu, A., Ross, D. A., Pantofaru, C., Funkhouser, T., & Solomon, J. (2020). Pillar-based object detection for autonomous driving. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXII 16 (pp. 18-34). Springer International Publishing.
[133] Shi, S., Wang, Z., Shi, J., Wang, X., & Li, H. (2020). From points to parts: 3d object detection from point cloud with part-aware and part-aggregation network. IEEE transactions on pattern analysis and machine intelligence, 43(8), 2647-2664.
[134] Li, B. (2017, September). 3d fully convolutional network for vehicle detection in point cloud. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 1513-1518). IEEE.
[135] Yin, T., Zhou, X., & Krahenbuhl, P. (2021). Center-based 3d object detection and tracking. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 11784-11793).
[136] Mao, J., Xue, Y., Niu, M., Bai, H., Feng, J., Liang, X., ... & Xu, C. (2021). Voxel transformer for 3d object detection. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 3164-3173).
[137] Deng, J., Shi, S., Li, P., Zhou, W., Zhang, Y., & Li, H. (2021, May). Voxel r-cnn: Towards high performance voxel-based 3d object detection. In Proceedings of the AAAI conference on artificial intelligence (Vol. 35, No. 2, pp. 1201-1209).
[138] Song, Z., Wei, H., Jia, C., Xia, Y., Li, X., & Zhang, C. (2023). VP-Net: Voxels as points for 3-D object detection. IEEE Transactions on Geoscience and Remote Sensing, 61, 1-12.
[139] Wang, H., Chen, Z., Cai, Y., Chen, L., Li, Y., Sotelo, M. A., & Li, Z. (2022). Voxel-RCNN-complex: An effective 3-D point cloud object detector for complex traffic conditions. IEEE Transactions on Instrumentation and Measurement, 71, 1-12.
[140] Sheng, H., Cai, S., Liu, Y., Deng, B., Huang, J., Hua, X. S., & Zhao, M. J. (2021). Improving 3d object detection with channel-wise transformer. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 2743-2752).
[141] Li, J., Dai, H., Shao, L., & Ding, Y. (2021, October). From voxel to point: IoU-guided 3D object detection for point cloud with voxel-to-point decoder. In Proceedings of the 29th ACM International Conference on Multimedia (pp. 4622-4631).
[142] Miao, Z., Chen, J., Pan, H., Zhang, R., Liu, K., Hao, P., ... & Zhan, X. (2021). Pvgnet: A bottom-up one-stage 3d object detector with integrated multi-level features. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 3279-3288).
[143] Noh, J., Lee, S., & Ham, B. (2021). Hvpr: Hybrid voxel-point representation for single-stage 3d object detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 14605-14614).
[144] Guan, T., Wang, J., Lan, S., Chandra, R., Wu, Z., Davis, L., & Manocha, D. (2022). M3detr: Multi-representation, multi-scale, mutual-relation 3d object detection with transformers. In Proceedings of the IEEE/CVF winter conference on applications of computer vision (pp. 772-782).
[145] Mao, J., Niu, M., Bai, H., Liang, X., Xu, H., & Xu, C. (2021). Pyramid r-cnn: Towards better performance and adaptability for 3d object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 2723-2732).
[146] Liu, Z., Tang, H., Zhao, S., Shao, K., & Han, S. (2021). Pvnas: 3d neural architecture search with point-voxel convolution. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11), 8552-8568.
[147] Li, P., Su, S., & Zhao, H. (2021, May). Rts3d: Real-time stereo 3d detection from 4d feature-consistency embedding space for autonomous driving. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 35, No. 3, pp. 1930-1939).
[148] Zhang, R., Qiu, H., Wang, T., Guo, Z., Cui, Z., Qiao, Y., ... & Gao, P. (2023). MonoDETR: Depth-guided transformer for monocular 3D object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 9155-9166).
[149] Lu, B., Sun, Y., & Yang, Z. (2023). Voxel Graph Attention for 3D Object Detection from Point Clouds. IEEE Transactions on Instrumentation and Measurement.
[150] Deng, J., Zhou, W., Zhang, Y., & Li, H. (2021). From multi-view to hollow-3D: Hallucinated hollow-3D R-CNN for 3D object detection. IEEE Transactions on Circuits and Systems for Video Technology, 31(12), 4722-4734.
[151] Zhang, Y., Chen, J., & Huang, D. (2022). Cat-det: Contrastively augmented transformer for multi-modal 3d object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 908-917).
[152] Shi, S., Jiang, L., Deng, J., Wang, Z., Guo, C., Shi, J., ... & Li, H. (2023). PV-RCNN++: Point-voxel feature set abstraction with local vector representation for 3D object detection. International Journal of Computer Vision, 131(2), 531-551.
[153] Wu, P., Gu, L., Yan, X., Xie, H., Wang, F. L., Cheng, G., & Wei, M. (2023). PV-RCNN++: semantical point-voxel feature interaction for 3D object detection. The Visual Computer, 39(6), 2425-2440.
[154] Tu, J., Wang, P., & Liu, F. (2021, July). Pp-rcnn: Point-pillars feature set abstraction for 3d real-time object detection. In 2021 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE.
[155] Li, J., Luo, C., & Yang, X. (2023). PillarNeXt: Rethinking network designs for 3D object detection in LiDAR point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 17567-17576).
[156] Hu, J. S., Kuai, T., & Waslander, S. L. (2022). Point density-aware voxels for lidar 3d object detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 8469-8478).
[157] Geng, K., Dong, G., Yin, G., & Hu, J. (2020). Deep dual-modal traffic objects instance segmentation method using camera and lidar data for autonomous driving. Remote Sensing, 12(20), 3274.
[158] Ignatious, H. A., & Khan, M. (2022). An overview of sensors in Autonomous Vehicles. Procedia Computer Science, 198, 736-741.
[159] Vargas, J., Alsweiss, S., Toker, O., Razdan, R., & Santos, J. (2021). An overview of autonomous vehicles sensors and their vulnerability to weather conditions. Sensors, 21(16), 5397.
[160] Cartenì, A. (2020). The acceptability value of autonomous vehicles: A quantitative analysis of the willingness to pay for shared autonomous vehicles (SAVs) mobility services. Transportation Research Interdisciplinary Perspectives, 8, 100224.
[161] Sakib, S. M. (2022). LiDAR Technology-An Overview. IUP Journal of Electrical & Electronics Engineering, 15(1).
[162] Bastos, D., Monteiro, P. P., Oliveira, A. S., & Drummond, M. V. (2021, February). An overview of LiDAR requirements and techniques for autonomous driving. In 2021 Telecoms Conference (ConfTELE) (pp. 1-6). IEEE.
[163] Royo, S., & Ballesta, M. (2019). An overview of imaging lidar sensors for autonomous vehicles.
[164] Thomä, R., Dallmann, T., Jovanoska, S., Knott, P., & Schmeink, A. (2021, March). Joint communication and radar sensing: An overview. In 2021 15th European Conference on Antennas and Propagation (EuCAP) (pp. 1-5). IEEE.
[165] Paterniani, G., Sgreccia, D., Davoli, A., Guerzoni, G., Di Viesti, P., Valenti, A. C., ... & Boriani, G. (2023). Radar-based monitoring of vital signs: A tutorial overview. Proceedings of the IEEE, 111(3), 277-317.
[166] Mielle, M., Magnusson, M., & Lilienthal, A. J. (2019, September). A comparative analysis of radar and lidar sensing for localization and mapping. In 2019 European Conference on Mobile Robots (ECMR) (pp. 1-6). IEEE.
[167] Kim, K. E., Lee, C. J., Pae, D. S., & Lim, M. T. (2017, October). Sensor fusion for vehicle tracking with camera and radar sensor. In 2017 17th International Conference on Control, Automation and Systems (ICCAS) (pp. 1075-1077). IEEE.
[168] Abro, G. E. M., Abdullahi, M. S., Ganasan, J., & Ricky, S. K. (2021). Prototyping an IoT-enabled Autonomous Unmanned Ground Vehicle Using SLAM. International Journal of Control Systems and Robotics, 6.
[169] Pravallika, A., Hashmi, M. F., & Gupta, A. (2024). Deep Learning Frontiers in 3D Object Detection: A Comprehensive Review for Autonomous Driving. IEEE Access.
[170] Berrio, J. S., Shan, M., Worrall, S., & Nebot, E. (2021). Camera-LIDAR integration: Probabilistic sensor fusion for semantic mapping. IEEE Transactions on Intelligent Transportation Systems, 23(7), 7637-7652.
[171] Khan, D., Baek, M., Kim, M. Y., & Han, D. S. (2022, October). Multimodal Object Detection and Ranging Based on Camera and Lidar Sensor Fusion for Autonomous Driving. In 2022 27th Asia Pacific Conference on Communications (APCC) (pp. 342-343). IEEE.
[172] Das, D., Adhikary, N., & Chaudhury, S. (2022, September). Sensor fusion in autonomous vehicle using LiDAR and camera Sensor. In 2022 IEEE 10th Region 10 Humanitarian Technology Conference (R10-HTC) (pp. 336-341). IEEE.
[173] Mendez, J., Molina, M., Rodriguez, N., Cuellar, M. P., & Morales, D. P. (2021). Camera-LiDAR multi-level sensor fusion for target detection at the network edge. Sensors, 21(12), 3992.
[174] Thakur, A., & Rajalakshmi, P. (2023, July). LiDAR and Camera Raw Data Sensor Fusion in Real-Time for Obstacle Detection. In 2023 IEEE Sensors Applications Symposium (SAS) (pp. 1-6). IEEE.
[175] Ai, C., Qi, Z., Zheng, L., Geng, D., Feng, Z., & Sun, X. (2021, March). Research on mapping method based on data fusion of lidar and depth camera. In 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE) (pp. 360-365). IEEE.
IECE Transactions on Sensing, Communication, and Control
ISSN: 3065-7431 (Online) | ISSN: 3065-7423 (Print)
Email: [email protected]
Portico
All published articles are preserved here permanently:
https://www.portico.org/publishers/iece/