IECE Transactions on Sensing, Communication, and Control
ISSN: 3065-7431 (Online) | ISSN: 3065-7423 (Print)
Email: [email protected]
[1]Ricci, F., Rokach, L., & Shapira, B. (2010). Introduction to recommender systems handbook. In Recommender systems handbook (pp. 1-35). Boston, MA: springer US.
[2]Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L., Gordon, L. R., & Riedl, J. (1997). Grouplens: Applying collaborative filtering to usenet news. Communications of the ACM, 40(3), 77-87.
[3]Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User modeling and user-adapted interaction, 12, 331-370.
[4]Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). Deep learning based recommender system: A survey and new perspectives. ACM computing surveys (CSUR), 52(1), 1-38.
[5]Pan, W., Xiang, E., Liu, N., & Yang, Q. (2010, July). Transfer learning in collaborative filtering for sparsity reduction. In Proceedings of the AAAI conference on artificial intelligence (Vol. 24, No. 1, pp. 230-235).
[6]Schein, A. I., Popescul, A., Ungar, L. H., & Pennock, D. M. (2002, August). Methods and metrics for cold-start recommendations. In Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 253-260).
[7]Ramadhan, G., & Setiawan, E. B. (2022, November). Collaborative filtering recommender system based on memory based in twitter using decision tree learning classification (case study: Movie on netflix). In 2022 International Conference on Advanced Creative Networks and Intelligent Systems (ICACNIS) (pp. 1-6). IEEE.
[8]Rifai, A. F., & Setiawan, E. B. (2022). Memory-based collaborative filtering on twitter using support vector machine classification. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 6(5), 702-709.
[9]Valcarce, D., Landin, A., Parapar, J., & Barreiro, Á. (2019). Collaborative filtering embeddings for memory-based recommender systems. Engineering Applications of Artificial Intelligence, 85, 347-356.
[10]Chen, C. M., Wang, C. J., Tsai, M. F., & Yang, Y. H. (2019, May). Collaborative similarity embedding for recommender systems. In The World Wide Web Conference (pp. 2637-2643).
[11]Barkan, O., Hirsch, R., Katz, O., Caciularu, A., & Koenigstein, N. (2021, October). Anchor-based collaborative filtering. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management (pp. 2877-2881).
[12]Malandri, L., Porcel, C., Xing, F., Serrano-Guerrero, J., & Cambria, E. (2022). Soft computing for recommender systems and sentiment analysis. Applied Soft Computing, 118, 108246.
[13]Zheng, L., Noroozi, V., & Yu, P. S. (2017, February). Joint deep modeling of users and items using reviews for recommendation. In Proceedings of the tenth ACM international conference on web search and data mining (pp. 425-434).
[14]Seo, S., Huang, J., Yang, H., & Liu, Y. (2017, August). Interpretable convolutional neural networks with dual local and global attention for review rating prediction. In Proceedings of the eleventh ACM conference on recommender systems (pp. 297-305).
[15]Chin, J. Y., Zhao, K., Joty, S., & Cong, G. (2018, October). ANR: Aspect-based neural recommender. In Proceedings of the 27th ACM International conference on information and knowledge management (pp. 147-156).
[16]Li, C., Quan, C., Peng, L., Qi, Y., Deng, Y., & Wu, L. (2019, July). A capsule network for recommendation and explaining what you like and dislike. In Proceedings of the 42nd international ACM SIGIR conference on research and development in information retrieval (pp. 275-284).
[17]Wu, C., Wu, F., An, M., Huang, J., Huang, Y., & Xie, X. (2019, July). NPA: neural news recommendation with personalized attention. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 2576-2584).
[18]Liu, N., Ge, Y., Li, L., Hu, X., Chen, R., & Choi, S. H. (2020, October). Explainable recommender systems via resolving learning representations. In Proceedings of the 29th ACM international conference on information & knowledge management (pp. 895-904).
[19]Fang, L., Du, B., & Wu, C. (2022). Differentially private recommender system with variational autoencoders. Knowledge-Based Systems, 250, 109044.
[20]Wu, J., Wang, X., Feng, F., He, X., Chen, L., Lian, J., & Xie, X. (2021, July). Self-supervised graph learning for recommendation. In Proceedings of the 44th international ACM SIGIR conference on research and development in information retrieval (pp. 726-735).
[21]Xia, J., Li, D., Gu, H., Lu, T., Zhang, P., & Gu, N. (2021, October). Incremental graph convolutional network for collaborative filtering. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management (pp. 2170-2179).
[22]Lin, Z., Tian, C., Hou, Y., & Zhao, W. X. (2022, April). Improving graph collaborative filtering with neighborhood-enriched contrastive learning. In Proceedings of the ACM web conference 2022 (pp. 2320-2329).
[23]Zhao, M., Wu, L., Liang, Y., Chen, L., Zhang, J., Deng, Q., ... & Wu, R. (2022, July). Investigating accuracy-novelty performance for graph-based collaborative filtering. In Proceedings of the 45th international ACM SIGIR conference on research and development in information retrieval (pp. 50-59).
[24]Huang, L., Yang, Y., Chen, H., Zhang, Y., Wang, Z., & He, L. (2022). Context-aware road travel time estimation by coupled tensor decomposition based on trajectory data. Knowledge-Based Systems, 245, 108596.
[25]del Carmen Rodríguez-Hernández, M., & Ilarri, S. (2021). AI-based mobile context-aware recommender systems from an information management perspective: Progress and directions. Knowledge-Based Systems, 215, 106740.
[26]Mei, L., Ren, P., Chen, Z., Nie, L., Ma, J., & Nie, J. Y. (2018, October). An attentive interaction network for context-aware recommendations. In Proceedings of the 27th ACM international conference on information and knowledge management (pp. 157-166).
[27]Unger, M., & Tuzhilin, A. (2020). Hierarchical latent context representation for context-aware recommendations. IEEE Transactions on Knowledge and Data Engineering, 34(7), 3322-3334.
[28]Unger, M., Shapira, B., Rokach, L., & Bar, A. (2017, July). Inferring contextual preferences using deep auto-encoding. In Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization (pp. 221-229).
[29]Ouyang, Y., Wu, P., & Pan, L. (2022, October). Asymmetrical context-aware modulation for collaborative filtering recommendation. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management (pp. 1595-1604).
[30]Nawara, D., & Kashef, R. (2022, April). Context-aware recommendation systems using consensus-clustering. In 2022 IEEE International Systems Conference (SysCon) (pp. 1-8). IEEE.
[31]Ebesu, T., & Fang, Y. (2017, August). Neural citation network for context-aware citation recommendation. In Proceedings of the 40th international ACM SIGIR conference on research and development in information retrieval (pp. 1093-1096).
[32]Al Jawarneh, I. M., Bellavista, P., Corradi, A., Foschini, L., Montanari, R., Berrocal, J., & Murillo, J. M. (2020). A pre-filtering approach for incorporating contextual information into deep learning based recommender systems. IEEE Access, 8, 40485-40498.
[33]Wu, J., He, X., Wang, X., Wang, Q., Chen, W., Lian, J., & Xie, X. (2022). Graph convolution machine for context-aware recommender system. Frontiers of Computer Science, 16(6), 166614.
[34]Deldjoo, Y., Schedl, M., Cremonesi, P., & Pasi, G. (2020). Recommender systems leveraging multimedia content. ACM Computing Surveys (CSUR), 53(5), 1-38.
[35]Van Dat, N., Van Toan, P., & Thanh, T. M. (2022). Solving distribution problems in content-based recommendation system with gaussian mixture model. Applied Intelligence, 52(2), 1602-1614.
[36]Yang, Y., Zhu, Y., & Li, Y. (2022). Personalized recommendation with knowledge graph via dual-autoencoder. Applied Intelligence, 52(6), 6196-6207.
[37]Deldjoo, Y., Elahi, M., Quadrana, M., & Cremonesi, P. (2018). Using visual features based on MPEG-7 and deep learning for movie recommendation. International journal of multimedia information retrieval, 7, 207-219.
[38]Cami, B. R., Hassanpour, H., & Mashayekhi, H. (2019). User preferences modeling using dirichlet process mixture model for a content-based recommender system. Knowledge-Based Systems, 163, 644-655.
[39]Wang, C., Zhou, T., Chen, C., Hu, T., & Chen, G. (2019, July). CAMO: A collaborative ranking method for content based recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 5224-5231).
[40]Serrano-Guerrero, J., Olivas, J. A., & Romero, F. P. (2020). A T1OWA and aspect-based model for customizing recommendations on eCommerce. Applied Soft Computing, 97, 106768.
[41]Polignano, M., Narducci, F., de Gemmis, M., & Semeraro, G. (2021). Towards emotion-aware recommender systems: an affective coherence model based on emotion-driven behaviors. Expert Systems with Applications, 170, 114382.
[42]Amato, F., Moscato, V., Picariello, A., & Piccialli, F. (2019). SOS: a multimedia recommender system for online social networks. Future generation computer systems, 93, 914-923.
[43]Zhang, Y., Shen, G., Han, X., Wang, W., & Kong, X. (2022). Spatio-temporal digraph convolutional network-based taxi pickup location recommendation. IEEE Transactions on Industrial Informatics, 19(1), 394-403.
[44]Ma, X., Zhang, Y., & Zeng, J. (2019). Newly published scientific papers recommendation in heterogeneous information networks. Mobile Networks and Applications, 24, 69-79.
[45]Pham, P., Nguyen, L. T., Nguyen, N. T., Kozma, R., & Vo, B. (2023). A hierarchical fused fuzzy deep neural network with heterogeneous network embedding for recommendation. Information Sciences, 620, 105-124.
[46]Chen, Q., Lin, J., Zhang, Y., Ding, M., Cen, Y., Yang, H., & Tang, J. (2019). Towards knowledge-based recommender dialog system. arXiv preprint arXiv:1908.05391.
[47]Anelli, V. W., Di Noia, T., Di Sciascio, E., Ferrara, A., & Mancino, A. C. M. (2021, September). Sparse feature factorization for recommender systems with knowledge graphs. In Proceedings of the 15th ACM Conference on Recommender Systems (pp. 154-165).
[48]Huang, R., Han, C., & Cui, L. (2021, October). Entity-aware collaborative relation network with knowledge graph for recommendation. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management (pp. 3098-3102).
[49]Xia, L., Huang, C., Xu, Y., Dai, P., Zhang, X., Yang, H., ... & Bo, L. (2021, May). Knowledge-enhanced hierarchical graph transformer network for multi-behavior recommendation. In Proceedings of the AAAI conference on artificial intelligence (Vol. 35, No. 5, pp. 4486-4493).
[50]Chen, L., Li, Z., Xu, T., Wu, H., Wang, Z., Yuan, N. J., & Chen, E. (2022, August). Multi-modal siamese network for entity alignment. In Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining (pp. 118-126).
[51]Vijayakumar, V., Vairavasundaram, S., Logesh, R., & Sivapathi, A. (2019). Effective knowledge based recommender system for tailored multiple point of interest recommendation. International Journal of Web Portals (IJWP), 11(1), 1-18.
[52]Huang, C., Xu, H., Xu, Y., Dai, P., Xia, L., Lu, M., ... & Ye, Y. (2021, May). Knowledge-aware coupled graph neural network for social recommendation. In Proceedings of the AAAI conference on artificial intelligence (Vol. 35, No. 5, pp. 4115-4122).
[53]Wang, X., Huang, T., Wang, D., Yuan, Y., Liu, Z., He, X., & Chua, T. S. (2021, April). Learning intents behind interactions with knowledge graph for recommendation. In Proceedings of the web conference 2021 (pp. 878-887).
[54]Liu, D., Lian, J., Liu, Z., Wang, X., Sun, G., & Xie, X. (2021, August). Reinforced anchor knowledge graph generation for news recommendation reasoning. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (pp. 1055-1065).
[55]Gong, F., Wang, M., Wang, H., Wang, S., & Liu, M. (2021). SMR: medical knowledge graph embedding for safe medicine recommendation. Big Data Research, 23, 100174.
[56]Abu-Salih, B., Alsawalqah, H., Elshqeirat, B., Issa, T., & Wongthongtham, P. (2019). Toward a knowledge-based personalised recommender system for mobile app development. arXiv preprint arXiv:1909.03733.
[57]Cui, L., & Lee, D. (2022, July). Ketch: Knowledge graph enhanced thread recommendation in healthcare forums. In Proceedings of the 45th international acm sigir conference on research and development in information retrieval (pp. 492-501).
[58]Gao, Y., Sheng, T., Xiang, Y., Xiong, Y., Wang, H., & Zhang, J. (2023). Chat-rec: Towards interactive and explainable llms-augmented recommender system. arXiv preprint arXiv:2303.14524.
[59]Friedman, L., Ahuja, S., Allen, D., Tan, Z., Sidahmed, H., Long, C., ... & Tiwari, M. (2023). Leveraging large language models in conversational recommender systems. arXiv preprint arXiv:2305.07961.
[60]Bao, K., Zhang, J., Wang, W., Zhang, Y., Yang, Z., Luo, Y., ... & Tian, Q. (2023). A bi-step grounding paradigm for large language models in recommendation systems. arXiv preprint arXiv:2308.08434.
[61]Chu, Z., Hao, H., Ouyang, X., Wang, S., Wang, Y., Shen, Y., ... & Li, S. (2023). Leveraging large language models for pre-trained recommender systems. arXiv preprint arXiv:2308.10837.
[62]Hou, Y., Zhang, J., Lin, Z., Lu, H., Xie, R., McAuley, J., & Zhao, W. X. (2024, March). Large language models are zero-shot rankers for recommender systems. In European Conference on Information Retrieval (pp. 364-381).
[63]Wang, Y., Chu, Z., Ouyang, X., Wang, S., Hao, H., Shen, Y., ... & Li, S. (2023). Enhancing recommender systems with large language model reasoning graphs. arXiv preprint arXiv:2308.10835.
[64]Carranza, A. G., Farahani, R., Ponomareva, N., Kurakin, A., Jagielski, M., & Nasr, M. (2023). Synthetic Query Generation for Privacy-Preserving Deep Retrieval Systems using Differentially Private Language Models. arXiv preprint arXiv:2305.05973.
[65]Kiran, R., Kumar, P., & Bhasker, B. (2020). DNNRec: A novel deep learning based hybrid recommender system. Expert Systems with Applications, 144, 113054.
[66]Jolfaei, A. A., Aghili, S. F., & Singelee, D. (2021). A survey on blockchain-based IoMT systems: Towards scalability. IEEE Access, 9, 148948-148975.
[67]Polignano, M., Musto, C., de Gemmis, M., Lops, P., & Semeraro, G. (2021, September). Together is better: Hybrid recommendations combining graph embeddings and contextualized word representations. In Proceedings of the 15th ACM conference on recommender systems (pp. 187-198).
[68]Luo, S., Zhang, X., Xiao, Y., & Song, L. (2022, October). HySAGE: A hybrid static and adaptive graph embedding network for context-drifting recommendations. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management (pp. 1389-1398).
[69]Khatter, H., Goel, N., Gupta, N., & Gulati, M. (2021, September). Movie recommendation system using cosine similarity with sentiment analysis. In 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA) (pp. 597-603). IEEE.
[70]He, X., He, Z., Du, X., & Chua, T. S. (2018, June). Adversarial personalized ranking for recommendation. In The 41st International ACM SIGIR conference on research & development in information retrieval (pp. 355-364).
[71]Tang, J., Du, X., He, X., Yuan, F., Tian, Q., & Chua, T. S. (2019). Adversarial training towards robust multimedia recommender system. IEEE Transactions on Knowledge and Data Engineering, 32(5), 855-867.
[72]Christakopoulou, K., & Banerjee, A. (2019, September). Adversarial attacks on an oblivious recommender. In Proceedings of the 13th ACM Conference on Recommender Systems (pp. 322-330).
[73]Du, Y., Fang, M., Yi, J., Xu, C., Cheng, J., & Tao, D. (2018). Enhancing the robustness of neural collaborative filtering systems under malicious attacks. IEEE Transactions on Multimedia, 21(3), 555-565.
[74]Yue, Z., Zeng, H., Kou, Z., Shang, L., & Wang, D. (2022, September). Defending substitution-based profile pollution attacks on sequential recommenders. In Proceedings of the 16th ACM Conference on Recommender Systems (pp. 59-70).
[75]Li, J., Ren, Y., & Deng, K. (2022, April). FairGAN: GANs-based fairness-aware learning for recommendations with implicit feedback. In Proceedings of the ACM web conference 2022 (pp. 297-307).
[76]Xie, Y., Wang, Z., Yang, C., Li, Y., Ding, B., Deng, H., & Han, J. (2022, April). Komen: Domain knowledge guided interaction recommendation for emerging scenarios. In Proceedings of the ACM Web Conference 2022 (pp. 1301-1310).
[77]Huang, J., Oosterhuis, H., & De Rijke, M. (2022, February). It is different when items are older: Debiasing recommendations when selection bias and user preferences are dynamic. In Proceedings of the fifteenth ACM international conference on web search and data mining (pp. 381-389).
[78]Shi, L., Li, S., Ding, X., & Bu, Z. (2023). Selection bias mitigation in recommender system using uninteresting items based on temporal visibility. Expert Systems with Applications, 213, 118932.
[79]Wang, Z., Shen, S., Wang, Z., Chen, B., Chen, X., & Wen, J. R. (2022, April). Unbiased sequential recommendation with latent confounders. In Proceedings of the ACM Web Conference 2022 (pp. 2195-2204).
[80]Zhou, C., Ma, J., Zhang, J., Zhou, J., & Yang, H. (2021, August). Contrastive learning for debiased candidate generation in large-scale recommender systems. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (pp. 3985-3995).
[81]Wang, X., Zhang, R., Sun, Y., & Qi, J. (2021, March). Combating selection biases in recommender systems with a few unbiased ratings. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining (pp. 427-435).
[82]Liu, H., Lin, H., Fan, W., Ren, Y., Xu, B., Zhang, X., ... & Yang, L. (2022). Self-supervised learning for fair recommender systems. Applied Soft Computing, 125, 109126.
[83]Lee, H., Im, J., Jang, S., Cho, H. & Chung, S. MeLU: Meta-Learned User Preference Estimator for Cold-Start Recommendation. Proceedings Of The 25th ACM SIGKDD International Conference On Knowledge Discovery & Data Mining. pp. 1073-1082 (2019,7)
[84]Shivaswamy, P., & Garcia-Garcia, D. (2022, September). Adversary or friend? an adversarial approach to improving recommender systems. In Proceedings of the 16th ACM Conference on Recommender Systems (pp. 369-377).
[85]Liu, S., Ge, Y., Xu, S., Zhang, Y., & Marian, A. (2022, September). Fairness-aware federated matrix factorization. In Proceedings of the 16th ACM conference on recommender systems (pp. 168-178).
[86]Do, V., Corbett-Davies, S., Atif, J., & Usunier, N. (2022, June). Online certification of preference-based fairness for personalized recommender systems. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 36, No. 6, pp. 6532-6540).
[87]Gupta, P., Sharma, A., Malhotra, P., Vig, L., & Shroff, G. (2021, October). Causer: Causal session-based recommendations for handling popularity bias. In Proceedings of the 30th ACM international conference on information & knowledge management (pp. 3048-3052).
[88]Anelli, V. W., Di Noia, T., & Merra, F. A. (2021, September). The idiosyncratic effects of adversarial training on bias in personalized recommendation learning. In Proceedings of the 15th ACM Conference on Recommender Systems (pp. 730-735).
[89]Ji, L., Qin, Q., Han, B., & Yang, H. (2021, October). Reinforcement learning to optimize lifetime value in cold-start recommendation. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management (pp. 782-791).
[90]Sedhain, S., Menon, A. K., Sanner, S., & Xie, L. (2015, May). Autorec: Autoencoders meet collaborative filtering. In Proceedings of the 24th international conference on World Wide Web (pp. 111-112).
[91]Muresan, M., Fu, L., & Pan, G. (2019). Adaptive traffic signal control with deep reinforcement learning an exploratory investigation. arXiv preprint arXiv:1901.00960.
[92]Li, H., Kumar, N., Chen, R., & Georgiou, P. (2018, April). A deep reinforcement learning framework for Identifying funny scenes in movies. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 3116-3120). IEEE.
[93]Xiong, W., Hoang, T., & Wang, W. Y. (2017). Deeppath: A reinforcement learning method for knowledge graph reasoning. arXiv preprint arXiv:1707.06690.
[94]Chen, X., Li, S., Li, H., Jiang, S., Qi, Y., & Song, L. (2019, May). Generative adversarial user model for reinforcement learning based recommendation system. In International Conference on Machine Learning (pp. 1052-1061). PMLR.
[95]Zou, L., Xia, L., Du, P., Zhang, Z., Bai, T., Liu, W., ... & Yin, D. (2020, January). Pseudo Dyna-Q: A reinforcement learning framework for interactive recommendation. In Proceedings of the 13th International Conference on Web Search and Data Mining (pp. 816-824).
[96]Wang, K., Zou, Z., Deng, Q., Tao, J., Wu, R., Fan, C., ... & Cui, P. (2021, May). Reinforcement learning with a disentangled universal value function for item recommendation. In Proceedings of the AAAI conference on artificial intelligence (Vol. 35, No. 5, pp. 4427-4435).
[97]Zhao, X., Xia, L., Zou, L., Liu, H., Yin, D., & Tang, J. (2020, October). Whole-chain recommendations. In \emph{Proceedings of the 29th ACM international conference on information & knowledge management (pp. 1883-1891).
[98]Montazeralghaem, A., & Allan, J. (2022, August). Extracting Relevant Information from User's Utterances in Conversational Search and Recommendation. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 1275-1283).
[99]Bai, X., Guan, J., & Wang, H. (2019). A model-based reinforcement learning with adversarial training for online recommendation. Advances in Neural Information Processing Systems, 32.
[100]Hong, D., Li, Y., & Dong, Q. (2020, July). Nonintrusive-sensing and reinforcement-learning based adaptive personalized music recommendation. In Proceedings of the 43rd international ACM SIGIR conference on research and development in information retrieval (pp. 1721-1724).
[101]Zhang, J. D., Chow, C. Y., & Xu, J. (2016). Enabling kernel-based attribute-aware matrix factorization for rating prediction. IEEE Transactions on Knowledge and Data Engineering, 29(4), 798-812.
[102]Xu, X., & Yuan, D. (2017, April). A novel matrix factorization recommendation algorithm fusing social trust and behaviors in micro-blogs. In 2017 IEEE 2nd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA) (pp. 283-287). IEEE.
[103]Yi, S., & Zorzi, M. (2021). Robust kalman filtering under model uncertainty: The case of degenerate densities. IEEE Transactions on Automatic Control, 67(7), 3458-3471.
[104]Yi, S., & Zorzi, M. (2023). Robust fixed-lag smoothing under model perturbations. Journal of the Franklin Institute, 360(1), 458-483.
[105]Xu, J., Wei, L., Zhang, Y., Wang, A., Zhou, F., & Gao, C. Z. (2018). Dynamic fully homomorphic encryption-based merkle tree for lightweight streaming authenticated data structures. Journal of Network and Computer Applications, 107, 113-124.
[106]Park, H., Jeon, H., Kim, J., Ahn, B., & Kang, U. (2017). Uniwalk: Explainable and accurate recommendation for rating and network data. arXiv preprint arXiv:1710.07134.
[107]Kouki, P., Schaffer, J., Pujara, J., O'Donovan, J., & Getoor, L. (2017, August). User preferences for hybrid explanations. In Proceedings of the Eleventh ACM Conference on Recommender Systems (pp. 84-88).
[108]Milosevic, N., Gregson, C., Hernandez, R., & Nenadic, G. (2019). A framework for information extraction from tables in biomedical literature. International Journal on Document Analysis and Recognition (IJDAR), 22, 55-78.
[109]Wang, C., Ma, X., Chen, J., & Chen, J. (2018). Information extraction and knowledge graph construction from geoscience literature. Computers & geosciences, 112, 112-120.
[110]Wang, Q., Mao, Z., Wang, B., & Guo, L. (2017). Knowledge graph embedding: A survey of approaches and applications. IEEE transactions on knowledge and data engineering, 29(12), 2724-2743.
[111]Kim, S., Kim, J., Koo, D., Kim, Y., Yoon, H., & Shin, J. (2016, May). Efficient privacy-preserving matrix factorization via fully homomorphic encryption. In Proceedings of the 11th ACM on Asia conference on computer and communications security (pp. 617-628).
[112]Badsha, S., Yi, X., Khalil, I., Liu, D., Nepal, S., & Lam, K. Y. (2018). Privacy preserving user based web service recommendations. IEEE Access, 6, 56647-56657.
[113]Zhang, S., Li, X., Liu, H., Lin, Y., & Sangaiah, A. K. (2018). A privacy-preserving friend recommendation scheme in online social networks. Sustainable cities and society, 38, 275-285.
[114]Baglioni, E., Becchetti, L., Bergamini, L., Colesanti, U., Filipponi, L., Vitaletti, A., & Persiano, G. (2010, September). A lightweight privacy preserving SMS-based recommendation system for mobile users. In Proceedings of the fourth ACM Conference on Recommender systems (pp. 191-198).
[115]Liu, X., Choo, K. K. R., Deng, R. H., Lu, R., & Weng, J. (2016). Efficient and privacy-preserving outsourced calculation of rational numbers. IEEE Transactions on Dependable and Secure Computing, 15(1), 27-39.
[116]Halevi, S., & Shoup, V. (2018, July). Faster homomorphic linear transformations in HElib. In Annual International Cryptology Conference (pp. 93-120). Cham: Springer International Publishing.
[117]Zhou, J., Cao, Z., Dong, X., & Vasilakos, A. V. (2017). Security and privacy for cloud-based IoT: Challenges. IEEE Communications Magazine, 55(1), 26-33.
[118]Gillespie, T., Boczkowski, P. J., & Foot, K. A. (Eds.). (2014). Media technologies: Essays on communication, materiality, and society. MIT Press, pp. 167-193.
[119]Areeb, Q., Nadeem, M., Sohail, S., Imam, R., Doctor, F., Himeur, Y., Hussain, A. & Amira, A. (2023). Filter bubbles in recommender systems: Fact or fallacy—A systematic review. Wiley Interdisciplinary Reviews: Data Mining And Knowledge Discovery, 13(6), e1512.
[120]Ferraro, A., Ferreira, G., Diaz, F. & Born, G. (2022). Measuring commonality in recommendation of cultural content: Recommender systems to enhance cultural citizenship. Proceedings Of The 16th ACM Conference On Recommender Systems (pp. 567-572).
[121]Ross Arguedas, A., Robertson, C., Fletcher, R., & Nielsen, R. (2022). Echo chambers, filter bubbles, and polarisation: A literature review.
[122]Cinus, F., Minici, M., Monti, C. & Bonchi, F. (2022). The effect of people recommenders on echo chambers and polarization. Proceedings Of The International AAAI Conference On Web And Social Media, (Vol. 16, pp. 90-101).
[123]Beer, D. (2019). The social power of algorithms. In The Social Power of Algorithms (pp. 1-13). Routledge.
[124]Flaxman, S., Goel, S., & Rao, J. M. (2016). Filter bubbles, echo chambers, and online news consumption. Public opinion quarterly, 80(S1), 298-320.
[125]Whitcomb, C. G. (2020). Review of Shoshana Zuboff (2019). The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of Power: New York: Public Affairs. 704 pp. ISBN 9781781256848 (Hardcover). Postdigital Science and Education, 2, 484-488.
[126]Bucher, T. (2018). If... then: Algorithmic power and politics. Oxford University Press.
[127]Noble, S. U. (2018). Algorithms of oppression: How search engines reinforce racism. In Algorithms of oppression. New York university press.
[128]Pitoura, E., Stefanidis, K. & Koutrika, G. (2022). Fairness in rankings and recommendations: an overview. The VLDB Journal. pp. 1-28.
[129]Deldjoo, Y., Jannach, D., Bellogin, A., Difonzo, A., \& Zanzonelli, D. (2024). Fairness in recommender systems: research landscape and future directions. User Modeling and User-Adapted Interaction, 34(1), 59-108.
[130]Simonson, I., & Rosen, E. (2014). What marketers misunderstand about online reviews. Harvard Business Review, 92(1), 7.
[131]Cosley, D., Lam, S. K., Albert, I., Konstan, J. A., & Riedl, J. (2003, April). Is seeing believing? How recommender system interfaces affect users' opinions. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 585-592).
[132]Milano, S., Taddeo, M., & Floridi, L. (2020). Recommender systems and their ethical challenges. Ai & Society, 35, 957-967.
[133]Mu, R. (2018). A survey of recommender systems based on deep learning. IEEE Access, 6, 69009-69022.
[134]Ickes, J. L. (2010). Nudge: Improving decisions about health, wealth, and happiness. The Journal of Applied Christian Leadership, 4(1), 133.
[135]Konstan, J. A., & Riedl, J. (2012). Recommender systems: from algorithms to user experience. User modeling and user-adapted interaction, 22, 101-123.
[136]Linden, G., Smith, B., & York, J. (2003). Amazon. com recommendations: Item-to-item collaborative filtering. IEEE Internet computing, 7(1), 76-80.
[137]Knijnenburg, B. P., Willemsen, M. C., Gantner, Z., Soncu, H., & Newell, C. (2012). Explaining the user experience of recommender systems. User modeling and user-adapted interaction, 22, 441-504.
[138]Falconnet, A., Coursaris, C., Beringer, J., Van Osch, W., Sénécal, S. & Léger, P. (2023). Improving User Experience with Recommender Systems by Informing the Design of Recommendation Messages. Applied Sciences, 13(4), 2706.
[139]Roy, D. & Dutta, M. (2022). A systematic review and research perspective on recommender systems. Journal Of Big Data, 9(1), 59.
[140]Lex, E., Kowald, D., Seitlinger, P., Tran, T., Felfernig, A., & Schedl, M. (2021). Psychology-informed recommender systems. Foundations And Trends® In Information Retrieval. 15(2), 134-242.
[141]Gürses, S., & Diaz, C. (2013). Two tales of privacy in online social networks. IEEE Security & Privacy, 11(3), 29-37.
[142]Cinelli, M., De Francisci Morales, G., Galeazzi, A., Quattrociocchi, W. & Starnini, M. (2021). The echo chamber effect on social media. Proceedings Of The National Academy Of Sciences, 118(9), e2023301118.
[143]Valkenburg, P. M., Meier, A., & Beyens, I. (2022). Social media use and its impact on adolescent mental health: An umbrella review of the evidence. Current opinion in psychology, 44, 58-68.
[144]Chen, Y., Harper, F. M., Konstan, J., & Li, S. X. (2010). Social comparisons and contributions to online communities: A field experiment on movielens. American Economic Review, 100(4), 1358-1398.
IECE Transactions on Sensing, Communication, and Control
ISSN: 3065-7431 (Online) | ISSN: 3065-7423 (Print)
Email: [email protected]
Portico
All published articles are preserved here permanently:
https://www.portico.org/publishers/iece/