IECE Transactions on Sensing, Communication, and Control
ISSN: 3065-7431 (Online) | ISSN: 3065-7423 (Print)
Email: [email protected]
[1] Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P., Maternia, M., ... & Fallgren, M. (2014). Scenarios for 5G mobile and wireless communications: the vision of the METIS project. IEEE communications magazine, 52(5), 26-35.
[2] Dahlman, E., Mildh, G., Parkvall, S., Peisa, J., Sachs, J., & Selén, Y. (2014). 5G radio access. Ericsson review, 6(1).
[3] Liang, Q., Durrani, T. S., Liang, J., & Wang, X. (2016). Enabling Technologies for 5G Mobile Systems. Mob. Inf. Syst., 2016, 1945783-1.
[4] Akyildiz, I. F., Nie, S., Lin, S. C., & Chandrasekaran, M. (2016). 5G roadmap: 10 key enabling technologies. Computer Networks, 106, 17-48.
[5] Osseiran, A., Monserrat, J. F., & Marsch, P. (Eds.). (2016). 5G mobile and wireless communications technology. Cambridge University Press.
[6] Elkashlan, M., Duong, T. Q., & Chen, H. H. (2014). Millimeter-wave communications for 5G: fundamentals: Part I[Guest Editorial]. IEEE Communications Magazine, 52(9), 52-54.
[7] Sun, S., Rappaport, T. S., Thomas, T. A., Ghosh, A., Nguyen, H. C., Kovacs, I. Z., ... & Partyka, A. (2016). Investigation of prediction accuracy, sensitivity, and parameter stability of large-scale propagation path loss models for 5G wireless communications. IEEE transactions on vehicular technology, 65(5), 2843-2860.
[8] Stefanovic, M., Panic, S. R., de Souza, R. A., & Reig, J. (2017). Recent advances in RF propagation modelingfor 5G systems. International Journal of Antennas and Propagation , 2017(4701208), 1-5.
[9] Khawaja, W., Guvenc, I., Matolak, D. W., Fiebig, U. C., & Schneckenburger, N. (2019). A survey of air-to-ground propagation channel modeling for unmanned aerial vehicles. IEEE Communications Surveys & Tutorials, 21(3), 2361-2391.
[10] Mushtaq, B., & Khalid, S. (2023). Design of miniaturized single and dual-band bandpass filters using diamond-shaped coupled line resonator for next-generation wireless systems. International Journal of Microwave and Wireless Technologies, 15(3), 375-383.
[11] Dahlman, E., Parkvall, S., & Skold, J. (2016). 4G, LTE-Advanced Pro and the Road to 5G. Academic Press.
[12] Mushtaq, B., Khalid, S., & Rehman, M. A. (2022). Design of a compact novel stub loaded pentaband bandpass filter for next generation wireless RF front ends. IEEE Access, 10, 109919-109924.
[13] 5G Americas. (2017, November). 5G services and use cases (White paper). 5G Americas.
[14] 3rd Generation Partnership Project (3GPP). (2020, March). Service requirements for the 5G system; Stage 1 (3GPP TS 22.261, version 17.2.0). 3GPP.
[15] Zaidi, A., Athley, F., Medbo, J., Gustavsson, U., Durisi, G., & Chen, X. (2018). 5G Physical Layer: principles, models and technology components. Academic Press.
[16] Small Cell Forum. (2017, February). Hyperdense HetNets: Definition, drivers and barriers (Technical Report). Small Cell Forum.
[17] Mirjalili, S. M. (2019, October 10). Fifth-Generation (5G) of Wireless Data Networks. Concordia University.
[18] Mushtaq, B., AbdulRehman, M., Khalid, S., & Alhaisoni, M. (2023). Design of Tri-band Bandpass filter using Modified X-shaped structure for IoT Based wireless Applications. IEEE Embedded Systems Letters.
[19] Liu, G., & Jiang, D. (2016). 5G: Vision and requirements for mobile communication system towards year 2020. Chinese Journal of Engineering, 2016(1), 5974586.
[20] Mushtaq, B., Rehman, M. A., Hussain, A., & Abbass, M. J. (2023, March). A highly selective dual bandpass filter using couple line resonator for modern wireless communication systems. In 2023 4th International Conference on Computing, Mathematics and Engineering Technologies (iCoMET) (pp. 1-5). IEEE.
[21] Morgado, A., Huq, K. M. S., Mumtaz, S., & Rodriguez, J. (2018). A survey of 5G technologies: regulatory, standardization and industrial perspectives. Digital Communications and Networks, 4(2), 87-97.
[22] Making 5G NR a reality – Leading the technology inventions for a unified, more capable 5G air interface. (2016, December).
[23] Khawaja, W., Ozdemir, O., Erden, F., Ozturk, E., & Guvenc, I. (2020). Multiple ray received power modelling for mmWave indoor and outdoor scenarios. IET Microwaves, Antennas & Propagation, 14(14), 1825-1836.
[24] Difference between different generations of GSM.(n.d.). Retrieved from http://netnformations.com/q/diff/generations.html.
[25] Al-Saman, A., Cheffena, M., Elijah, O., Al-Gumaei, Y. A., Abdul Rahim, S. K., & Al-Hadhrami, T. (2021). Survey of millimeter-wave propagation measurements and models in indoor environments. Electronics, 10(14), 1653.
[26] Guijarro, V. F., Vega-Sánchez, J. D., Paredes, M. P., Arévalo, F. G., & Osorio, D. M. (2024). Comparative Evaluation of Radio Network Planning for Different 5G-NR Channel Models on Urban Macro Environments in Quito City. IEEE Access.
[27] AGAFARI, Y. T. (2020). 5G NETWORK PLANNING AND OPTIMIZATION FOR FUTURE DEPLOYMENT.
[28] Martinez, E. J. (2022). Mobility Solutions for 5G New Radio over Low-Earth Orbit Satellite Networks. Aalborg Universitetsforlag.
[29] Zeman, K. (2019). MODELLING OF M M WAVE PROPAGATION CHANNEL FOR OFF-BODY COMMUNICATION SCENARIOS (Doctoral dissertation, BRNO UNIVERSITY OF TECHNOLOGY).
[30] Wang, R. (2024). Dynamic EM Ray Tracing for Complex Outdoor and Indoor Environments With Multiple Receivers (Doctoral dissertation, University of Maryland, College Park).
IECE Transactions on Sensing, Communication, and Control
ISSN: 3065-7431 (Online) | ISSN: 3065-7423 (Print)
Email: [email protected]
Portico
All published articles are preserved here permanently:
https://www.portico.org/publishers/iece/