-
CiteScore
1.00
Impact Factor
IECE Transactions on Sensing, Communication, and Control, 2024, Volume 1, Issue 2: 72-88

Free to Read | Review Article | 29 October 2024
1 Interdisciplinary Research Centre for Aviation and Space Exploration, King Fahd University of Petroleum and Minerals, Dhahran 31261, Kingdom of Saudi Arabia
2 Electronic Engineering Department, Maynooth International Engineering College, Maynooth University, Maynooth, Co. Kildare, Ireland
3 Electronic Engineering Department, Usman Institute of Technology, Karachi 75300, Pakistan
* Corresponding Author: Ghulam E Mustafa Abro, [email protected]
Received: 23 September 2024, Accepted: 06 October 2024, Published: 29 October 2024  
Cited by: 2  (Source: Web of Science) , 2  (Source: Google Scholar)
Abstract
Collective motion has been a pivotal area of research, especially due to its substantial importance in Unmanned Aerial Vehicle (UAV) systems for several purposes, including path planning, formation control, and trajectory tracking. UAVs significantly enhance coordination, flexibility, and operational efficiency in practical applications such as search-and-rescue operations, environmental monitoring, and smart city construction. Notwithstanding the progress in UAV technology, significant problems persist, especially in attaining dependable and effective coordination in intricate, dynamic, and unexpected settings. This study offers a comprehensive examination of the fundamental principles, models, and tactics employed to comprehend and regulate collective motion in UAV systems. This paper methodically analyses recent breakthroughs, exposes deficiencies in existing approaches, and emphasises case studies demonstrating the practical application of collective motion. The survey examines the substantial practical effects of collective motion on improving UAV operations, emphasizing scalability, resilience, and adaptability. This review is significant for its potential to inform future research and practical applications. It seeks to provide a systematic framework for the advancement of more resilient and scalable UAV collaboration models, aiming to tackle the ongoing challenges in the domain. The insights offered are essential for academics and practitioners aiming to enhance UAV collaboration in dynamic environments, facilitating the development of more sophisticated, flexible, and mission-resilient multi-UAV systems. This study is set to significantly advance UAV technology, having extensive ramifications for several industries.

Graphical Abstract
Synergistic UAV Motion: A Comprehensive Review on Advancing Multi-Agent Coordination

Keywords
collective motion
dynamic agent systems
formation control
path planning and swarm intelligence

Funding
This work was supported by Interdisciplinary Research Centre for Aviation and Space Exploration (IRCASE), King Fahd University of Petroleum and Minerals Kingdom of Saudi Arabia.

Cite This Article
APA Style
Abro, G. E. M., Ali, Z. A., & Masood, R. J. (2024). Synergistic UAV Motion: A Comprehensive Review on Advancing Multi-Agent Coordination. IECE Transactions on Sensing, Communication, and Control, 1(2), 72-88. https://doi.org/10.62762/TSCC.2024.211408

References
  1. Elgeti, J., Winkler, R. G., & Gompper, G. (2015). Physics of microswimmers—single particle motion and collective behavior: a review. Reports on progress in physics, 78(5), 056601.
    [Google Scholar]
  2. Garnier, S., Gautrais, J., & Theraulaz, G. (2007). The biological principles of swarm intelligence. Swarm intelligence, 1, 3-31.
    [Google Scholar]
  3. Queralta, J. P., Taipalmaa, J., Pullinen, B. C., Sarker, V. K., Gia, T. N., Tenhunen, H., ... & Westerlund, T. (2020). Collaborative multi-robot systems for search and rescue: Coordination and perception. arXiv preprint arXiv:2008.12610.
    [Google Scholar]
  4. Ali, Z. A., Han, Z., & Masood, R. J. (2021). Collective motion and self-organization of a swarm of UAVs: A cluster-based architecture. Sensors, 21(11), 3820.
    [Google Scholar]
  5. Muñoz, J., López, B., Quevedo, F., Monje, C. A., Garrido, S., & Moreno, L. E. (2021). Multi UAV coverage path planning in urban environments. Sensors, 21(21), 7365.
    [Google Scholar]
  6. Vicsek, T., & Zafeiris, A. (2012). Collective motion. Physics Reports, 517(3–4), 71–140.
    [Google Scholar]
  7. Everett, M., Chen, Y. F., & How, J. P. (2018, October). Motion planning among dynamic, decision-making agents with deep reinforcement learning. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 3052-3059). IEEE.
    [Google Scholar]
  8. Luo, Q., & Duan, H. (2017). Distributed UAV flocking control based on homing pigeon hierarchical strategies. Aerospace Science and Technology, 70, 257-264.
    [Google Scholar]
  9. Garcia, G. A., & Keshmiri, S. S. (2016). Biologically inspired trajectory generation for swarming UAVs using topological distances. Aerospace Science and Technology, 54, 312-319.
    [Google Scholar]
  10. Bode, N. W., Franks, D. W., & Wood, A. J. (2011). Limited interactions in flocks: relating model simulations to empirical data. Journal of The Royal Society Interface, 8(55), 301-304.
    [Google Scholar]
  11. Biro, D., Sasaki, T., & Portugal, S. J. (2016). Bringing a time–depth perspective to collective animal behaviour. Trends in ecology & evolution, 31(7), 550-562.
    [Google Scholar]
  12. Hetz, S. K., & Bradley, T. J. (2005). Insects breathe discontinuously to avoid oxygen toxicity. Nature, 433(7025), 516-519.
    [Google Scholar]
  13. Kearns, D. B. (2010). A field guide to bacterial swarming motility. Nature reviews microbiology, 8(9), 634-644.
    [Google Scholar]
  14. Olson, R. S., Hintze, A., Dyer, F. C., Knoester, D. B., & Adami, C. (2013). Predator confusion is sufficient to evolve swarming behaviour. Journal of The Royal Society Interface, 10(85), 20130305.
    [Google Scholar]
  15. Anderson, B. D., Fidan, B., Yu, C., & Walle, D. (2008). UAV formation control: Theory and application. In Recent advances in learning and control (pp. 15-33). Springer London.
    [Google Scholar]
  16. Zhang, Y. Q., Wang, J. H., Wang, Y., Jia, Z. C., Sun, Q., Pei, Q. Y., & Wu, D. (2024). Intelligent planning of fire evacuation routes in buildings based on improved adaptive ant colony algorithm. Computers & Industrial Engineering, 194, 110335.
    [Google Scholar]
  17. Zhang, R., Li, S., Ding, Y., Qin, X., & Xia, Q. (2022). UAV path planning algorithm based on improved Harris Hawks optimization. Sensors, 22(14), 5232.
    [Google Scholar]
  18. Shafiq, M., Ali, Z. A., Israr, A., Alkhammash, E. H., Hadjouni, M., & Jussila, J. J. (2022). Convergence analysis of path planning of multi-UAVs using max-min ant colony optimization approach. Sensors, 22(14), 5395.
    [Google Scholar]
  19. Wang, L., Zhai, Z., Zhu, Z., & Mao, E. (2022, January). Path tracking control of an autonomous tractor using improved Stanley controller optimized with multiple-population genetic algorithm. In Actuators (Vol. 11, No. 1, p. 22). MDPI.
    [Google Scholar]
  20. Sharma, A., Shoval, S., Sharma, A., & Pandey, J. K. (2022). Path planning for multiple targets interception by the swarm of UAVs based on swarm intelligence algorithms: A review. IETE Technical Review, 39(3), 675-697.
    [Google Scholar]
  21. Israr, A., Ali, Z. A., Alkhammash, E. H., & Jussila, J. J. (2022). Optimization methods applied to motion planning of unmanned aerial vehicles: A review. Drones, 6(5), 126.
    [Google Scholar]
  22. Zhihao, C. A. I., Longhong, W. A. N. G., Jiang, Z. H. A. O., Kun, W. U., & Yingxun, W. A. N. G. (2020). Virtual target guidance-based distributed model predictive control for formation control of multiple UAVs. Chinese Journal of Aeronautics, 33(3), 1037-1056.
    [Google Scholar]
  23. Wu, Y., Gou, J., Hu, X., & Huang, Y. (2020). A new consensus theory-based method for formation control and obstacle avoidance of UAVs. Aerospace Science and Technology, 107, 106332.
    [Google Scholar]
  24. Huang, J., & Sun, W. (2020). A method of feasible trajectory planning for UAV formation based on bi-directional fast search tree. Optik, 221, 165213.
    [Google Scholar]
  25. Shao, S., Peng, Y., He, C., & Du, Y. (2020). Efficient path planning for UAV formation via comprehensively improved particle swarm optimization. ISA transactions, 97, 415-430.
    [Google Scholar]
  26. Liu, H., Meng, Q., Peng, F., & Lewis, F. L. (2020). Heterogeneous formation control of multiple UAVs with limited-input leader via reinforcement learning. Neurocomputing, 412, 63-71.
    [Google Scholar]
  27. Lizzio, F. F., Capello, E., & Guglieri, G. (2021, June). A review of consensus-based multi-agent UAV applications. In 2021 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 1548-1557). IEEE.
    [Google Scholar]
  28. Frattolillo, F., Brunori, D., & Iocchi, L. (2023). Scalable and cooperative deep reinforcement learning approaches for multi-UAV systems: A systematic review. Drones, 7(4), 236.
    [Google Scholar]
  29. López-González, A., Campaña, J. M., Martínez, E. H., & Contro, P. P. (2020). Multi robot distance based formation using Parallel Genetic Algorithm. Applied Soft Computing, 86, 105929.
    [Google Scholar]
  30. Nath, A., Arun, A. R., & Niyogi, R. (2020). DMTF: A Distributed Algorithm for Multi-team Formation. In ICAART (1) (pp. 152-160).
    [Google Scholar]
  31. Nath, A., & Niyogi, R. (2021). Distributed framework for task execution with quantitative skills. In Computational Science and Its Applications–ICCSA 2021: 21st International Conference, Cagliari, Italy, September 13–16, 2021, Proceedings, Part VII 21 (pp. 413-426). Springer International Publishing.
    [Google Scholar]
  32. Huo, M., Duan, H., & Fan, Y. (2021). Pigeon-inspired circular formation control for multi-UAV system with limited target information. Guidance, Navigation and Control, 1(01), 2150004.
    [Google Scholar]
  33. Azam, M. A., Mittelmann, H. D., & Ragi, S. (2021). Uav formation shape control via decentralized markov decision processes. Algorithms, 14(3), 91.
    [Google Scholar]
  34. Qiang, F. E. N. G., Xingshuo, H. A. I., Bo, S. U. N., Yi, R. E. N., Zili, W. A. N. G., Dezhen, Y. A. N. G., ... & Ronggen, F. E. N. G. (2022). Resilience optimization for multi-UAV formation reconfiguration via enhanced pigeon-inspired optimization. Chinese Journal of Aeronautics, 35(1), 110-123.
    [Google Scholar]
  35. Liang, D., Liu, Z., & Bhamra, R. (2022). Collaborative multi-robot formation control and global path optimization. Applied Sciences, 12(14), 7046.
    [Google Scholar]
  36. Shin, J. J., & Bang, H. (2020). UAV path planning under dynamic threats using an improved PSO algorithm. International Journal of Aerospace Engineering, 2020(1), 8820284.
    [Google Scholar]
  37. Wang, B. H., Wang, D. B., & Ali, Z. A. (2020). A Cauchy mutant pigeon-inspired optimization–based multi-unmanned aerial vehicle path planning method. Measurement and Control, 53(1-2), 83-92.
    [Google Scholar]
  38. Qu, C., Gai, W., Zhong, M., & Zhang, J. (2020). A novel reinforcement learning based grey wolf optimizer algorithm for unmanned aerial vehicles (UAVs) path planning. Applied soft computing, 89, 106099.
    [Google Scholar]
  39. Ge, F., Li, K., Han, Y., Xu, W., & Wang, Y. A. (2020). Path planning of UAV for oilfield inspections in a three-dimensional dynamic environment with moving obstacles based on an improved pigeon-inspired optimization algorithm. Applied Intelligence, 50, 2800-2817.
    [Google Scholar]
  40. Das, P. K., & Jena, P. K. (2020). Multi-robot path planning using improved particle swarm optimization algorithm through novel evolutionary operators. Applied Soft Computing, 92, 106312.
    [Google Scholar]
  41. Che, G., Liu, L., & Yu, Z. (2020). An improved ant colony optimization algorithm based on particle swarm optimization algorithm for path planning of autonomous underwater vehicle. Journal of Ambient Intelligence and Humanized Computing, 11(8), 3349-3354.
    [Google Scholar]
  42. Ajeil, F. H., Ibraheem, I. K., Azar, A. T., & Humaidi, A. J. (2020). Grid-based mobile robot path planning using aging-based ant colony optimization algorithm in static and dynamic environments. Sensors, 20(7), 1880.
    [Google Scholar]
  43. Shafiq, M., Ali, Z. A., & Alkhammash, E. H. (2021). A cluster-based hierarchical-approach for the path planning of swarm. Applied Sciences, 11(15), 6864.
    [Google Scholar]
  44. Chen, J., Zhao, H., & Wang, L. (2021, March). Three dimensional path planning of UAV based on adaptive particle swarm optimization algorithm. In Journal of Physics: Conference Series (Vol. 1846, No. 1, p. 012007). IOP Publishing.
    [Google Scholar]
  45. Li, J., Xiong, Y., & She, J. (2021, March). An improved ant colony optimization for path planning with multiple UAVs. In 2021 IEEE International Conference on Mechatronics (ICM) (pp. 1-5). IEEE.
    [Google Scholar]
  46. He, W., Qi, X., & Liu, L. (2021). A novel hybrid particle swarm optimization for multi-UAV cooperate path planning. Applied Intelligence, 51(10), 7350-7364.
    [Google Scholar]
  47. Ji, Y., Zhao, X., & Hao, J. (2022). A Novel UAV Path Planning Algorithm Based on Double-Dynamic Biogeography-Based Learning Particle Swarm Optimization. Mobile Information Systems, 2022(1), 8519708.
    [Google Scholar]
  48. Jiang, S., Yue, Y., Chen, C., Chen, Y., & Cao, L. (2024). A multi-objective optimization problem solving method based on improved golden jackal optimization algorithm and its application. Biomimetics, 9(5), 270.
    [Google Scholar]
  49. Ali, Z. A., Zhangang, H., & Zhengru, D. (2023). Path planning of multiple UAVs using MMACO and DE algorithm in dynamic environment. Measurement and Control, 56(3-4), 459-469.
    [Google Scholar]
  50. Teng, H., Ahmad, I., Msm, A., & Chang, K. (2020). 3D optimal surveillance trajectory planning for multiple UAVs by using particle swarm optimization with surveillance area priority. IEEE Access, 8, 86316-86327.
    [Google Scholar]
  51. Selma, B., Chouraqui, S., & Abouaïssa, H. (2020). Fuzzy swarm trajectory tracking control of unmanned aerial vehicle. Journal of Computational Design and Engineering, 7(4), 435-447.
    [Google Scholar]
  52. Rubí, B., Pérez, R., & Morcego, B. (2020). A survey of path following control strategies for UAVs focused on quadrotors. Journal of Intelligent & Robotic Systems, 98(2), 241-265.
    [Google Scholar]
  53. Selma, B., Chouraqui, S., & Abouaïssa, H. (2020). Optimal trajectory tracking control of unmanned aerial vehicle using ANFIS-IPSO system. International Journal of Information Technology, 12(2), 383-395.
    [Google Scholar]
  54. AbdulSamed, B. N., Aldair, A. A., & Al-Mayyahi, A. (2020). Robust trajectory tracking control and obstacles avoidance algorithm for quadrotor unmanned aerial vehicle. Journal of Electrical Engineering & Technology, 15(2), 855-868.
    [Google Scholar]
  55. Madridano, Á., Al-Kaff, A., Martín, D., & De La Escalera, A. (2021). Trajectory planning for multi-robot systems: Methods and applications. Expert Systems with Applications, 173, 114660.
    [Google Scholar]
  56. Selma, B., Chouraqui, S., Selma, B., & Abouaïssa, H. (2021). ANFIS controller design based on pigeon-inspired optimization to control an UAV trajectory tracking task. Iran Journal of Computer Science, 4(1), 1-16.
    [Google Scholar]
  57. Telli, K., Kraa, O., Himeur, Y., Ouamane, A., Boumehraz, M., Atalla, S., & Mansoor, W. (2023). A comprehensive review of recent research trends on unmanned aerial vehicles (uavs). Systems, 11(8), 400.
    [Google Scholar]
  58. Khan, S. I., Qadir, Z., Munawar, H. S., Nayak, S. R., Budati, A. K., Verma, K. D., & Prakash, D. (2021). UAVs path planning architecture for effective medical emergency response in future networks. Physical Communication, 47, 101337.
    [Google Scholar]
  59. Qadir, Z., Zafar, M. H., Moosavi, S. K. R., Le, K. N., & Mahmud, M. P. (2021). Autonomous UAV path-planning optimization using metaheuristic approach for predisaster assessment. IEEE Internet of Things Journal, 9(14), 12505-12514.
    [Google Scholar]
  60. Shao, S., He, C., Zhao, Y., & Wu, X. (2021). Efficient trajectory planning for UAVs using hierarchical optimization. IEEE Access, 9, 60668-60681.
    [Google Scholar]
  61. Navabi, M., Davoodi, A., & Mirzaei, H. (2022). Trajectory tracking of under-actuated quadcopter using Lyapunov-based optimum adaptive controller. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 236(1), 202-215.
    [Google Scholar]
  62. Wang, S., Li, G., Song, J., & Liu, B. (2024). Research on an Intelligent Vehicle Trajectory Tracking Method Based on Optimal Control Theory. World Electric Vehicle Journal, 15(4), 160.
    [Google Scholar]
  63. Mir, I., Gul, F., Mir, S., Khan, M. A., Saeed, N., Abualigah, L., ... & Gandomi, A. H. (2022). A survey of trajectory planning techniques for autonomous systems. Electronics, 11(18), 2801.
    [Google Scholar]
  64. Javed, S., Hassan, A., Ahmad, R., Ahmed, W., Ahmed, R., Saadat, A., & Guizani, M. (2024). State-of-the-art and future research challenges in uav swarms. IEEE Internet of Things Journal, 11(11), 19023-19045.
    [Google Scholar]

Article Metrics
Citations:

Crossref

0

Scopus

2

Web of Science

2
Article Access Statistics:
Views: 1122
PDF Downloads: 87

Publisher's Note
IECE stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions
Institute of Emerging and Computer Engineers (IECE) or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
IECE Transactions on Sensing, Communication, and Control

IECE Transactions on Sensing, Communication, and Control

ISSN: 3065-7431 (Online) | ISSN: 3065-7423 (Print)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/iece/

Copyright © 2024 Institute of Emerging and Computer Engineers Inc.