-
CiteScore
-
Impact Factor
IECE Transactions on Sensing, Communication, and Control, 2024, Volume 1, Issue 2: 101-125

Free Access | Review Article | 27 November 2024
1 Department of Computer Engineering, Marwadi University, Rajkot, India
* Corresponding author: Sushil Kumar Singh, email: [email protected]
Received: 12 October 2024, Accepted: 06 November 2024, Published: 27 November 2024  

Abstract
Smart Environment is rapidly growing with the inclusion of Artificial Intelligence of Things (AIoT) when it connects to future communication and social media networks. Security and privacy are significant challenges, including data integrity, account hijacking, cybersecurity, and cyberbullying. To mitigate these challenges, Social Media 3.0 is utilized with advanced emerging technologies such as Blockchain, Federated Learning (FL), and others and offers solutions in existing research. This article comprehensively reviews and proposes Next-Generation Technologies for Secure Future Communication Service Scenario for Smart Environment and Social-Media 3.0. We discuss existing attacks with their classification that can threaten the personal information of a Future Communication-based Smart Environment, then offer countermeasure solutions. FL with AIoT is discussed to preserve the privacy and security of smart environment applications with live projects under the implementation of the Dubai Blockchain Strategy, ADEPT, and many more. Blockchain is utilized at the proposed service scenario's edge, fog, and cloud intelligent layers for secure future communication; FL trains local models that aggregate to form global models trained over diverse Smart Environments. Finally, several challenges and open issues of integrating emerging technologies for Smart Environment and Social-Media 3.0 applications and future directions are discussed in the last section.

Graphical Abstract
Next-Generation Technologies for Secure Future Communication-based Social-Media 3.0 and Smart Environment

Keywords
smart environment (SE)
blockchain, federated Learning (FL)
social media, internet of things (IoT)

References

[1] Chin, J., Callaghan, V., & Allouch, S. B. (2019). The Internet-of-Things: Reflections on the past, present and future from a user-centered and smart environment perspective. Journal of Ambient Intelligence and Smart Environments, 11(1), 45-69.

[2] Mohanty, S. P., Choppali, U., & Kougianos, E. (2016). Everything you wanted to know about smart cities: The Internet of things is the backbone. IEEE consumer electronics magazine, 5(3), 60-70.

[3] Pantano, E., & Timmermans, H. (2014). What is smart for retailing?. Procedia Environmental Sciences, 22, 101-107.

[4] Ikrissi, G., & Mazri, T. (2021). IOT-based Smart Environments: State of the art, security threats and solutions. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 46, 279-286.

[5] Popescul, D., & Genete, L. D. (2016). Data security in smart cities: challenges and solutions. Informatica Economică, 20(1).

[6] Patrono, L., Atzori, L., Šolić, P., Mongiello, M., & Almeida, A. (2020). Challenges to be addressed to realize Internet of Things solutions for smart environments. Future generation computer systems, 111, 873-878.

[7] Reyna, A., Martín, C., Chen, J., Soler, E., & Díaz, M. (2018). On blockchain and its integration with IoT. Challenges and opportunities. Future generation computer systems, 88, 173-190.

[8] Theodorou, S., & Sklavos, N. (2019). Blockchain-based security and privacy in smart cities. In Smart cities cybersecurity and privacy (pp. 21-37). Elsevier.

[9] Majeed, U., Khan, L. U., Yaqoob, I., Kazmi, S. A., Salah, K., & Hong, C. S. (2021). Blockchain for IoT-based smart cities: Recent advances, requirements, and future challenges. Journal of Network and Computer Applications, 181, 103007.

[10] Michelin, R. A., Dorri, A., Steger, M., Lunardi, R. C., Kanhere, S. S., Jurdak, R., & Zorzo, A. F. (2018, November). SpeedyChain: A framework for decoupling data from blockchain for smart cities. In Proceedings of the 15th EAI international conference on mobile and ubiquitous systems: Computing, networking and services (pp. 145-154).

[11] Makhdoom, I., Zhou, I., Abolhasan, M., Lipman, J., & Ni, W. (2020). PrivySharing: A blockchain-based framework for privacy-preserving and secure data sharing in smart cities. Computers & Security, 88, 101653.

[12] Pandya, S., Srivastava, G., Jhaveri, R., Babu, M. R., Bhattacharya, S., Maddikunta, P. K. R., ... & Gadekallu, T. R. (2023). Federated learning for smart cities: A comprehensive survey. Sustainable Energy Technologies and Assessments, 55, 102987.

[13] Li, Q., Wen, Z., Wu, Z., Hu, S., Wang, N., Li, Y., ... & He, B. (2021). A survey on federated learning systems: Vision, hype and reality for data privacy and protection. IEEE Transactions on Knowledge and Data Engineering, 35(4), 3347-3366.

[14] Konečný, J. (2016). Federated Learning: Strategies for Improving Communication Efficiency. arXiv preprint arXiv:1610.05492.

[15] Zhang, R., Xue, R., & Liu, L. (2021). Security and privacy for healthcare blockchains. IEEE Transactions on Services Computing, 15(6), 3668-3686.

[16] Orecchini, F., Santiangeli, A., Zuccari, F., Pieroni, A., & Suppa, T. (2019). Blockchain technology in smart city: A new opportunity for smart environment and smart mobility. In Intelligent Computing & Optimization 1 (pp. 346-354). Springer International Publishing.

[17] Mukherjee, P., Barik, R. K., & Pradhan, C. (2021). A comprehensive proposal for blockchain-oriented smart city. Security and Privacy Applications for Smart City Development, 55-87.

[18] Chen, J., Gan, W., Hu, M., & Chen, C. M. (2021). On the construction of a post-quantum blockchain for smart city. Journal of information security and applications, 58, 102780.

[19] Paul, R., Ghosh, N., Sau, S., Chakrabarti, A., & Mohapatra, P. (2021). Blockchain based secure smart city architecture using low resource IoTs. Computer Networks, 196, 108234.

[20] Wong, P. F., Chia, F. C., Kiu, M. S., & Lou, E. C. (2022). Potential integration of blockchain technology into smart sustainable city (SSC) developments: a systematic review. Smart and Sustainable Built Environment, 11(3), 559-574.

[21] Yang, Q., Liu, Y., Chen, T., & Tong, Y. (2019). Federated machine learning: Concept and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2), 1-19.

[22] Zheng, Z., Zhou, Y., Sun, Y., Wang, Z., Liu, B., & Li, K. (2022). Applications of federated learning in smart cities: recent advances, taxonomy, and open challenges. Connection Science, 34(1), 1-28.

[23] Sater, R. A., & Hamza, A. B. (2021). A federated learning approach to anomaly detection in smart buildings. ACM Transactions on Internet of Things, 2(4), 1-23.

[24] Yang, Z., Chen, M., Wong, K. K., Poor, H. V., & Cui, S. (2022). Federated learning for 6G: Applications, challenges, and opportunities. Engineering, 8, 33-41.

[25] Huang, X., Li, P., Yu, R., Wu, Y., Xie, K., & Xie, S. (2021). FedParking: A federated learning based parking space estimation with parked vehicle assisted edge computing. IEEE Transactions on Vehicular Technology, 70(9), 9355-9368.

[26] Li, D., Luo, Z., & Cao, B. (2022). Blockchain-based federated learning methodologies in smart environments. Cluster Computing, 25(4), 2585-2599.

[27] Li, L., Fan, Y., Tse, M., & Lin, K. Y. (2020). A review of applications in federated learning. Computers & Industrial Engineering, 149, 106854.

[28] Chai, H., Leng, S., Chen, Y., & Zhang, K. (2020). A hierarchical blockchain-enabled federated learning algorithm for knowledge sharing in internet of vehicles. IEEE Transactions on Intelligent Transportation Systems, 22(7), 3975-3986.

[29] Kuang, Z., & Chen, C. (2023). Research on smart city data encryption and communication efficiency improvement under federated learning framework. Egyptian Informatics Journal, 24(2), 217-227.

[30] Zhao, Y., Zhao, J., Jiang, L., Tan, R., Niyato, D., Li, Z., ... & Liu, Y. (2020). Privacy-preserving blockchain-based federated learning for IoT devices. IEEE Internet of Things Journal, 8(3), 1817-1829.

[31] Albaseer, A., Ciftler, B. S., Abdallah, M., & Al-Fuqaha, A. (2020, June). Exploiting unlabeled data in smart cities using federated edge learning. In 2020 International Wireless Communications and Mobile Computing (IWCMC) (pp. 1666-1671). IEEE.

[32] Otoum, S., Al Ridhawi, I., & Mouftah, H. (2021). Securing critical IoT infrastructures with blockchain-supported federated learning. IEEE Internet of Things Journal, 9(4), 2592-2601.

[33] Jie, W., Qiu, W., Koe, A. S. V., Li, J., Wang, Y., Wu, Y., & Li, J. (2023). A Secure and Flexible Blockchain-Based Offline Payment Protocol. IEEE Transactions on Computers.

[34] Demertzis, K. (2021). Blockchained federated learning for threat defense. arXiv preprint arXiv:2102.12746.

[35] Yuan, X., Chen, J., Yang, J., Zhang, N., Yang, T., Han, T., & Taherkordi, A. (2022). Fedstn: Graph representation driven federated learning for edge computing enabled urban traffic flow prediction. IEEE Transactions on Intelligent Transportation Systems, 24(8), 8738-8748.

[36] Ahmed, S. T., & Jeong, J. (2024). Heterogeneous Workload based Consumer Resource Recommendation Model for Smart Cities: eHealth Edge-Cloud Connectivity Using Federated Split Learning. IEEE Transactions on Consumer Electronics.

[37] Qi, Y., Hossain, M. S., Nie, J., & Li, X. (2021). Privacy-preserving blockchain-based federated learning for traffic flow prediction. Future Generation Computer Systems, 117, 328-337.

[38] Farooq, K., Syed, H. J., Alqahtani, S. O., Nagmeldin, W., Ibrahim, A. O., & Gani, A. (2022). Blockchain federated learning for in-home health monitoring. Electronics, 12(1), 136.

[39] Ayaz, F., Sheng, Z., Tian, D., & Guan, Y. L. (2021). A blockchain based federated learning for message dissemination in vehicular networks. IEEE Transactions on Vehicular Technology, 71(2), 1927-1940.

[40] Yang, Z., Shi, Y., Zhou, Y., Wang, Z., & Yang, K. (2022). Trustworthy federated learning via blockchain. IEEE Internet of Things Journal, 10(1), 92-109.

[41] Liu, H., Zhang, S., Zhang, P., Zhou, X., Shao, X., Pu, G., & Zhang, Y. (2021). Blockchain and federated learning for collaborative intrusion detection in vehicular edge computing. IEEE Transactions on Vehicular Technology, 70(6), 6073-6084.

[42] Wang, R., & Tsai, W. T. (2022). Asynchronous federated learning system based on permissioned blockchains. Sensors, 22(4), 1672.

[43] Li, Y., Chen, C., Liu, N., Huang, H., Zheng, Z., & Yan, Q. (2020). A blockchain-based decentralized federated learning framework with committee consensus. IEEE Network, 35(1), 234-241.

[44] Lu, Y., Huang, X., Zhang, K., Maharjan, S., & Zhang, Y. (2020). Blockchain and federated learning for 5G beyond. IEEE Network, 35(1), 219-225.

[45] Zhang, W., Lu, Q., Yu, Q., Li, Z., Liu, Y., Lo, S. K., ... & Zhu, L. (2020). Blockchain-based federated learning for device failure detection in industrial IoT. IEEE Internet of Things Journal, 8(7), 5926-5937.

[46] Awan, S., Li, F., Luo, B., & Liu, M. (2019, November). Poster: A reliable and accountable privacy-preserving federated learning framework using the blockchain. In Proceedings of the 2019 ACM SIGSAC conference on computer and communications security (pp. 2561-2563).

[47] Hua, G., Zhu, L., Wu, J., Shen, C., Zhou, L., & Lin, Q. (2020). Blockchain-based federated learning for intelligent control in heavy haul railway. IEEE Access, 8, 176830-176839.

[48] Jain, A. K., Sahoo, S. R., & Kaubiyal, J. (2021). Online social networks security and privacy: comprehensive review and analysis. Complex & Intelligent Systems, 7(5), 2157-2177.

[49] Etuh, E., & Bakpo, F. S. (2022). Social Media Networks Attacks and their Preventive Mechanisms: A Review. arXiv preprint arXiv:2201.03330.

[50] Salim, S., Turnbull, B., & Moustafa, N. (2021). A blockchain-enabled explainable federated learning for securing internet-of-things-based social media 3.0 networks. IEEE Transactions on Computational Social Systems.

[51] Dubai Blockchain Policy. (2022). DIGITAL DUBAI. https://www.digitaldubai.ae/docs/defaultsource/publications/ dubaiblockchainpolicy.pdf?sfvrsn=4a4bb396_4

[52] Faruk, M. J. H., Shahriar, H., Valero, M., Barsha, F. L., Sobhan, S., Khan, M. A., ... & Wu, F. (2021, December). Malware detection and prevention using artificial intelligence techniques. In 2021 IEEE international conference on big data (big data) (pp. 5369-5377). IEEE.

[53] Wen, H., Fang, J., Wu, J., & Zheng, Z. (2022). Hide and seek: An adversarial hiding approach against phishing detection on ethereum. IEEE Transactions on Computational Social Systems, 10(6), 3512-3523.

[54] Basit, A., Zafar, M., Liu, X., Javed, A. R., Jalil, Z., & Kifayat, K. (2021). A comprehensive survey of AI-enabled phishing attacks detection techniques. Telecommunication Systems, 76, 139-154.

[55] Zheng, H., Ma, M., Ma, H., Chen, J., Xiong, H., & Yang, Z. (2023). Tegdetector: a phishing detector that knows evolving transaction behaviors. IEEE Transactions on Computational Social Systems.

[56] Huang, H., Zhang, X., Wang, J., Gao, C., Li, X., Zhu, R., & Ma, Q. (2024). PEAE-GNN: Phishing Detection on Ethereum via Augmentation Ego-Graph Based on Graph Neural Network. IEEE Transactions on Computational Social Systems.

[57] Valecha, R., Mandaokar, P., & Rao, H. R. (2021). Phishing email detection using persuasion cues. IEEE transactions on Dependable and secure computing, 19(2), 747-756.

[58] Duman, S., Büchler, M., Egele, M., & Kirda, E. (2023). PellucidAttachment: Protecting users from attacks via e-mail attachments. IEEE Transactions on Dependable and Secure Computing, 21(3), 1342-1354.

[59] Rao, S., Verma, A. K., & Bhatia, T. (2021). A review on social spam detection: Challenges, open issues, and future directions. Expert Systems with Applications, 186, 115742.

[60] Haber, M. J., & Rolls, D. (2019). Identity attack vectors: implementing an effective identity and access management solution. Apress.

[61] Punkamol, D., & Marukatat, R. (2020, March). Detection of account cloning in online social networks. In 2020 8th International Electrical Engineering Congress (iEECON) (pp. 1-4). IEEE.

[62] Alsaffar, M., Aljaloud, S., Mohammed, B. A., Al-Mekhlafi, Z. G., Almurayziq, T. S., Alshammari, G., & Alshammari, A. (2022). Detection of Web Cross-Site Scripting (XSS) Attacks. Electronics, 11(14), 2212.

[63] Muñoz, F., Isaza, G., & Castillo, L. (2020, June). Smartsec4cop: smart cyber-grooming detection using natural language processing and convolutional neural networks. In International Symposium on Distributed Computing and Artificial Intelligence (pp. 11-20). Cham: Springer International Publishing.

[64] Ojha, R. P., Srivastava, P. K., Sanyal, G., & Gupta, N. (2021). Improved model for the stability analysis of wireless sensor network against malware attacks. Wireless Personal Communications, 116(3), 2525-2548.

[65] Zhao, K., Zhou, H., Zhu, Y., Zhan, X., Zhou, K., Li, J., ... & Luo, X. (2021, November). Structural attack against graph based android malware detection. In Proceedings of the 2021 ACM SIGSAC conference on computer and communications security (pp. 3218-3235).

[66] Wang, M., & Song, L. (2021). Efficient defense strategy against spam and phishing email: An evolutionary game model. Journal of Information Security and Applications, 61, 102947.

[67] Saad, M., Kim, J., Nyang, D., & Mohaisen, D. (2021). Contra-∗: Mechanisms for countering spam attacks on blockchain’s memory pools. Journal of Network and Computer Applications, 179, 102971.

[68] Bilge, L., Strufe, T., Balzarotti, D., & Kirda, E. (2009, April). All your contacts are belong to us: automated identity theft attacks on social networks. In Proceedings of the 18th international conference on World wide web (pp. 551-560).

[69] Daraghmi, E., Jayousi, S., Daraghmi, Y., Daraghmi, R., & Fouchal, H. (2024). Smart Contracts for Managing the Agricultural Supply Chain: A Practical Case Study. IEEE Access.

[70] Alterkavı, S., & Erbay, H. (2021). Design and analysis of a novel authorship verification framework for hijacked social media accounts compromised by a human. Security and Communication Networks, 2021(1), 8869681.

[71] Ayeni, B. K., Sahalu, J. B., & Adeyanju, K. R. (2018). Detecting Cross-Site Scripting in Web Applications Using Fuzzy Inference System. Journal of Computer Networks and Communications, 2018(1), 8159548.

[72] Marashdih, A. W., Zaaba, Z. F., Suwais, K., & Mohd, N. A. (2019). Web application security: An investigation on static analysis with other algorithms to detect cross site scripting. Procedia Computer Science, 161, 1173-1181.

[73] Rivera, R., Pazmiño, L., Becerra, F., & Barriga, J. (2022). An analysis of cyber espionage process. In Developments and Advances in Defense and Security: Proceedings of MICRADS 2021 (pp. 3-14). Springer Singapore.

[74] Bederna, Z., & Szadeczky, T. (2020). Cyber espionage through Botnets. Security Journal, 33(1), 43-62.

[75] Shrivastava, P., Jamal, M. S., & Kataoka, K. (2020). EvilScout: Detection and mitigation of evil twin attack in SDN enabled WiFi. IEEE Transactions on Network and Service Management, 17(1), 89-102.

[76] Agarwal, M., Biswas, S., & Nandi, S. (2018). An efficient scheme to detect evil twin rogue access point attack in 802.11 Wi-Fi networks. International Journal of Wireless Information Networks, 25, 130-145.

[77] Kopecký, K., & Szotkowski, R. (2017). Cyberbullying, cyber aggression and their impact on the victim–The teacher. Telematics and informatics, 34(2), 506-517.

[78] al-Khateeb, H. M., & Epiphaniou, G. (2016). How technology can mitigate and counteract cyber-stalking and online grooming. Computer Fraud & Security, 2016(1), 14-18.

[79] Rybnicek, M., Poisel, R., & Tjoa, S. (2013, October). Facebook watchdog: a research agenda for detecting online grooming and bullying activities. In 2013 IEEE International Conference on Systems, Man, and Cybernetics (pp. 2854-2859). IEEE.

[80] Young, A., & Verhulst, S. (2020). Zug Digital ID: Blockchain Case Study for Government Issued Identity. Consensys. https://consensys.io/blockchain-use-cases/ government-and-the-public-sector/zug

[81] Zambrano, P., Torres, J., Tello-Oquendo, L., Jácome, R., Benalcazar, M. E., Andrade, R., & Fuertes, W. (2019). Technical mapping of the grooming anatomy using machine learning paradigms: An information security approach. IEEE Access, 7, 142129-142146.

[82] Zhan, Y., Xiong, Y., & Xing, X. (2023). A conceptual model and case study of blockchain-enabled social media platform. Technovation, 119, 102610.

[83] Basem, O., Ullah, A., & Hassen, H. R. (2022). Stick: an end-to-end encryption protocol tailored for social network platforms. IEEE Transactions on Dependable and Secure Computing, 20(2), 1258-1269.

[84] Zhou, X., Liang, W., Ma, J., Yan, Z., Kevin, I., & Wang, K. (2022). 2D federated learning for personalized human activity recognition in cyber-physical-social systems. IEEE Transactions on Network Science and Engineering, 9(6), 3934-3944.

[85] Krishnan, P., Jain, K., Jose, P. G., Achuthan, K., & Buyya, R. (2021). SDN enabled QoE and security framework for multimedia applications in 5G networks. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 17(2), 1-29.

[86] Wati, V., Kusrini, K., Al Fatta, H., & Kapoor, N. (2021). Security of facial biometric authentication for attendance system. Multimedia Tools and Applications, 80(15), 23625-23646.

[87] Mbarek, B., Ge, M., & Pitner, T. (2020). An efficient mutual authentication scheme for internet of things. Internet of things, 9, 100160.

[88] El Sibai, R., Gemayel, N., Bou Abdo, J., & Demerjian, J. (2020). A survey on access control mechanisms for cloud computing. Transactions on Emerging Telecommunications Technologies, 31(2), e3720.

[89] Kempe, E., & Massey, A. (2021, September). Perspectives on regulatory compliance in software engineering. In 2021 IEEE 29th International Requirements Engineering Conference (RE) (pp. 46-57). IEEE.

[90] Fraga-Lamas, P., & Fernandez-Carames, T. M. (2020). Fake news, disinformation, and deepfakes: Leveraging distributed ledger technologies and blockchain to combat digital deception and counterfeit reality. IT professional, 22(2), 53-59.

[91] Cohn, J. M., Finn, P. G., Nair, S. P., Panikkar, S. B., & Pureswaran, V. S. (2019). US Patent No. 10,257,270.

[92] Sengan, S., Subramaniyaswamy, V., Nair, S. K., Indragandhi, V., Manikandan, J., & Ravi, L. (2020). Enhancing cyber–physical systems with hybrid smart city cyber security architecture for secure public data-smart network. Future generation computer systems, 112, 724-737.

[93] Singh, S. K., Jeong, Y. S., & Park, J. H. (2020). A deep learning-based IoT-oriented infrastructure for secure smart city. Sustainable Cities and Society, 60, 102252.

[94] Ali, Z., Chaudhry, S. A., Ramzan, M. S., & Al-Turjman, F. (2020). Securing smart city surveillance: A lightweight authentication mechanism for unmanned vehicles. IEEE Access, 8, 43711-43724.

[95] Park, J. H., Yotxay, S., Singh, S. K., & Park, J. H. (2024). PoAh-Enabled Federated Learning Architecture for DDoS Attack Detection in IoT Networks. Human-Centric Computing And Information Sciences, 14.

[96] Singh, S. K., Azzaoui, A. E., Choo, K. K. R., Yang, L. T., & Park, J. H. (2023). Articles A Comprehensive Survey on Blockchain for Secure IoT-enabled Smart City beyond 5G: Approaches, Processes, Challenges, and Opportunities. Hum.-Centric Comput. Inf. Sci, 13, 51.

[97] Al Dakheel, J., Del Pero, C., Aste, N., & Leonforte, F. (2020). Smart buildings features and key performance indicators: A review. Sustainable Cities and Society, 61, 102328.

[98] Fantin Irudaya Raj, E., & Appadurai, M. (2022). Internet of things-based smart transportation system for smart cities. In Intelligent Systems for Social Good: Theory and Practice (pp. 39-50). Singapore: Springer Nature Singapore.

[99] Sinha, B. B., & Dhanalakshmi, R. (2022). Recent advancements and challenges of Internet of Things in smart agriculture: A survey. Future Generation Computer Systems, 126, 169-184.

[100] Bourg, L., Chatzidimitris, T., Chatzigiannakis, I., Gavalas, D., Giannakopoulou, K., Kasapakis, V., ... & Zaroliagis, C. (2023). Enhancing shopping experiences in smart retailing. Journal of Ambient Intelligence and Humanized Computing, 1-19.

[101] Mohamed, G., Visumathi, J., Mahdal, M., Anand, J., & Elangovan, M. (2022). An effective and secure mechanism for phishing attacks using a machine learning approach. Processes, 10(7), 1356.

[102] Aljaidi, M., Alsarhan, A., Samara, G., Alazaidah, R., Almatarneh, S., Khalid, M., & Al-Gumaei, Y. A. (2022, November). NHS WannaCry ransomware attack: technical explanation of the vulnerability, exploitation, and countermeasures. In 2022 International Engineering Conference on Electrical, Energy, and Artificial Intelligence (EICEEAI) (pp. 1-6). IEEE.

[103] Thangavel, S., & Kannan, S. (2022). Detection and trace back of low and high volume of distributed denial-of-service attack based on statistical measures. Concurrency and Computation: Practice and Experience, 34(8), e5428.

[104] Wang, D., Webb, S., Lee, K., Caverlee, J., & Pu, C. (2023). Granular computing system vulnerabilities: Exploring the dark side of social networking communities. In Granular, Fuzzy, and Soft Computing (pp. 239-250). New York, NY: Springer US.

[105] Aisya, N. R. (2024). Cyberbullying: The Silent Epidemic of The Digital Age. Journal of World Science, 3(6), 691-697.

[106] Khan, S., Kabanov, I., Hua, Y., & Madnick, S. (2022). A systematic analysis of the capital one data breach: Critical lessons learned. ACM Transactions on Privacy and Security, 26(1), 1-29.

[107] Suliman, M., & Leith, D. (2023, September). Two models are better than one: Federated learning is not private for google gboard next word prediction. In European Symposium on Research in Computer Security (pp. 105-122). Cham: Springer Nature Switzerland.

[108] Farahani, B., Tabibian, S., & Ebrahimi, H. (2023). Towards A Personalized Clustered Federated Learning: A Speech Recognition Case Study. IEEE Internet of Things Journal.

[109] Brecko, A., Kajati, E., Koziorek, J., & Zolotova, I. (2022). Federated learning for edge computing: A survey. Applied Sciences, 12(18), 9124.

[110] Singh, S. K., Kumar, M., Khanna, A., & Virdee, B. (2024). Blockchain and FL-based secure architecture for enhanced external Intrusion detection in smart farming. IEEE Internet of Things Journal.

[111] Usman, M. T., Khan, H., Singh, S. K., Lee, M. Y., & Koo, J. (2024). Efficient deepfake detection via layer-frozen assisted dual attention network for consumer imaging devices. IEEE Transactions on Consumer Electronics.

[112] Kumar, M., Singh, S. K., & Kim, S. (2024). Predictive Analytics for Mortality: FSRNCA-FLANN Modeling Using Public Health Inventory Records. IEEE Access.

[113] Singh, S. K., Kumar, M., Tanwar, S., & Park, J. H. (2024). GRU-based digital twin framework for data allocation and storage in IoT-enabled smart home networks. Future Generation Computer Systems, 153, 391-402.

[114] Jeremiah, S. R., Ha, J., Singh, S. K., & Park, J. H. ArticlesPrivacyGuard: Collaborative Edge-Cloud Computing Architecture for Attribute-Preserving Face Anonymization in CCTV Networks.

[115] Khan, H., Ullah, I., Shabaz, M., Omer, M. F., Usman, M. T., Guellil, M. S., & Koo, J. (2024). Visionary vigilance: Optimized YOLOV8 for fallen person detection with large-scale benchmark dataset. Image and Vision Computing, 149, 105195.

[116] Ullah, I., Ali, F., Khan, H., Khan, F., & Bai, X. (2024). Ubiquitous computation in internet of vehicles for human-centric transport systems. Computers in Human Behavior, 161, 108394.

[117] Khan, H., Jan, Z., Ullah, I., Alwabli, A., Alharbi, F., Habib, S., ... & Koo, J. (2024). A deep dive into AI integration and advanced nanobiosensor technologies for enhanced bacterial infection monitoring. Nanotechnology Reviews, 13(1), 20240056.

[118] Singh, S. K., Lee, C., & Park, J. H. (2022). CoVAC: A P2P smart contract-based intelligent smart city architecture for vaccine manufacturing. Computers & Industrial Engineering, 166, 107967.


Cite This Article
APA Style
Kurde, A., & Singh, S. K. (2024). Next-Generation Technologies for Secure Future Communication-based Social-Media 3.0 and Smart Environment. IECE Transactions on Sensing, Communication, and Control, 1(2), 101–125. https://doi.org/10.62762/TSCC.2024.322898

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 233
PDF Downloads: 40

Publisher's Note
IECE stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions
IECE or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
IECE Transactions on Sensing, Communication, and Control

IECE Transactions on Sensing, Communication, and Control

ISSN: 3065-7431 (Online) | ISSN: 3065-7423 (Print)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/iece/

Copyright © 2024 Institute of Emerging and Computer Engineers Inc.