IECE Transactions on Sensing, Communication, and Control
ISSN: 3065-7431 (Online) | ISSN: 3065-7423 (Print)
Email: [email protected]
[1] Yang, J., Wang, Y., Wang, T., Hu, Z., Yang, X., & Rodriguez-Andina, J. J. (2024). Time-Delay Sliding Mode Control for Trajectory Tracking of Robot Manipulators. IEEE Transactions on Industrial Electronics.
[2] Wang, Y., & Wang, B. (2024). Pedestrian Trajectory Reconstruction for Indoor Movement Based on Foot-Mounted IMU. IECE Transactions on Intelligent Systematics, 1(1), 19-29.
[3] Sun, M., Ge, S. S., & Mareels, I. M. (2006). Adaptive repetitive learning control of robotic manipulators without the requirement for initial repositioning. IEEE Transactions on Robotics, 22(3), 563-568.
[4] Ding, F., Lv, L., Pan, J., Wan, X., & Jin, X. B. (2020). Two-stage gradient-based iterative estimation methods for controlled autoregressive systems using the measurement data. International Journal of Control, Automation and Systems, 18(4), 886-896.
[5] Ma, H., Zhang, X., Liu, Q., Ding, F., Jin, X. B., Alsaedi, A., & Hayat, T. (2020). Partially-coupled gradient-based iterative algorithms for multivariable output-error-like systems with autoregressive moving average noises. IET Control Theory & Applications, 14(17), 2613-2627.
[6] Baek, J., Jin, M., & Han, S. (2016). A new adaptive sliding-mode control scheme for application to robot manipulators. IEEE Transactions on industrial electronics, 63(6), 3628-3637.
[7] Dai, L., Yu, Y., Zhai, D. H., Huang, T., & Xia, Y. (2020). Robust model predictive tracking control for robot manipulators with disturbances. IEEE Transactions on industrial electronics, 68(5), 4288-4297.
[8] Chang, W., Li, Y., & Tong, S. (2018). Adaptive fuzzy backstepping tracking control for flexible robotic manipulator. IEEE/CAA Journal of Automatica Sinica, 8(12), 1923-1930.
[9] Yang, C., Huang, D., He, W., & Cheng, L. (2020). Neural control of robot manipulators with trajectory tracking constraints and input saturation. IEEE Transactions on Neural Networks and Learning Systems, 32(9), 4231-4242.
[10] Jin, X., Sun, T., Chen, W., Ma, H., Wang, Y., & Zheng, Y. (2024). Parameter Adaptive Non-Model-Based State Estimation Combining Attention Mechanism and LSTM. IECE Transactions on Intelligent Systematics, 1(1), 40-48.
[11] Yu, S., Yu, X., Shirinzadeh, B., & Man, Z. (2005). Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica, 41(11), 1957-1964.
[12] Ren, B., Liu, J., Zhang, S., Yang, C., & Na, J. (2024). On-line Configuration Identification and Control of Modular Reconfigurable Flight Array. IECE Transactions on Intelligent Systematics, 1(2), 91-101.
[13] Zhang, Y., & Hua, C. (2022). Composite learning finite-time control of robotic systems with output constraints. IEEE Transactions on Industrial Electronics, 70(2), 1687-1695.
[14] Gao, M., Ding, L., & Jin, X. (2021). ELM-based adaptive faster fixed-time control of robotic manipulator systems. IEEE Transactions on Neural Networks and Learning Systems, 34(8), 4646-4658.
[15] Xie, Y., Ma, Q., Gu, J., & Zhou, G. (2022). Event-triggered fixed-time practical tracking control for flexible-joint robot. IEEE Transactions on Fuzzy Systems, 31(1), 67-76.
[16] Van, M., Sun, Y., Mcllvanna, S., Nguyen, M. N., Khyam, M. O., & Ceglarek, D. (2023). Adaptive fuzzy fault tolerant control for robot manipulators with fixed-time convergence. IEEE Transactions on Fuzzy Systems, 31(9), 3210-3219.
[17] Sánchez-Torres, J. D., Sanchez, E. N., & Loukianov, A. G. (2015, July). Predefined-time stability of dynamical systems with sliding modes. In 2015 American control conference (ACC) (pp. 5842-5846). IEEE.
[18] Hu, S., Chen, Q., Ren, X., & Wang, S. (2024). Adaptive Predefined-Time Synchronization and Tracking Control for Multimotor Driving Servo Systems. IEEE/ASME Transactions on Mechatronics.
[19] Wang, Q., Cao, J., & Liu, H. (2022). Adaptive fuzzy control of nonlinear systems with predefined time and accuracy. IEEE Transactions on Fuzzy Systems, 30(12), 5152-5165.
[20] Xie, S., & Chen, Q. (2021). Adaptive nonsingular predefined-time control for attitude stabilization of rigid spacecrafts. IEEE Transactions on Circuits and Systems II: Express Briefs, 69(1), 189-193.
[21] Fan, Y., Yang, C., Zhan, H., & Li, Y. (2024). Neuro-Adaptive-Based Predefined-Time Smooth Control for Manipulators With Disturbance. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 54(8), 4605-4616.
[22] Jia, C., Liu, X., & Xu, J. (2023). Predefined-Time Nonsingular Sliding Mode Control and Its Application to Nonlinear Systems. IEEE Transactions on Industrial Informatics, 20(4), 5829-5837.
[23] Ni, J., & Shi, P. (2020). Global predefined time and accuracy adaptive neural network control for uncertain strict-feedback systems with output constraint and dead zone. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(12), 7903-7918.
[24] Ding, M., Wu, H., Zheng, X., & Guo, Y. (2022). Adaptive predefined-time attitude stabilization control of space continuum robot. IEEE Transactions on Circuits and Systems II: Express Briefs, 71(2), 647-651.
[25] Wu, Y. Y., Liu, W., Zhang, J., Li, X., & Wang, P. (2024). Tunable Predefined-Time Attitude Tracking Control for Rigid Spacecraft. IEEE Transactions on Circuits and Systems II: Express Briefs, 71(9), 4271-4275.
[26] Munoz-Vazquez, A. J., Sánchez-Torres, J. D., Jimenez-Rodriguez, E., & Loukianov, A. G. (2019). Predefined-time robust stabilization of robotic manipulators. IEEE/ASME Transactions on Mechatronics, 24(3), 1033-1040.
[27] Zhou, Q., Zhao, S., Li, H., Lu, R., & Wu, C. (2018). Adaptive neural network tracking control for robotic manipulators with dead zone. IEEE Transactions on Neural Networks and Learning Systems, 30(12), 3611-3620.
[28] Zhu, Y., Qiao, J., & Guo, L. (2018). Adaptive sliding mode disturbance observer-based composite control with prescribed performance of space manipulators for target capturing. IEEE Transactions on Industrial Electronics, 66(3), 1973-1983.
[29] Zou, A. M., Kumar, K. D., & de Ruiter, A. H. (2016). Robust attitude tracking control of spacecraft under control input magnitude and rate saturations. International Journal of Robust and Nonlinear Control, 26(4), 799-815.
[30] Xie, S., Chen, Q., & Yang, Q. (2022). Adaptive fuzzy predefined-time dynamic surface control for attitude tracking of spacecraft with state constraints. IEEE Transactions on Fuzzy Systems, 31(7), 2292-2304.
[31] Chen, Q., Li, Y., Hong, Y., & Shi, H. (2024). Prescribed-Time Robust Repetitive Learning Control for PMSM Servo Systems. IEEE Transactions on Industrial Electronics,71(11), 14753-14763.
[32] Shi, H., Chen, Q., Hong, Y., Ou, X., & He, X. (2024). Adaptive Fuzzy Iterative Learning Control of Constrained Systems With Arbitrary Initial State Errors and Unknown Control Gain. IEEE Transactions on Automation Science and Engineering, 1-12.
IECE Transactions on Sensing, Communication, and Control
ISSN: 3065-7431 (Online) | ISSN: 3065-7423 (Print)
Email: [email protected]
Portico
All published articles are preserved here permanently:
https://www.portico.org/publishers/iece/