IECE Transactions on Sensing, Communication, and Control
ISSN: 3065-7431 (Online) | ISSN: 3065-7423 (Print)
Email: [email protected]
[1] Katona, J. (2021). A review of human–computer interaction and virtual reality research fields in cognitive InfoCommunications. Applied Sciences, 11(6), 2646.
[2] Bhame, V., Sreemathy, R., & Dhumal, H. (2014, September). Vision based hand gesture recognition using eccentric approach for human computer interaction. In 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (pp. 949-953). IEEE.
[3] Chakravarthi, S. S., Rao, B., Challa, N. P., Ranjana, R., & Rai, A. (2023). Gesture Recognition for Enhancing Human Computer Interaction. Journal of Scientific & Industrial Research, 82(04), 438-443.
[4] Molchanov, P., Gupta, S., Kim, K., & Kautz, J. (2015). Hand gesture recognition with 3D convolutional neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition workshops (pp. 1-7).
[5] Devineau, G., Moutarde, F., Xi, W., & Yang, J. (2018, May). Deep learning for hand gesture recognition on skeletal data. In 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018) (pp. 106-113). IEEE.
[6] Tran, D. S., Ho, N. H., Yang, H. J., Baek, E. T., Kim, S. H., & Lee, G. (2020). Real-time hand gesture spotting and recognition using RGB-D camera and 3D convolutional neural network. Applied Sciences, 10(2), 722.
[7] Jaramillo-Yánez, A., Benalcázar, M. E., & Mena-Maldonado, E. (2020). Real-time hand gesture recognition using surface electromyography and machine learning: A systematic literature review. Sensors, 20(9), 2467.
[8] Pan, M., Tang, Y., & Li, H. (2023). State-of-the-art in data gloves: A review of hardware, algorithms, and applications. IEEE Transactions on Instrumentation and Measurement, 72, 1-15.
[9] Kim, B. K., Jang, M., Kim, J. S., Kang, K., Kim, D. E., & Kim, J. (2022). Investigation of FBG linear/angular acceleration sensor for novel typeinertial measurement. IEEE Transactions on Industrial Electronics, 70(6), 6377-6385.
[10] Sonchan, P., Ratchatanantakit, N., O-larnnithipong, N., Adjouadi, M., & Barreto, A. (2023, July). A Self-contained Approach to MEMS MARG Orientation Estimation for Hand Gesture Tracking in Magnetically Distorted Environments. In International Conference on Human-Computer Interaction (pp. 585-602). Cham: Springer Nature Switzerland.
[11] Wang, Y., & Zhao, Y. (2023). Handwriting recognition under natural writing habits based on a low-cost inertial sensor. IEEE Sensors Journal.
[12] Nguyen, V., Rupavatharam, S., Liu, L., Howard, R., & Gruteser, M. (2019, November). HandSense: capacitive coupling-based dynamic, micro finger gesture recognition. In Proceedings of the 17th Conference on Embedded Networked Sensor Systems (pp. 285-297).
[13] Gromov, B., Abbate, G., Gambardella, L. M., & Giusti, A. (2019, May). Proximity human-robot interaction using pointing gestures and a wrist-mounted IMU. In 2019 International Conference on Robotics and Automation (ICRA) (pp. 8084-8091). IEEE.
[14] Ling, Y., Chen, X., Ruan, Y., Zhang, X., & Chen, X. (2021). Comparative study of gesture recognition based on accelerometer and photoplethysmography sensor for gesture interactions in wearable devices. IEEE Sensors Journal, 21(15), 17107-17117.
[15] Picerno, P., Iosa, M., D’Souza, C., Benedetti, M. G., Paolucci, S., & Morone, G. (2021). Wearable inertial sensors for human movement analysis: a five-year update. Expert review of medical devices, 18(sup1), 79-94.
[16] Hao, M., Chen, K., & Fu, C. (2019). Smoother-based 3-D foot trajectory estimation using inertial sensors. IEEE Transactions on Biomedical engineering, 66(12), 3534-3542.
[17] Calado, A., Lin, B. S., Lee, I. J., & Saggio, G. (2023). Quasi-Static Measurement Performances of Flex Sensor Based and Inertial Measurement Unit Based Sensory Gloves. IEEE Sensors Journal.
[18] Li, G., Wan, B., Su, K., Huo, J., Jiang, C., & Wang, F. (2023). sEMG and IMU Data-based Hand Gesture Recognition Method using Multi-stream CNN with a Fine-tuning Transfer Framework. IEEE Sensors Journal.
[19] Dong, Y., Liu, J., & Yan, W. (2021). Dynamic hand gesture recognition based on signals from specialized data glove and deep learning algorithms. IEEE Transactions on Instrumentation and Measurement, 70, 1-14.
[20] Lee, M., & Bae, J. (2020). Deep learning based real-time recognition of dynamic finger gestures using a data glove. IEEE Access, 8, 219923-219933.
[21] Theodoridou, E., Cinque, L., Mignosi, F., Placidi, G., Polsinelli, M., Tavares, J. M. R., & Spezialetti, M. (2022). Hand tracking and gesture recognition by multiple contactless sensors: A survey. IEEE Transactions on Human-Machine Systems, 53(1), 35-43.
[22] Jin, X. B., Sun, S., Wei, H., & Yang, F. B. (Eds.). (2018). Advances in multi-sensor information fusion: Theory and applications 2017. MDPI.
[23] Pramanik, R., Sikdar, R., & Sarkar, R. (2023). Transformer-based deep reverse attention network for multi-sensory human activity recognition. Engineering Applications of Artificial Intelligence, 122, 106150.
[24] Ryumin, D., Ivanko, D., & Ryumina, E. (2023). Audio-visual speech and gesture recognition by sensors of mobile devices. Sensors, 23(4), 2284.
[25] Qi, W., Ovur, S. E., Li, Z., Marzullo, A., & Song, R. (2021). Multi-sensor guided hand gesture recognition for a teleoperated robot using a recurrent neural network. IEEE Robotics and Automation Letters, 6(3), 6039-6045.
[26] Bai, Y., Yan, B., Zhou, C., Su, T., & Jin, X. (2023). State of art on state estimation: Kalman filter driven by machine learning. Annual Reviews in Control, 56, 100909.
[27] Jin, X. B., Robert Jeremiah, R. J., Su, T. L., Bai, Y. T., & Kong, J. L. (2021). The new trend of state estimation: From model-driven to hybrid-driven methods. Sensors, 21(6), 2085.
[28] Khodabin, M., & Rostami, M. (2015). Mean square numerical solution of stochastic differential equations by fourth order Runge-Kutta method and its application in the electric circuits with noise. Advances in Difference Equations, 2015(1), 62.
[29] Bortolami, S. B., Pierobon, A., DiZio, P., & Lackner, J. R. (2006). Localization of the subjective vertical during roll, pitch, and recumbent yaw body tilt. Experimental brain research, 173, 364-373.
[30] Jin, X. B., Su, T. L., Kong, J. L., Bai, Y. T., Miao, B. B., & Dou, C. (2018). State-of-the-art mobile intelligence: Enabling robots to move like humans by estimating mobility with artificial intelligence. Applied Sciences, 8(3), 379.
[31] Nagy, E., Karl, É., & Molnár, G. (2024). Exploring the Role of Human-Robot Interactions, within the Context of the Effectiveness of a NAO Robot. Acta Polytechnica Hungarica, 21(3).
[32] Mutawa, A. M., Al Mudhahkah, H. M., Al-Huwais, A., Al-Khaldi, N., Al-Otaibi, R., & Al-Ansari, A. (2023). Augmenting Mobile App with NAO Robot for Autism Education. Machines, 11(8), 833.
[33] WANG, C., BAI, Y., CAI, L., HU, M., LIU, L., MA, Y., ... & ZHOU, Z. (2023). High precision electrostatic inertial sensor. Scientia Sinica Physica, Mechanica & Astronomica, 53(5), 250401.
[34] Sameni, R. (2017). Online filtering using piecewisesmoothness priors: Application to normal and abnormal electrocardiogram denoising. Signal Processing, 133, 52-63.
IECE Transactions on Sensing, Communication, and Control
ISSN: 3065-7431 (Online) | ISSN: 3065-7423 (Print)
Email: [email protected]
Portico
All published articles are preserved here permanently:
https://www.portico.org/publishers/iece/