
Chinese Journal of Information Fusion
http://dx.doi.org/10.62762/CJIF.2024.361881

RESEARCH ARTICLE

Simultaneous Spatiotemporal Bias Compensation and
Data Fusion for Asynchronous Multisensor Systems

Gongjian Zhou 1,*, Shizhe Bu 1 and Thiagalingam Kirubarajan 2

1 School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China
2Department of Electrical and Computer Engineering, McMaster University, Ontario, Canada

Abstract
Bias estimation of sensors is an essential
prerequisite for accurate data fusion. Neglect
of temporal bias in general real systems prevents
the existing algorithms from successful application.
In this paper, both spatial and temporal biases in
asynchronous multisensor systems are investigated
and two novel methods for simultaneous
spatiotemporal bias compensation and data fusion
are presented. The general situation that the
sensors sample at different times with different and
varying periods is explored, and unknown time
delays may exist between the time stamps and the
true measurement times. Due to the time delays,
the time stamp interval of the measurements from
different sensors may be different from their true
measurement interval, and the unknown difference
between them is considered as the temporal bias
and augmented into the state vector to be estimated.
Multisensor measurements are collected in batch
processing or sequential processing schemes to
estimate the augmented state vector, results in
two spatiotemporal bias compensation methods.
In both processing schemes, the measurements
are formulated as functions of both target states
and spatiotemporal biases according to the time
difference between the measurements and the
states to be estimated. The Unscented Kalman
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Filter is used to handle the nonlinearity of the
measurements and produce spatiotemporal bias
and target state estimates simultaneously. The
posterior Cramer-Rao lower bound (PCRLB)
for spatiotemporal bias and state estimation
is presented and simulations are conducted to
demonstrate the effectiveness of the proposed
methods.
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1 Introduction
In a sensor network, data collected from multiple
sensors is synergistically fused to improve overall
system performance [1–8]. An important prerequisite
for successful fusion is that the spatial and temporal
biases in asynchronous multiple sensor systems must
be estimated and compensated. Otherwise, these
biases may cause tracking performance degradation,
and even worse, may lead to duplicate tracks.

Spatial bias estimation and compensation has been
under intensive investigation for the past decades,
and various algorithms have been developed in the
literature. In [9], the real time quality control (RTQC)
routine is developed to compute the bias by averaging
the measurements from each sensor. In [10–12], the
sensor registration is formulated as an ordinary or
weighted least squares (LS) problem, and sensor
biases are then estimated using LS technique. In
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[13], the exact maximum likelihood (EML) method
is used to maximize the likelihood function of sensor
measurements to obtain bias estimates. The method
in [14] uses the maximum likelihood registration
(MLR) method to solve the bias estimation problem of
multiple dissimilar sensors. Another series of methods
are based on filtering and use Kalman Filter (KF),
extended Kalman Filter (EKF) and unscented Kalman
Filter (UKF) to obtain online spatial bias estimates
[15–19]. In [16], the KF method is used to estimate
the sensor system bias and the attitude bias with
the measurement noises being considered. In [17],
the EKF method is used to estimate the position and
azimuth biases of the distributed radars relative to
the common reference coordinate system. Methods in
[18, 19] use the augmented state Kalman filter (ASKF)
to estimate the augmented state vectors including the
target states and the biases of multisensor, so that the
two components can be jointly estimated.

All these methods make one fundamental assumption,
i.e., the time stamps of all the measurements accurately
indicate the measurement times. In practical
applications, there may be unknown time delays
between them due to the latency of signal processing
and/or data transfer. The time stamps cannot always
be used as reliable time references to correctly fuse
the measurements from multiple sensors, leading to
temporal bias problems. The temporal bias must be
accurately estimated and compensated, which is the
focus of this paper.

Several algorithms have been developed to solve
the temporal bias problem in offline mode. In
[20–22], the temporal bias problem is considered in
different combination of sensors. The time stamps
and the unknown time delays are used to represent
the true measurement times of sensors, and the
measurement equations are formulated. The objective
function of each sensor is built using the measurement
error terms and the relevant covariances. The
Levenberg-Marquardt (LM) algorithm [23] is used
to find the ML estimates of the temporal bias and
other unknown parameters based on minimizing the
sum of objective functions. In [24], a generalized LS
method is used to estimate the radar spatial bias and
ADS-B temporal bias, where the radar has accurate
time stamps while the transmitting time of ADS-B
data packets are unavailable. The two sensors need to
have same sampling period for this method to perform
correctly. These methods [20–22, 24] do not consider
the case where sensors all have unknown time delays.
In [25], a multisensor time-offset estimation method

is proposed for different time-offset statistical models
and target dynamicmodels. This method assumes that
the sensors are spatially unbiased and only estimates
the temporal offset offline without compensation for
accurate data fusion. These offline methods use the
estimated bias as prior information to calibrate the
sensors. This poses a problem that the biasmay change
each time the system is started, so the sensors have to
be recalibrated.

In [26], an online method is proposed to estimate the
temporal bias between the camera and the inertial
measurement unit (IMU). The time stamps and the
temporal bias estimates are used to represent the
actual measurement times of the camera. However,
due to temporal bias estimation errors, the camera
measurements are inevitably processed at incorrect
time instants, which may cause errors in the initial
stage. Besides, the sensor spatial bias is not
considered in this method. In [27–29], the spatial
bias and the temporal bias are jointly considered for
different combination of multiple dissimilar sensors.
Three spatiotemporal bias estimation methods based
on EKF, UKF and expectation-maximization-EKF
(EM-EKF), respectively, are proposed to estimate the
spatiotemporal biases and target states simultaneously.
Since both biases may exist in practical multisensor
systems, it is expected to jointly consider spatial and
temporal biases into system models. In the three
methods mentioned above, only the specific case
where themultiple sensors have same sampling period
is considered. In most real applications, the sensors
may not sample at same time with same intervals.

In this paper, the problem of simultaneous
spatiotemporal bias compensation and data fusion for
practical multisensor systems, where the sampling
periods of sensors may be different and varying,
is investigated. In our previous papers [30, 31] on
spatiotemporal bias estimation, the particular case
where sensors have constant sampling periods is
discussed. This paper is a significant extension of
the previous work to the general case with varying
sampling periods. We consider the difference
between the time stamp interval and the true
measurement interval of measurements from different
sensors as the temporal bias, which is caused by
the existence of unknown time delays. First, an
augmented state equation combining the target state
and spatiotemporal bias is formulated. Multisensor
measurements are collected in batch processing
or sequential processing schemes to estimate the
augmented state vector, results in two spatiotemporal
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bias compensation methods. In batch processing
scheme, multiple measurements from all sensors
between two consecutive reference time instants
are collected in a measurement vector to update
the augmented state vector. We use the time stamp
intervals and the temporal biases to represent
the true measurement intervals, and an accurate
relationship between measurements and states is
established. In the sequential processing strategy,
each measurement from each sensor is processed
sequentially once available. Due to the unavailability
of the true measurement intervals, the time stamp
intervals are used to formulate state transition and
the temporal bias is used to align the measurements
with target states in measurement equations. In both
processing schemes, the measurements are formulated
as functions of both target states and spatiotemporal
biases. This enables extraction of both spatial and
temporal biases from the measurements. The UKF is
used to handle the nonlinearity of the measurements
to simultaneously estimate spatiotemporal biases and
target states. The contributions of this paper can be
summarized as follows:

1. The multisensor system with spatiotemporal bias
is investigated and the time delay difference
between the sensors is regarded as the temporal
bias to be compensated for proper fusion of the
measurements from the sensors.

2. The feasible state transitions are presented for
the multisensor system without exactly known
measurement interval.

3. The measurement equations are formulated to
correctly describe the relationship between the
measurements and the states with biased time.

4. Two spatiotemporal bias compensation methods
are proposed to simultaneously estimate the
biases and target states, one in batch processing
scheme and the other in sequential processing
scheme.

5. The posterior Cramer-Rao lower bound [32, 33]
(PCRLB) is derived to quantify the best achievable
performance.

The rest of the paper is organized as follows. In Section
2, the problem of spatiotemporal bias compensation
and data fusion in asynchronous multisensor systems
is formulated. In Section 3, the spatiotemporal
bias compensation methods are presented in detail.
The PCRLB of spatiotemporal bias and target state
estimation is derived in Section 4. Section 5 presents

the simulation results, followed by conclusions in
Section 6.

2 Problem Formulation
Consider a centralized system with N sensors that
provides two-dimensional measurements in polar
coordinates, namely range and azimuthmeasurements.
The nearly constant velocity (NCV)motionmodel [34]
of the target is considered in the whole paper. The
target state vector is described as

X (k) = [x (k) , y (k) , ẋ (k) , ẏ (k)]′ (1)

where x (k) and y (k) are the positions in the direction
of x and y, respectively, ẋ (k) and ẏ (k) are the
corresponding velocities. Note that other targetmotion
models can be handled seamlesslywithin the proposed
methods. The target state equation is described as

X (k) = F (k − 1) ·X (k − 1) + Γ (k − 1) · v (k − 1)
(2)

where v (k − 1) is the zero-mean Gaussian white
process noise with known covariance Q (k − 1),
F (k − 1) is the state transition matrix, and Γ (k − 1)
is the process noise gain matrix. The sensor s reports
range measurement rs (k) and azimuth measurement
θs (k) at a rate, which may vary. The subscript s
denotes the sensor index and k stands for the index
of the measurement time ts (k). The measurement
equation is given by

zs (k) = hs (k,X (k)) + ws (k)

=


√

(x (k)− xps)2
+ (y (k)− yps)2

arctan

(
y (k)− yps
x (k)− xps

) + ws (k)

(3)
where (xps, y

p
s) denotes the position of sensor s,

and ws (k) represents the zero-mean Gaussian white
measurement noise with known covariance Rs (k),
which is given as

Rs (k) = diag
(
σ2
r , σ

2
θ

)
(4)

where σr and σθ denote the standard deviations of
range and azimuth measurement noises, respectively.

In practical systems, spatial bias bs = [∆rs, ∆θs]
′ of

sensor smay exist, where ∆rs and ∆θs stand for range
bias and azimuth bias, respectively. Range bias may be
caused by internal circuit delay in the sensor, zero drift
in the system, or velocity incorrectness of the distance
clock. Azimuth bias is usually caused by the deviation
which appears when the sensor antenna is aligned
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with due North [35]. Additionally, the time stamps
tagged to the measurements may be different from
the true time that the target is observed. Normally,
there may be time delays in the time stamps for a
number of reasons. For example, some sensors take the
timewhen themeasurements are produced as the time
stamps. Due to the latency of signal processing and/or
data transfer, there is a time delay between the true
measurement time and the generation of its time stamp.
Different sensors may have different time delays due to
different processing or communication latencies. If the
time stamps are used as the true measurement times
to perform time alignment for data fusion, large error
and/or false correlation may be resulted, even there is
no spatial bias. Therefore, in order to perform accurate
data fusion, the spatiotemporal bias problem should
be solved.

3 Simultaneous Spatiotemporal Bias
Compensation and Data Fusion

In this section, two spatiotemporal bias compensation
methods are proposed for asynchronous multisensor
systems. The general situation is considered, where
sensors measure targets at different times with
different and varying intervals. We take a two-sensor
system as an example to present the time relationship
among measurement times, time stamps and time
delays, as illustrated in Fig. 1.

1tD

2tD

Sensor 1

Measurement Times

Time stamps

Sensor 2

Measurement Times

( )1 1t k

( )1 1t k

( )1 1T k

( )2 2T k

( )2 2t k

( )2 2t k

yD

yD

( )1 1 1t k -

( )2 2 1t k -

( )1 1 1t k -

( )2 2 1t k -

Figure 1. Time relationship among measurement times,
time stamps and time delays.

In this figure, sensor s = 1, 2 measures target state
with a varying period Ts(ks) at the true measurement
time ts(ks), and the time stamp is t̄s (ks). Due to
signal processing or communication latencies, there
may exist unknown time delay ∆τs = t̄s (ks)− ts (ks)
between the time stamps of sensor s with respect to
the true measurement times. This prevents the time
stamps from being used directly to perform proper
time alignment and data fusion. For example, to fuse

the k1th measurement from sensor 1 and the k2th
measurement from sensor 2, the true measurement
interval ∆ψ = t1 (k1) − t2 (k2) between sensors is
required. In practice, we only have the time stamp
interval ∆ψ̄ = t̄1 (k1) − t̄2 (k2). The temporal bias,
∆t2, 1 = ∆ψ̄ − ∆ψ = ∆τ1 − ∆τ2, between ∆ψ̄ and
∆ψ should be compensated for accurate data fusion.
Note that we can only compensate for the temporal
bias ∆t2, 1 between the two sensors instead of the
time delay of each sensor. Without loss of generality,
we take sensor 1 as the reference sensor and regard
∆ts, 1 = ∆τ1 −∆τs, s = 1, . . . , N as relative temporal
bias of sensor swith respect to the reference sensor for
the general case with N sensors.

3.1 Augmented State Equation
In order to obtain effective data fusion in the presence
of both spatial and temporal biases, the idea in this
paper is to augment the spatiotemporal biases as a
part of state vector to be estimated along with target
states. The augmented state vector is given as

X (k) =

[
X (k)
Xb (k)

]
(5)

whereX (k) is the target base state vector, andXb (k) =[
B(k)′, Ψ(k)′

]′ is the spatiotemporal biases of sensors.
B (k) consists of the spatial biases of N sensors

B (k) =

 b1 (k)
...

bN (k)

 (6)

and Ψ (k) = [∆t2, 1 (k) , . . . , ∆tN, 1 (k)]′ consists of
the temporal biases of sensor 2, . . . , N with respect
to sensor 1.

Assume that the spatiotemporal biases provided by
a sensor at different time instants are constants. The
augmented state equation of (5) can be given by

X (k) = F (k − 1)·X (k − 1)+Γ (k − 1)·v (k − 1) (7)

where the augmented state transition matrix and the
augmented process noise gain matrix are respectively
given as

F (k − 1) =

[
F (k − 1) 04, (3N−1)

0(3N−1), 4 I3N−1

]
(8)

Γ (k − 1) =

[
Γ (k − 1)
0(3N−1), 2

]
(9)

where 0m, n denotes a m · n zero matrix, and I3N−1

denotes identity matrix of order 3N − 1. Since the
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spatiotemporal biases are constants, there is no process
noise with respect to the biases. The process noise
v(k − 1) in (7) and its covariance are same to those
of the process noise in (2). Assume the target moves
according to theNCVmodel, the state transitionmatrix
of the target base state is

F (k − 1) =


1 0 ∆T (k − 1) 0
0 1 0 ∆T (k − 1)
0 0 1 0
0 0 0 1


(10)

where ∆T (k − 1) is the time interval between two
consecutive states, which is considered in the filter.
In the following, two measurement processing
schemes, i.e., batch processing and sequential
processing schemes, will be presented. Normally, the
true measurement interval ∆ψ of two consecutive
measurements should be used as the time interval
∆T (k − 1). Due to the existence of unknown time
delays, the time stamp interval ∆ψ̄ instead of the true
measurement interval∆ψ is used to formulate the state
transition.

In the batch processing scheme, we choose sensor
1 as the reference sensor and update the state
estimates using all the collected measurements when
the measurements of sensor 1 are reported. Since the
time delay of sensor 1 is constant, the measurement
interval ∆ψ = t1 (k)− t1 (k − 1) equals the time stamp
interval ∆ψ̄ = t̄1 (k) − t̄1 (k − 1). We can use ∆ψ to
exactly represent ∆T (k − 1).

In the sequential processing scheme, we estimate
the augmented states once a measurement from one
sensor is available, and the consecutive measurements
may not originate from the same sensor. Since the
time delays of sensors may be different, the true
measurement interval ∆ψ is unavailable. In this case,
the time stamp interval ∆ψ̄ instead of ∆ψ is used to
formulate state transition. Assume two consecutive
measurements are the (k1 − 1)th and (k2 − 1)th
measurements from sensor 1 and sensor 2, respectively.
One has

∆T (k − 1) = ∆ψ̄ = t̄2 (k2 − 1)− t̄1 (k1 − 1)

= ∆ψ + ∆t2, 1
(11)

As shown in (11), temporal bias exists between ∆ψ̄
and ∆ψ, leading to bias in state transition. To
eliminate this influence, the temporal bias is used in
the measurement equation to align the measurements
with target states.

3.2 The Measurement Equation
In practical multisensor systems, the sampling periods
ofmultisensormay be different and varying. To handle
the multisensor measurements in the general situation,
two measurement processing scheme are presented.
One is the batch processing scheme and the other is the
sequential processing scheme. In the former, the sensor
with longer sampling period is set as the reference
sensor and multiple measurements from all sensors
between two consecutive reference time instants are
collected in a measurement vector to update the
augmented state vector. For sequential processing
scheme, each measurement from each sensor is
processed sequentially to estimate the augmented
state once it is available. For both schemes, the
measurement equations are formulated as functions of
the spatiotemporal biases and target base states, which
enables simultaneous spatiotemporal bias estimation
and data fusion.

3.2.1 Measurement Equation for Batch Processing Scheme
We consider the kth fusion period ( t̄1 (k − 1) , t̄1 (k)]
in this part, where t̄1 (k − 1) and t̄1 (k) denote the time
stamps of the (k−1)th and kthmeasurements of sensor
1, which is chosen as the reference sensor. Letms be
the number of measurements provided by sensor s in
the current fusion period. The measurement vector
Zs (k) of sensor s is given by

Zs (k) =
[
z1
s (k)′, . . . , zjs(k)′, . . . , zmss (k)′

]′ (12)

where zjs(k), j = 1, . . . ,ms denotes the jth
measurement provided by sensor s in the kth fusion
period and its time stamp t̄js (k) falls within the period
( t̄1 (k − 1) , t̄1 (k)] . The measurement vector Z (k) of
all sensors in the current fusion period is given by

Z (k) =
[
Z1(k)′, Z2(k)′, . . . , ZN (k)′

]′
. (13)

As discussed in Section 3.1, the time interval ∆T (k−1)
in state transition matrix equals the true measurement
interval. Therefore, the augmented state estimate
is updated at the measurement time t1(k) of sensor
1 using the measurement vector Z (k). To properly
formulate the measurement equation, the true interval
between measurement time t1(k) and measurement
time tjs (k), ∆ψjs = t1 (k) − tjs (k), is required for
alignment of the measurements from sensors with the
state to be updated. However, we only have the time
stamp interval ∆ψ̄js = t̄1 (k)− t̄js (k), where unknown
temporal bias ∆ts, 1 = ∆ψ̄js −∆ψjs between ∆ψ̄js and
∆ψjs exists. Here, the solution is to use ∆ψ̄js −∆ts, 1 to
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replace ∆ψjs in the measurement equation. Since ∆ts, 1

is part of the augmented state vector, this replacement
enables exact description of the relationship between
the measurements in (13) and the augmented states
in (5).

Here, we denote ∆ts, 1 = 0, s = 1 as the temporal bias
of sensor 1 relative to itself, which is used to ensure
that the measurement equation of sensor 1 can be
formulated using the general expression, just like other
sensors. The measurements in (13) are formulated as
functions of the target states, spatiotemporal biases
and the time stamp intervals

z (k) = h (X (k)) + w (k)

=
[
h1(X (k))′, . . . , hN (X (k))′

]′
+ w (k)

(14)

where hs (X (k)) , s = 1, . . . , N denotes the
measurement function of sensor s, w (k) denotes the
zero-mean Gaussian white measurement noise with
known covariance < (k), which is given by

< (k) = diag (R1 (k) , . . . ,Rs (k) , . . . ,RN (k)) (15)

where

Rs (k) = diag
(
R1
s (k) , . . . , Rjs (k) , . . . , Rmss (k)

)
(16)

and Rjs (k) = diag
(
σ2
r , σ

2
θ

)
. The measurement

function hs (X (k)) of sensor s is

hs (X (k)) =

√
(x1
s (k)− xps)2

+ (y1
s (k)− yps)2

+ ∆rs (k)

arctan

(
y1
s (k)− yps
x1
s (k)− xps

)
+ ∆θs (k)

...√(
xjs (k)− xps

)2
+
(
yjs (k)− yps

)2
+ ∆rs (k)

arctan

(
yjs (k)− yps
xjs (k)− xps

)
+ ∆θs (k)

...√
(xmss (k)− xps)2

+ (ymss (k)− yps)2
+ ∆rs (k)

arctan

(
ymss (k)− yps
xmss (k)− xps

)
+ ∆θs (k)


(17)

with
xjs (k) = x (k)− ẋ (k) ·

(
∆ψ̄js −∆ts, 1(k)

)
yjs (k) = y (k)− ẏ (k) ·

(
∆ψ̄js −∆ts, 1(k)

)
∆ψ̄js = t̄1 (k)− t̄js (k)

(18)

where (xps, y
p
s) denotes the position of sensor s, ∆rs (k)

and ∆θs (k) denote the range and azimuth biases
of sensor s, respectively, and

(
xjs (k) , yjs (k)

)
, s =

1, . . . , N, j = 1, . . . ,ms denotes the true target
position corresponding to the measurement zjs(k) at
time tjs(k). We use ∆ψ̄js −∆ts, 1 to represent the
true measurement interval between the time t1(k)
and the measurement time tjs(k), which enables each
measurement of sensor s to be correctly represented
by the target states, spatiotemporal biases and the
time stamp intervals according to (17). As a result,
the spatiotemporal biases and target states can be
estimated simultaneously from the measurements
collected in (13).

3.2.2 Measurement Equation for Sequential Processing
Scheme

In this part, the measurement equation for sequential
processing scheme is presented. We denote ts (ks)
and t̄s (ks) as the true measurement time and the
time stamp, respectively, corresponding to the ksth
measurement zs(ks) from sensor s. The sensor that
first provides ameasurement is chosen as the reference
sensor. Without loss of generality, we assume sensor 1
is the reference sensor and denote ∆ts, 1 = 0, s = 1 as
the temporal bias of sensor 1 relative to itself. To avoid
ambiguity, we denote k as the overall measurement
index across all sensors. Each time a measurement is
received at the fusion center, k is incremented by 1.
The example given in Fig. 1 is used to illustrate the
formulation of the measurement equation, followed
by the general case with N sensors.

Assume that the (k1 − 1)th measurement z1(k1 − 1)
provided by sensor 1 is the (k − 1)th measurement
received at the fusion center. We use z1(k1 − 1) to
initialize the augmented state at time t1(k1 − 1), as
will be presented in Section 3.4. As shown in Fig. 1,
the consecutive measurements may be from the same
sensor or different sensors, and there are four possible
combinations of their sources. The measurement
equations for all the four cases are formulated as
follows.

The previous measurement z1(k1 − 1) with the overall
measurement index k − 1 and the current measurement
z2 (k2 − 1) with the overall measurement index k are from
sensor 1 and sensor 2, respectively: In this case, the true
measurement interval ∆ψ = t2 (k2 − 1) − t1 (k1 − 1)
between z2 (k2 − 1) and z1 (k1 − 1) is unavailable since
their time stamp delays may be different. As discussed
in Section 3.1, we use the time stamp interval ∆ψ̄ =
t̄2 (k2 − 1) − t̄1 (k1 − 1) instead of ∆ψ to represent
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the time interval ∆T (k − 1) in the state transition
matrix. After transition according to ∆ψ̄, the true time
of the state X (k) is t2 (k2 − 1) − ∆t2, 1 and unequal
to the measurement time t2 (k2 − 1). To eliminate
this influence, the temporal bias is used to align the
measurement with the state X (k) in measurement
equation, as given by

z (k) = h (X (k)) + ws (k)

=


√
xs(k)2 + ys(k)2 + ∆rs (k)

arctan

(
ys (k)

xs (k)

)
+ ∆θs (k)

+ ws (k)

(19a){
xs (k) = x (k) + ẋ (k) ·∆ts, 1 (k)− xps
ys (k) = y (k) + ẏ (k) ·∆ts, 1 (k)− yps

(19b)

where s = 2, (xps, y
p
s) denotes the position of

sensor s, ws (k) denotes the zero-mean Gaussian white
measurement noise with known covariance < (k) =
diag

(
σ2
r , σ

2
θ

)
, and (xs (k) , ys (k)) denotes the true

target position corresponding to the measurement
z2 (k2 − 1) at time t2(k2 − 1). We utilize ∆ts, 1

to represent the true interval between the time
t2 (k2 − 1) − ∆t2, 1 of the state X (k) and the
measurement time t2 (k2 − 1), which enables each
measurement of sensor s to be correctly represented by
the target states and spatiotemporal biases according
to (19a). Accordingly, the spatiotemporal biases and
target states can be estimated simultaneously using
the measurement from sensor s.

b) Both the previous measurement z2 (k2 − 1) with the
overall measurement index k and the current measurement
z2 (k2) with the overall measurement index k + 1 are from
sensor 2: In this case, the measurement interval ∆ψ
equals the time stamp interval ∆ψ̄ since the time delay
of sensor 2 is constant. One has

∆T (k) = ∆ψ̄ = t̄2 (k2)− t̄2 (k2 − 1) = ∆ψ. (20)

After state transition from the previous update time
t2 (k2 − 1) − ∆t2, 1 according to ∆T (k), the time of
the state is t2 (k2) − ∆t2, 1, which is still unequal to
the measurement time of z2(k2). This influence can
be eliminated in the similar way as in Section 3.2.2,
and the measurement equation can be formulated
in the same way as in (19) except that the overall
measurement index is k + 1.

c) The previous measurement z2 (k2) with the overall
measurement index k + 1 and the current measurement
z1 (k1) with the overall measurement index k + 2 are from
sensor 2 and sensor 1, respectively: In this case, the time

interval ∆T (k + 1) is

∆T (k + 1) = ∆ψ̄ = t̄1 (k1)− t̄2 (k2)

= ∆ψ + ∆t2, 1
. (21)

After state transition from the previous update time
t2 (k2) − ∆t2, 1 according to ∆T (k + 1), the time
of the state is t1 (k1) and equals the measurement
time of z1(k1). We have denoted the temporal bias
of sensor 1 relative to itself as ∆t1, 1 = 0, so the
measurement equation of sensor 1 can be formulated
using the general expression (19) except that the
overall measurement index is k + 2 and the sensor
index s is 1.

d) Both the previous measurement z1 (k1) with the overall
measurement index k + 2 and the current measurement
z1 (k1 + 1) with the overall measurement index k + 3
are from sensor 1: In this case, the time interval
∆T (k + 2) equals the true measurement interval ∆ψ.
After state transition from the previous update time
t1 (k1) according to ∆T (k + 2), the time of the state is
t1 (k1 + 1) and equals the measurement time of z1(k1 +
1). The measurement equation can be formulated
in the same way as in (19) except that the overall
measurement index is k + 3 and the sensor index s
is 1.

The above cases encompass all possible combinations
of the sources for consecutive measurements,
without other possibilities. When the subsequent
measurements are received at the fusion center, the
measurement equations can be formulated according
to one of the cases.

Referring to the above formulation in the case with two
sensors, the general expression for the measurement
equation can be formulated for a system with N
sensors. We denote t̄p (kp) and t̄c (kc) as the time
stamps when the previous and current measurements
are provided by sensor p and c, respectively, where
p, c = 1, . . . , N . When the current measurement
zc (kc) with overall measurement index k is received
at the fusion center, the time interval is ∆T (k − 1) =
t̄c (kc)− t̄p (kp). Substituting ∆T (k − 1) into (10), we
can formulate the corresponding transitionmatrix, and
the augmented state equation is formulated according
to (7)−(9). The expression for the measurement
equation is the same as (19) except that the subscript
s needs to be replaced by subscript c.

3.3 Filtering Process
Since the measurement equations formulated in
Section 3.2 are nonlinear, we use the UKF to estimate
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spatiotemporal biases and target states, resulting in the
batch processing based simultaneous spatiotemporal
bias compensation and data fusion (BP-SBDF)method
and the sequential processing based simultaneous
spatiotemporal bias compensation and data fusion
(SP-SBDF) method. The filtering process of the two
methods is derived in the following.

The UKF uses the unscented transformation [36]
(UT) to approximate the mean and covariance of the
augmented state and measurement. First, the sigma
points δ and the associated weightsW are calculated
given the augmented state estimate X̂ (k − 1 |k − 1)
and state estimation covariance P (k − 1 |k − 1). The
mean and covariance are then approximated by using
aweighted samplemean and covariance of these sigma
points. That is

δi (k − 1 |k − 1) = X̂ (k − 1 |k − 1) ,

W0 =
κ

nx + κ
, i = 0 ;

δi (k − 1 |k − 1) = X̂ (k − 1 |k − 1)

+
(√

(nx + κ) P (k − 1 |k − 1)
)
i
,

Wi =
1

2(nx + κ)
, i = 1, · · · , nx ;

δi (k − 1 |k − 1) = X̂ (k − 1 |k − 1)

−
(√

(nx + κ) P (k − 1 |k − 1)
)
i
,

Wi =
1

2(nx + κ)
, i = nx + 1, · · · , 2nx ;

(22)
where nx is the dimension of the augmented state,
δi (k − 1 |k − 1) is the ith sigma point, Wi is the
associated weight, κ is the scale parameter, and(√

(nx + κ) P (k − 1 |k − 1)
)
i
is the ith rowor column

of the matrix square root.

These sigma points can be updated using the
augmented state equation given by (7)

δi (k |k − 1) = F (k − 1) · δi (k − 1 |k − 1) ,
i = 1, · · · , 2nx .

(23)

The weighted mean of these predicted sigma points
for the augmented state is given by

X̂ (k |k − 1) =

2nx∑
i=0

Wi · δi (k |k − 1) . (24)

The prediction covariance of the augmented state is
calculated by

P (k |k − 1) =
2nx∑
i=0

Wi ·∆Xi (k |k − 1) · (∆Xi (k |k − 1))′

+ Q (k − 1)
(25)

where

∆Xi (k |k − 1) = δi (k |k − 1)− X̂ (k |k − 1) (26)

and Q (k − 1) denotes the known process noise
covariance. We denote ηi (k |k − 1) as the prediction
of sigma points for the measurements. Note that
the measurement equations for BP-SBDF method and
SP-SBDF method are different, and their expressions
have been given by (14) and (19), respectively.
Substituting δi (k |k − 1) into the corresponding
measurement functions, we have

ηi (k |k − 1) = h (δi (k |k − 1)) . (27)

The weighted mean of these sigma points for the
measurement is given by

ẑ (k |k − 1) =

2nx∑
i=0

Wi · ηi (k |k − 1) . (28)

The covariance of the predicted measurement is given
by

Pzz (k) =

2nx∑
i=0

Wi ·∆zi (k |k − 1) · (∆zi (k |k − 1))′

+ < (k)
(29)

where

∆zi (k |k − 1) = ηi (k |k − 1)− ẑ (k |k − 1) (30)

and < (k) denotes the known measurement noise
covariance and has two different expressions in
BP-SBDF and SP-SBDF methods. The cross-covariance
between the augmented states and measurements is
given by

Pxz (k) =

2nx∑
i=0

Wi ·∆Xi (k |k − 1) · (∆zi (k |k − 1))′ .

(31)

The filter gain can then be given by

K (k) = Pxz (k) Pzz(k)−1 . (32)

Finally, the augmented state estimate and the
corresponding covariance are updated by

X̂ (k |k ) = X̂ (k |k − 1) +K (k) · (z (k)− ẑ (k |k − 1))
(33)

and

P (k |k ) = P (k |k − 1)−K (k) Pzz (k)K ′ (k) . (34)
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3.4 Filter Initialization
In this subsection, the one-point initialization method
[37] is used to estimate the initial augmented state
and its covariance for the two proposed methods.
The basic idea is to estimate initial target state
using the first reported measurement and find the
initial covariance by the measurement covariance.
Without loss of generality, we assume sensor 1 first
provides the measurement z1(1) in polar coordinates.
The unbiased conversion from polar coordinates to
Cartesian coordinates [38–40] can be given by

zu1 (1) =

[
xu1 (1)
yu1 (1)

]
=

[
λ−1
θ r1 (1) cos (θ1 (1))

λ−1
θ r1 (1) sin (θ1 (1))

]
− µu

(35)
where xu1 (1) and yu1 (1) are the unbiased converted
measurements in x and y directions, respectively,
r1 (1) and θ1 (1) are the first range and azimuth
measurements reported by sensor 1, respectively. λθ is
the bias compensation factor, and µu is the mean of the
converted measurement error, which are respectively
given by

λθ = e−σ
2
θ/2 (36)

µu =

[ (
λ−1
θ − λθ

)
r1 (1) cos (θ1 (1))(

λ−1
θ − λθ

)
r1 (1) sin (θ1 (1))

]
. (37)

The converted measurement covariance Ru1 (1) is

Ru1 (1) =

[
Ru, 11

1 (1) Ru, 12
1 (1)

Ru, 21
1 (1) Ru, 22

1 (1)

]
(38)

where

Ru, 11
1 (1) = −λ2

θr
2
1 (1) cos2 (θ1 (1))

+
1

2

(
r2

1 (1) + σ2
r

)
(1 + αθ cos (2θ1 (1)))

(39)

Ru, 22
1 (1) = −λ2

θr
2
1 (1) sin2 (θ1 (1))

+
1

2

(
r2

1 (1) + σ2
r

)
(1− αθ cos (2θ1 (1)))

(40)

Ru, 12
1 (1) = Ru, 21

1 (1) = −λ2
θr

2
1 (1) sin (θ1 (1)) cos (θ1 (1))

+
1

2

(
r2

1 (1) + σ2
r

)
αθ sin (2θ1 (1))

(41)
and αθ = e−2σ2

θ . Based on one position measurement,
one has no information on target velocity. If
the maximum target velocity is vmax, the uniform
distribution of target velocity with appropriate bounds
may reflect our ignorance. This uniform distribution
is replaced by a Gaussian probability distribution
function with mean zero and covariance v2

max · I2/3

for velocity. The initial estimate of the target state and
its covariance are respectively given by

X̂ (1 |1) =
[
xu1 (1) yu1 (1) 0 0

]′ (42)

P (1 |1) =

[
Ru1 (1) 02, 2

02, 2 v2
max · I2/3

]
(43)

where 02, 2 is a 2 · 2 zero matrix, and I2 is a identity
matrix with order 2.

There is no prior information about the spatial and
temporal biases, and we set their initial estimates to
zero, that is, X̂b (1 |1) = 0(3N−1), 1. Additionally,
we assume the target states and the spatiotemporal
biases are uncorrelated, and the independent bias
assumption results in block diagonal covariance
matrices of the spatiotemporal biases. As in (43), the
maximum range and azimuth biases are assumed to
be ∆rmax and ∆θmax, respectively, and the maximum
temporal bias is ∆tmax. The initial estimate of the
covariance for spatiotemporal biases is

P b (1 |1) = diag

P bB, . . . , P bB︸ ︷︷ ︸
N

, P bΨ, . . . , P
b
Ψ︸ ︷︷ ︸

N−1

 (44)

where{
P bB = diag

(
∆r2

max

/
3, ∆θ2

max

/
3
)

P bΨ = ∆t2max

/
3

. (45)

As a result, the initial estimates of the augmented state
and its covariance are

X̂ (1 |1) =

[
X̂ (1 |1)

X̂b (1 |1)

]
(46)

and

P (1 |1) = diag
(
P (1 |1) , P b (1 |1)

)
. (47)

4 Lower Bound of Performance
Since the measurement equations are nonlinear,
the optimal solution to the spatiotemporal bias
compensation problem cannot be analytically derived.
A theoretical lower bound of performance would be
helpful to assess the level of approximation introduced
by the proposed methods. In time-invariant systems,
the standard Cramer-Rao lower bound [41] (CRLB)
is commonly used for performance evaluation. While
in time-varying systems, the posterior CRLB (PCRLB)
provides a theoretical bound on the dynamic state
estimates [32]. In this section, the PCRLB for the
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spatiotemporal bias and state estimation is derived
briefly as follows.

To avoid redundancy, we only present the derivation
of PCRLB for SP-SBDF method. Assume the current
measurement is reported by sensor s, and the
augmented state and measurement equations have
been given in (7)−(10) and (19), respectively. The
lower bound on the estimation error is determined by
the Fisher information matrix J (k) and the covariance
of X̂ (k |k ) is bounded by

E

{(
X̂ (k |k )−X (k)

)(
X̂ (k |k )−X (k)

)′}
≥ J(k)−1

(48)
where E {·} is the expectation operator. The
general frame work for derivation of PCRLB of an
unbiased estimator of nonlinear discrete-time system
is described in [32], and the information matrix can be
calculated by recursion

J (k) =
[
Q (k − 1) + F (k − 1) J(k − 1)−1F(k − 1)′

]−1

+ H(k)′<(k)−1H (k)
(49)

where Q(k − 1) is the process noise covariance, and
H (k) is the Jacobian matrix of the measurement
equation h (X (k)) evaluated at the true augmented
state X (k), i.e.,

H (k) =
[
∇X(k)h(X (k))′

]′ (50)

where ∇X(k) is the gradient operator with respect to
the augmented state X (k). We have

H (k) =[(
∂h(X (k))′

∂X (k)

)′
,

(
∂h(X (k))′

∂B (k)

)′
,

(
∂h(X (k))′

∂Ψ (k)

)′]
= [HX (k) , HB (k) , HΨ (k)]

(51)
with

HX (k) =



xs (k)√
xs(k)2 + ys(k)2

−ys (k)

xs(k)2 + ys(k)2

ys (k)√
xs(k)2 + ys(k)2

xs (k)

xs(k)2 + ys(k)2

xs (k) ·∆ts, 1 (k)√
xs(k)2 + ys(k)2

−ys (k) ·∆ts, 1 (k)

xs(k)2 + ys(k)2

ys (k) ·∆ts, 1 (k)√
xs(k)2 + ys(k)2

xs (k) ·∆ts, 1 (k)

xs(k)2 + ys(k)2



′

(52)
HB (k) =

[
02, 2·(s−1) I2 02, 2·(N−s)

]
. (53)

If the sensor index s equals 1, we have HΨ (k) =
02, N−1. Otherwise, we have

HΨ (k) =
[

02, s−2 Λ (k) 02, N−s
]

(54)

where

Λ (k) =


xs (k) · ẋ (k) + ys (k) · ẏ (k)√

xτ (k)2 + yτ (k)2

ẏ (k) · xs (k)− ẋ (k) · ys (k)

xs(k)2 + ys(k)2

 (55)

{
xs (k) = x (k) + ẋ (k) ·∆ts, 1 (k)− xps
ys (k) = y (k) + ẏ (k) ·∆ts, 1 (k)− yps

. (56)

The PCRLBs of the augmented state components are
calculated as the corresponding diagonal elements of
the inverse information matrix

PCRLB
{

X̂j (k |k )
}

=
[
J(k)−1

]
jj

(57)

where [·]jj represents the element located at the jth
row and jth column of a matrix. Recursion in (49) can
be implemented based on Monte Carlo averaging over
multiple realizations of the target trajectory. Given
the initial information matrix, we can calculate the
PCRLB through the recursion in (49). In practice,
the recursion can be initialized with the inverse of
the initial covariance matrix of the filtering method as
J (1) = P(1 |1)−1, which has been presented in Section
3.4.

5 Simulation Results
Simulations and performance comparisons are
presented in this section to evaluate the effectiveness
of the proposed methods. Two scenarios with
relatively small and large temporal biases are
investigated to evaluate the influence of temporal bias
on estimation performance. The root mean square
errors (RMSEs) of the spatiotemporal biases and
target states and the normalized estimation error
squared (NEES) are used to illustrate the performance
of the proposed methods. Also, the PCRLB is given to
quantify the best achievable accuracy. For comparison,
the simulation results of the standard bias and state
estimation (S-BSE) method [18] that fails to consider
the temporal biases are also provided.

5.1 Simulation Parameters
Consider a single target tracking problem
with two asynchronous sensors located at the
two-dimensional Cartesian coordinates (0 km, 0 km)
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and (50 km, 0 km), respectively. The detection
probability of sensors is assumed to be unity, and the
measurement noise covariance of sensor s is given by

Rs(k) = diag
[
(10m)2, (0.01 rad)2

]
, s = 1, 2 . (58)

The two sensors work asynchronously and start
reporting measurements at 0s and 6s, respectively,
and sensor 1 is chosen as the reference sensor. To
illustrate the capability of the proposed methods to
handle measurements with varying sampling periods,
the sampling periods of sensor 1 are cyclically selected
from 5s, 4s and 3s in turn, and the sampling periods of
sensor 2 are cyclically selected from 2s and 1s in turn.
In the experiment, sensor 1 reports 400 measurements
and sensor 2 reports 1065 measurements in the same
time duration. Note that the proposed methods have
no requirement of the sampling periods and initial
sampling times. Only time stamps with unknown
delays are used. Without loss of generality, sensor
1 is assumed to be spatial-bias free, i.e., ∆r1 = 0m
and ∆θ1 = 0 rad, while sensor 2 contains range bias
∆r2 = 30m and azimuth bias ∆θ2 = 0.02 rad.
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Figure 2. RMSE of temporal bias estimates of the BP-SBDF
and SP-SBDF methods in Scenario I.

Two scenarios with relatively small and large temporal
biases are investigated. In the scenario with small
temporal bias, denoted by Scenario I, time delays of
sensor 1 and sensor 2 are ∆τ1 = 1.5s and ∆τ2 = 1s,
respectively. In Scenario II, time delays of sensor 1 and
sensor 2 are ∆τ1 = 5s and ∆τ2 = 2s, respectively. The
temporal bias in Scenario I is ∆t2, 1 = ∆τ1 − ∆τ2 =
0.5s, and ∆t2, 1 = ∆τ1 − ∆τ2 = 3s in Scenario II.
The trajectory of the target evolves with the NCV
model and starts at position (3 km, 5 km) with an
original heading of 53.13 deg and an initial speed
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Figure 3. RMSE of range bias estimates of the BP-SBDF,
SP-SBDF and S-BSE methods in Scenario I.
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Figure 4. RMSE of azimuth bias estimates of the BP-SBDF,
SP-SBDF and S-BSE methods in Scenario I.

of 15 m/s. The process noises are assumed to be
zero-mean Gaussian white with standard deviation
0.001 m

/
s2. Simulations are performed with 1000

Monte Carlo experiments.

As discussed in Section 3, the BP-SBDF method
updates estimates at a rate same to the sampling rate
of sensor 1, thus 400 estimation results are produced.
While the SP-SBDF method outputs 1465 estimates,
since once a measurement is received, the state is
updated, regardless of whether it comes from sensor
1 or sensor 2. To conduct objective performance
comparison, the estimation results at the measurement
times of sensor 1 are considered.
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Figure 5. RMSE of position estimates of the BP-SBDF,
SP-SBDF and S-BSE methods in Scenario I.
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Figure 6. RMSE of velocity estimates of the BP-SBDF,
SP-SBDF and S-BSE methods in Scenario I.

5.2 The Scenario with Relatively Small Temporal
Bias

The RMSEs of the spatiotemporal bias and target
state estimates are plotted in Figs. 2−6. The
PCRLB is provided to quantify the theoretically
achievable performance in this scenario. Additionally,
time-averaged RMSEs of the proposed methods are
listed in Table 1 for comparison. For fairness of
comparison, two average running times are provided
to compare the complexity of the proposed methods.
One is the average running time required to handle
the overall measurements of the two sensors, and the
other is the average running time required to perform
a single filtering process, which are also listed in Table
1.

From Figs. 3−6, it can be seen that the spatial
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Figure 7. Consistency test of the proposed methods in
Scenario I.
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Figure 8. RMSE of temporal bias estimates of the BP-SBDF
and SP-SBDF methods in Scenario II.

bias and target state RMSEs of the S-BSE method
are larger than those of the BP-SBDF and SP-SBDF
methods. As shown in Table 1, the improvements
in time-averaged RMSEs of the range bias, azimuth
bias, position and velocity of the BP-SBDF method
are about 4.5030m, 2.0021 × 10 - 4 rad, 1.1078m and
0.0023 m/s, respectively, with respect to those of
the S-BSE method. Accordingly, the improvements
in time-averaged RMSEs of the SP-SBDF method
are about 4.6122m, 2.0206 × 10 - 4 rad, 1.2333m and
0.0043 m/s, respectively. The S-BSE method does
not consider and compensate for the temporal bias
between sensors, which leads to estimation errors
higher than those of the proposed methods. As a
contrast, the proposed BP-SBDF and SP-SBDFmethods
properly compensate for the temporal bias while
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Table 1. Performance Comparison in Scenario with Relatively Small Temporal Bias

RMSEs Running Time
Temporal Bias Range Bias Azimuth Bias Position Velocity Overall Single

(s) (m) (×10−4 rad) (m) (m/s) (s) (×10−4s)
BP-SBDF 0.1557 2.2431 1.7348 2.9410 0.0203 0.2177 5.4425
SP-SBDF 0.1502 2.1339 1.7163 2.8155 0.0183 0.4981 3.4000
S-BSE − 6.7461 3.7369 4.0488 0.0226 − −
PCRLB 0.1108 1.7534 1.2166 2.3393 0.0134 − −
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Figure 9. RMSE of range bias estimates of the BP-SBDF,
SP-SBDF and S-BSE methods in Scenario II.

providing accurate spatiotemporal bias and target state
estimates, both of which can reach the steady state
rapidly, as shown in Figs. 2−6 and Table 1. Note that
there still exists deviations between the RMSEs and
the theoretical lower bounds. The main reason may lie
in the high nonlinearity in the measurement equation.

Additionally, we can see that the SP-SBDF method
performs slightly better than the BP-SBDF method.
The BP-SBDFmethod estimates the state once using all
themeasurements collected in a fusion period based on
the prior state updated in the previous fusion period.
While the SP-SBDF method updates the state once a
measurement is received, where the state updated by
the previousmeasurement is used as prior information,
which is more accurate than the state estimate of the
previous fusion period. This results in the slight
superiority of the SP-SBDF method over the BP-SBDF
method in estimation accuracy.

As shown in Table 1, the SP-SBDF method requires
more time to handle all measurements from the two
sensors than the BP-SBDF method. This can be
explained by the different measurement processing
schemes of the two methods. The BP-SBDF method
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Figure 10. RMSE of azimuth bias estimates of the BP-SBDF,
SP-SBDF and S-BSE methods in Scenario II.

only utilizes the UKF at the measurement times of
sensor 1 to generate the augmented state estimates,
so only 400 calls of the UKF are required. On the
contrary, the SP-SBDF method calls the UKF 1465
times to generate the augmented state estimates when
handling the same number of measurements, which
results in the SP-SBDFmethod requiringmore running
time than the BP-SBDF method. If we focus on a
single filtering process, we can see that the running
time required by the SP-SBDF method is less than
that of the BP-SBDF method. This is because that the
measurement dimension in the BP-SBDF method is
higher than that in the SP-SBDF method.

The consistency of the methods is examined based on
the evaluation of the NEES, as shown in Fig. 7.

Here, we use the two-sided 99% probability region.
The results in Fig. 7 show the inconsistency of
the S-BSE method since its NEES values are mostly
outside the region of 99% . The proposed methods
are consistent since their NEES values fall within
the probability region. Therefore, the proposed
methods can fuse the multisensor measurements to
provide accurate and consistent state estimation while

28



Chinese Journal of Information Fusion

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

16

18

20

Scan

R
M

S
E

 o
f 

p
o

s
it
io

n
 e

s
ti
m

a
te

s
 (

m
)

 

 

BP−SBDF

SP−SBDF

S−BSE

PCRLB

Figure 11. RMSE of position estimates of the BP-SBDF,
SP-SBDF and S-BSE methods in Scenario II.
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Figure 12. RMSE of velocity estimates of the BP-SBDF,
SP-SBDF and S-BSE methods in Scenario II.

compensating for the spatiotemporal biases.

5.3 The Scenario with Relatively Large Temporal
Bias

This scenario aims to evaluate the effects on the
estimation performance when the temporal bias
increases. Additionally, the measurements may be
reported in the wrong order according to the time
stamps since the time delays of sensors differ a lot.
This scenario is also used to evaluate whether the
proposed methods can still perform well when the
measurements are in wrong order. The RMSEs of
the spatiotemporal bias and state estimates and the
NEES of the tracking filters are shown in Figs. 8−13,
respectively. Time-averaged RMSEs and the average
running times of the proposed methods are listed in
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Figure 13. Consistency test of the proposed methods in
Scenario II.

Table 2 for comparison.

From Figs. 9−13, it can be seen that the improper
processing of the temporal bias degrades the
performance of the S-BSE method, resulting in
estimation error much higher than the PCRLB
and NEES outside the 99% probability region.
Additionally, as can be seen in Figs. 9−10, the
estimation errors of the range bias of the S-BSE
method become larger with time, while those of the
azimuth bias become smaller. This is because that
the target in this scenario is moving away from the
sensors. The impact of the temporal bias on the range
bias estimation becomes large with the increase of the
target range, while the impact on the azimuth bias is
the opposite.

On the contrary, the proposed methods can provide
accurate and consistent spatiotemporal bias and target
state estimation simultaneously. As shown in Table
2, the improvements from the BP-SBDF and SP-SBDF
methods over the S-BSE method are about 23.8043−
24.5587m in range bias RMSE, 12.2539 × 10−4 −
12.4952 × 10−4 rad in azimuth bias RMSE, 9.4534 −
9.6251m in position RMSE, and 0.0116 − 0.0137 m/s
in velocity RMSE, respectively. Since the temporal bias
is properly compensated by the proposed methods,
the spatiotemporal bias and target state estimation
errors keep small values, which also shows that the
proposed methods can perform well even when the
measurements are reported in the wrong order. As a
consequence, the above results confirm the necessity
of our methods to consider the temporal bias between
sensors to perform correct data fusion. Additionally,
the SP-SBDF method still performs slightly better
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Table 2. Performance Comparison in Scenario with Relatively Large Temporal Bias

RMSEs Running Time
Temporal Bias Range Bias Azimuth Bias Position Velocity Overall Single

(s) (m) (×10−4 rad) (m) (m/s) (s) (×10−4s)
BP-SBDF 0.2223 3.1206 2.0088 2.9882 0.0204 0.2245 5.6125
SP-SBDF 0.1680 2.3662 1.7675 2.8165 0.0183 0.5054 3.4498
S-BSE − 26.9249 14.2627 12.4416 0.0320 − −
PCRLB 0.1258 1.9367 1.2223 2.3867 0.0141 − −

but requires a little more computation load than the
BP-SBDF method when handling all measurements
from the two sensors, which are 0.5054s and 0.2245s,
respectively. Also, the running time required by
the SP-SBDF method in a single filtering process is
less than that of the BP-SBDF method, which are
3.4498× 10−4s and 5.6125× 10−4s, respectively. These
simulation results agree with those in Section 5.2,
which means the proposed methods can perform well
irrespective of whether the temporal bias is small or
large.

6 Conclusions
In this paper, two spatiotemporal bias compensation
methods were proposed to compensate for the
spatiotemporal biases and fuse the multisensor
measurements to produce accurate target state
estimates. The general case where sensors have
different and varying sampling periods was
considered. The augmented state vectors consist of
target states and spatiotemporal biases of multisensor.
The measurement equations for the batch processing
and sequential processing schemes were formulated
as functions of both target states and spatiotemporal
biases according to their relationship, which enables
simultaneous spatiotemporal bias estimation and
data fusion. The UKF was employed to handle
the nonlinearity of the measurements and estimate
spatiotemporal biases and target states simultaneously.
Simulation results demonstrated that the proposed
methods can provide accurate spatiotemporal bias
and target state estimation simultaneously. Due to
high nonlinearities in the measurement equations, the
performance of the proposed methods has not reached
the PCRLB. Further improving the performance of
the spatiotemporal bias estimation is a topic of future
efforts.
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