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Abstract
In the healthcare sector, the application of deep learning
technologies has revolutionized data analysis and disease
forecasting. This is particularly evident in the field of
diabetes, where the deep analysis of Electronic Health
Records (EHR) has unlocked new opportunities for
early detection and effective intervention strategies. Our
research presents an innovative model that synergizes the
capabilities of Bidirectional Long Short-Term Memory
Networks-Conditional Random Field (BiLSTM-CRF)
with a fusion of XGBoost and Logistic Regression. This
model is designed to enhance the accuracy of diabetes
risk prediction by conducting an in-depth analysis of
electronic medical records data. The first phase of our
approach involves employing BiLSTM-CRF to delve into
the temporal characteristics and latent patterns present
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in EHR data. This method effectively uncovers the
progression trends of diabetes, which are often hidden
in the complex data structures of medical records. The
second phase leverages the combined strength of XGBoost
and Logistic Regression to classify these extracted features
and evaluate associated risks. This dual approach
facilitates a more nuanced and precise prediction of
diabetes, outperforming traditional models, particularly
in handling multifaceted and nonlinear medical datasets.
Our research demonstrates a notable advancement in
diabetes prediction over traditional methods, showcasing
the effectiveness of our combined BiLSTM-CRF, XGBoost,
and Logistic Regression model. This study highlights the
value of data-driven strategies in clinical decision-making,
equipping healthcare professionals with precise tools
for early detection and intervention. By enabling
personalized treatment and timely care, our approach
signifies progress in incorporating advanced analytics in
healthcare, potentially improving outcomes for diabetes
and other chronic conditions.

Keywords: deep learning, electronic health records,
BiLSTM-CRF, XGBoost, healthcare analytics.

Citation
Pang, H., Zhou, L., Dong, Y., Chen, P., Gu, D., Lyu, T.& Zhang, H.
(2024). Electronic Health Records-Based Data-Driven Diabetes
Knowledge Unveiling and Risk Prognosis. IECE Transactions on
Intelligent Systematics, 2(1), 1–13.
© 2024 IECE (Institute of Emerging and Computer Engineers)

1

http://dx.doi.org/10.62762/TIS.2025.367320
http://crossmark.crossref.org/dialog/?doi=10.62762/TIS.2025.367320&domain=pdf
https://orcid.org/0009-0003-7762-1796
https://orcid.org/0000-0001-8736-3418
http://dx.doi.org/10.62762/TIS.2025.367320
mailto:pang_huadong0811@outlook.com


IECE Transactions on Intelligent Systematics

1 Introduction
The rapid advancement of medical information
technology, especially thewidespread use of Electronic
Health Records (EHR), has established data-driven
approaches as a cornerstone in the field of healthcare
big data [1]. Since 2013, countries like theUnited States
and the United Kingdom have significantly increased
their investment in medical big data applications,
indicating a strong commitment to this field [2]. China
has also introduced policies in 2015 and 2016 to foster
the development of healthcare big data [3, 4]. This
data encompasses a wide range, including personal
health information, hospital clinical data, genetic data,
and epidemiological data related to disease prevention
and control [5, 6].

Diabetes, a major global public health issue,
necessitates early diagnosis and effective management
to reduce complications and improve patient quality
of life [7]. Utilizing the rich data in EHRs, data-driven
methods can more accurately predict diabetes risk and
offer personalized treatment plans [8, 9]. Moreover,
the analysis of healthcare big data helps reduce
medical costs, enhance service quality, and supports
the formulation of public health policies [10]. The
analysis of EHR, which includes patient history,
treatment records, and clinical texts, faces many
challenges. These include handling unstructured
data, assessing data quality, and choosing appropriate
analysis methods [11–13]. Addressing these
challenges requires more advanced and integrated
approaches, particularly those leveraging the synergy
of Natural Language Processing (NLP) and machine
learning techniques, which can provide more precise
insights into patient health and disease risks [14]. In
the realm of healthcare, the increasing prevalence of
Electronic Health Records (EHR) has turned the deep
mining of these data into a key aspect of enhancing
the quality of medical services. Particularly, the
integration of Natural Language Processing (NLP)
and deep learning technologies has opened up new
possibilities for extracting essential information from
vast amounts of unstructured electronic medical
records [15–18]. Against this backdrop, models
such as Logistic Regression, Decision Trees, Random
Forest, Convolutional Neural Networks (CNN), and
Long Short-Term Memory Networks (LSTM) play
a significant role in the analysis of EHR data [19].
While traditional models like Logistic Regression
and Decision Trees are useful for simpler tasks, deep
learning models such as LSTM are more suitable for
analyzing unstructured, sequential, or time-series

data found in EHRs. Logistic Regression is popular
for its simplicity and ease of implementation, is
widely used in basic classification tasks, yet shows
limitations in handling complex or non-linear
relationships [20]. Decision Trees are favored for
their interpretability but are prone to overfitting
[21]. Random Forest, an ensemble of Decision Trees,
enhances model robustness but at the cost of increased
model complexity. CNN excels in text classification,
especially with spatially structured data, but demands
high computational resources [22]. LSTM stands out
in processing time-series data due to its ability to
handle long-term dependencies, albeit at the cost of
model complexity and high training overhead [23, 24].
Given thecomplexity and unstructured nature of
electronic medical records, this article proposes a
hybrid method that integrates Natural Language
Processing (NLP) for text preprocessing with deep
learning models like BiLSTM-CRF for enhanced
entity recognition and feature extraction. This
approach combines the strengths of deep learning for
analyzing complex clinical texts and machine learning
models such as XGBoost for accurate diabetes risk
prediction, thus improving predictive performance.
The integration of these techniques aims to enhance
the accuracy of medical information extraction from
EHRs, support clinical decision-making, and advance
personalized medicine.

This study has made contributions and holds
significant importance in the following aspects: We
developed a system that leverages natural language
processing and machine learning techniques to
predict diabetes risk accurately. This is crucial
for early diagnosis and intervention in diabetes,
ultimately contributing to improved patient health. In
addition, our approach can extract valuable medical
information and knowledge from electronic health
records, including disease features and symptom
descriptions. This holds potential value for medical
research anddecision support, fostering advancements
in the healthcare domain. The outcomes of this
research lay the foundation for future clinical decision
support systems that can aid healthcare professionals
in better understanding patient risks and taking
appropriate measures. Furthermore, it provides a
means for healthcare institutions to enhance medical
management and treatment outcomes.
2 Literature Review
2.1 Overview of Electronic Medical Record Research
The field of Electronic Medical Record (EMR) research
globally focuses on utilizing advanced Natural

2



IECE Transactions on Intelligent Systematics

Language Processing (NLP) techniques for clinical
text analysis and developing clinical decision support
systems. Studies typically employ machine learning
models such as Support Vector Machine (SVM),
Conditional Random Fields (CRF), and Maximum
Entropy (ME) models for named entity recognition
and relationship extraction [25–28]. These efforts aim
to efficiently and accurately extract useful information
from complex clinical texts. Notably, neural network
technologies, especially in addressing specific clinical
issues like twin fetal weight estimation, have started to
be applied and have shown exceptional performance.
In recent years, deep learning-based methods have
gained popularity for clinical text analysis, further
advancing the effectiveness of predictive models in
healthcare settings. The development of clinical
decision support systems aims to enhance diagnostic
accuracy through the analysis of EMR data, marking a
significant contribution to the future improvement of
healthcare service quality.

In China, EMR research, especially in Chinese
language, commenced relatively late but has made
considerable progress, particularly in the areas of
EMR structural processing and the application of
NLP technologies [29]. Research includes not only
structural processing of EMRs and summarization of
discharge notes but also extends to comprehensive
analysis using word segmentation and part-of-speech
tagging models. The application of Conditional
Random Fields and deep learning methods in entity
and relation extraction indicates that Chinese EMR
research is gradually aligning with international
studies. Despite the foundation provided by resources
such as the Chinese Unified Medical Language System
(CUMLS) and Traditional Chinese Medical Language
System (TCMLS), the relative scarcity of publicly
available datasets and biomedical language resources
in Chinese poses challenges for further research
advancement [30].

Additionally, there has been a shift towards applying
machine learning models, such as XGBoost, and
advanced techniques like deep learning in recent EMR
research to address these challenges more effectively.
For example, recent research on fault detection using
an improved deep forest approach for modular
reconfigurable flying arrays has demonstrated
significant results in predictive tasks [31]. This
highlights the growing application of ensemble
learning methods in medical prediction tasks.
Similarly, other studies explore the use of variational
autoencoders for time series prediction, which could

be applicable in predicting patient outcomes from
medical records [32]. These recent works show the
applicability of advancedmachine learning techniques
to healthcare-related challenges, emphasizing the
relevance of our methodology.

Overall, the field of EMR research is rapidly evolving
globally, achieving technological innovations and
increasingly playing a vital role in medical practice.
Despite the challenges, the field holds a promising
future, particularly in enhancing the accuracy of
clinical decision-making and realizing personalized
medicine.

2.2 Theories and Methods of Data Mining
In the realm of data mining, particularly concerning
the analysis of electronic medical records, several key
algorithms and methods have been widely applied.
These include K-means clustering, Random Forest,
Bayesian Theorem, Support Vector Machine (SVM),
GBDT, Logistic Regression (LR), and Decision Trees.
Each of these methods brings its unique strengths and
applicability to handling medical data.

LR is a linear classification method based on the
assumption that the conditional distribution P(y|x)
is a Bernoulli distribution. It is particularly effective
for binary classification problems. The predicted
values returned by logistic regression are probability
values in the range of [0,1]. Decision Trees are a type
of tree-like classifier where an input sample enters
the tree at the root node and is categorized into a
class based on feature conditions. Decision Trees are
intuitive and can handle both continuous and discrete
features. However, they might produce a higher error
rate for discrete features with many values and can
be complex for continuous features [33–35]. K-means
is a popular clustering analysis method in machine
learning. Its core idea revolves around the assumption
that similar data samples exist in clusters. By selecting
k initial centers and assigning each data sample to the
nearest center, the algorithm iteratively recalculates
center points until convergence. K-means has been
extensively used in scenarios like species classification
and customer segmentation [36].

Random Forest, initially proposed by Leo Breiman
and Adele Cutler, combines bagging and random
feature selection [36, 37]. It builds multiple decision
trees during training and combines their outputs for
final predictions. This approach works effectively for
both classification and regression tasks, and is also
efficient in ranking feature importance. It evaluates
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the significance of a feature by comparing the increase
in the prediction error when the feature values are
permuted in the out-of-bag data. Random Forest is
widely used in healthcare applications, particularly
in disease prediction, risk stratification, and feature
selection.

The Bayesian Theorem, despite its simplicity,
remains effective even with smaller datasets. It can
incrementally build models and handle multi-class
problems, making it particularly suitable for datasets
where the amount of data is limited [38]. SVM is
a popular supervised learning model commonly
used for data analysis and pattern recognition tasks.
SVM constructs a non-probabilistic linear model to
classify data into two categories and can also perform
effectively in non-linear classification tasks through
kernel tricks [39]. SVM has been applied successfully
in healthcare, especially for diagnostic classification
tasks, such as identifying disease presence and
predicting patient outcomes.

Gradient Boosting Decision Tree (GBDT) is a
widely-used machine learning algorithm that is
effective for both classification and regression tasks.
It combines multiple classification or regression trees
in an iterative manner, focusing on minimizing the
loss function rapidly and efficiently [40]. GBDT is
highly effective in medical data analysis, particularly
in patient risk prediction and clinical decision
support, where it helps predict outcomes like disease
progression and treatment effectiveness.

In addition to traditional machine learning algorithms,
deep learning methods such as neural networks,
Convolutional Neural Networks (CNNs), and
Recurrent Neural Networks (RNNs) are increasingly
used for analyzing unstructured healthcare data.
For example, CNNs have demonstrated outstanding
performance in analyzing medical images, while
RNNs are particularly effective in analyzing time-series
medical data, such as patient monitoring systems
and electronic health records [41, 42]. These deep
learning methods have shown significant potential in
improving diagnostic accuracy and predicting disease
outcomes.

Overall, the combination of traditional machine
learning algorithms and advanced deep learning
models has significantly advanced the field of
medical data analysis. These techniques, applied to
electronic health records (EHR), have the potential
to revolutionize clinical decision-making, providing
healthcare professionals with powerful tools for

accurate diagnosis, personalized treatment plans, and
early disease detection. As computational power and
data availability continue to grow, the integration of
thesemethodologieswill further enhance the precision
and reliability of predictive models in healthcare.

3 Methodology
3.1 Overview
The experimental design aims to develop a diabetes
risk prediction model by integrating BiLSTM-CRF,
Extreme Gradient Boosting (XGBoost), and Logistic
Regression. The primary goal is to utilize NLP and
machine learning technologies to extract knowledge
related to diabetes and predict diabetes risk using
Electronic Health Records (EHR).The design involves
several key components (Figure 1):

Figure 1. Overview of our framework.

(1) Data Preparation: This component focuses on
preprocessing text data within EHR. It includes
cleaning and standardizing the text, as well
as extracting key medical information features
such as disease names, symptoms, and treatment
methods. The emphasis here is on transforming
unstructured text data into a structured format
for easier machine processing.

(2) Deep Text Analysis: At this stage, the
BiLSTM-CRF model is utilized for in-depth
text analysis. The BiLSTM (Bidirectional Long
Short-Term Memory) handles text sequences
to capture contextual information. The CRF
(Conditional Random Field) layer aims to
enhance the accuracy of entity recognition.
This process effectively extracts key medical
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entities, including disease features and symptom
descriptions, from complex texts.

(3) Feature Integration and Risk Prediction Model
Construction: Here, features extracted from texts
are merged with other structured data from EHR,
such as demographic characteristics of patients
and lab results, to form a comprehensive feature
set. This set serves as the basis for constructing
diabetes risk prediction models using XGBoost
and Logistic Regression. XGBoost is chosen for its
capability to handle large datasets and capture
complex relationships between features, while
Logistic Regression is selected for its efficacy in
classification and probability estimation.

(4) Model Evaluation and Validation: To thoroughly
evaluate the model’s performance, we utilize
techniques like cross-validation. Keymetrics used
for this assessment include accuracy, recall, and F1
score. Additionally, ensemble learning methods
are considered to combine the predictive results
from the XGBoost and Logistic Regressionmodels,
enhancing the overall predictive accuracy and
robustness.

(5) Final Prediction and Application: Finally, this
combined model is used for the ultimate
prediction of diabetes risk. This prediction
aids not only in early diagnosis of diabetes but
also supports clinical decision-making, thereby
improving disease management and treatment
outcomes.

This experimental design integrates the strengths
of NLP and machine learning to create a system
capable of accurately predicting diabetes risk and
extracting valuable knowledge from EHR. With
ongoing optimization and retraining, this system could
significantly contribute to clinical decision support and
enhance disease management strategies.

3.2 BiLSTM
The BiLSTM model is an enhanced Recurrent Neural
Network (RNN) that improves sequence learning
by analyzing data in both directions, making it
particularly effective for time-series tasks like EHR
analysis. A standard LSTM model processes data in
a forward direction, capturing past information. In
contrast, the BiLSTM processes data in both forward
and backward directions, capturing both past and
future context, which is particularly beneficial for
complex sequential data like medical records (Zheng
et al., 2021). The core functionality of LSTM lies in its

ability to overcome the vanishing gradient problem
common in traditional RNNs. This is achieved through
its unique structure comprising three types of gates:
forget gate; output gate and input gate. The BiLSTM
combines two separate LSTMs: one taking the input
in a forward direction, and the other in a backward
direction. The outputs of these two LSTMs are then
combined to form the final output. The typical
formulae for an LSTM unit are as follows, and these
are applied in both directions in a BiLSTM:

Forget Gate ft : Determines what information to
discard from the cell state.

ft = σ(Wf · [ht−1, xt] + bf ) (1)

where ft controls how much of the previous cell state
Ct−1 should be retained.

Input Gate it : Updates the cell state with new
information.

it& = σ(Wi · [ht−1, xt] + bi) (2)
C̃t& = tanh(WC · [ht−1, xt] + bC) (3)
Ct = ft ∗ Ct−1 + it ∗ C̃t (4)

where it dictates howmuch of the new informationwill
be stored in the cell state, and C̃ is the new candidate
information. The cell state Ct is updated based on the
forget gate and input gate.

Output Gate ot Decides what the next hidden state
should be.

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)
(5)

The output gate determines how much of the cell
state Ct information is allowed to pass into the hidden
state ht. σ: Sigmoid activation function, used for
gating. tanh: Hyperbolic tangent activation function,
used for normalizing data. W and b: Weights and
biases, respectively, for the forget gate, input gate,
candidate memory cell, and output gate. [ht−1, Xt]:
Concatenation of the current inputXt and the previous
hidden state.

In a BiLSTM(Figure 2.), the outputs from the forward
and backward LSTM layers are combined at each time
step. The combination method can vary depending on
the specific application or architecture, but typically it
involves concatenating or summing the hidden states
from both directions. The hidden states hforward

t and
hbackward
t from both LSTM layers are concatenated to

form a combined hidden state for each time step.
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Figure 2. BiLSTM model structure.

3.3 CRF
The Conditional Random Field (CRF) model is
a probabilistic framework used for labeling and
segmenting sequential data, particularly useful
in natural language processing tasks such as
part-of-speech tagging, named entity recognition,
and information extraction. Unlike models that
make independent assumptions for each data point
in a sequence, CRFs consider the context and
dependencies between neighboring data points,
making them effective for complex sequence modeling
tasks.

The basic principle of a CRF is to model the conditional
probability of an output sequence (like labels or tags)
given an input sequence (such as words in a sentence).
Unlike Hidden Markov Models (HMMs), CRFs do
not assume independence among the input features,
allowing them to capture more complex relationships.
The CRF framework is particularly well-suited for
tasks where context plays a crucial role in determining
the appropriate label for each element in the input
sequence.

In mathematical terms, a linear-chain CRF models the
conditional probability of a label sequence Y given an
input sequence X as follows:

P (Y |X) =
1

Z(X)
exp

(∑T

t=1

∑K

k=1
λkfk(yt−1, yt, X, t)

)
(6)

where, fk are feature functions that describe the relationship
between the labels and the input sequence, λk are the
weights associated with each feature function, T is the
length of the sequence, andZ (X) is the normalization factor
ensuring that the probabilities sum up to one.

In a CRF model used for diabetes risk prediction, for
example, the model could analyze a sequence of medical
data points (like lab results over time) and assign a risk
level or category to each point based on both the individual
data point and its context within the overall sequence.
This approach allows for a nuanced understanding of how
different medical factors and their progression over time

might contribute to the patient’s overall risk of developing
diabetes.

By leveraging the strengths of CRFs in handling sequential
and contextual data, this approach to diabetes risk
prediction would offer a sophisticated tool capable of
capturing the intricate patterns and relationships inherent
in medical data, leading to potentially more accurate and
insightful predictions (Figure 3).

Figure 3. BiLSTM-CRF model structure.

3.4 GBoost
XGBoost is a highly efficient and widely used machine
learning algorithm, particularly effective for structured data
[43]. It is an ensemble learning method based on decision
trees, primarily used for classification and regression tasks.
The core principle of XGBoost involves combining multiple
weak learners, typically decision trees, into a strong learner.
The fundamental idea behind XGBoost, as a boosting type
algorithm, is to sequentially build models, each aiming
to reduce the residuals (or errors) of all the previous
models. In XGBoost, this is achieved through gradient
boosting, where the model is enhanced by minimizing the
gradient of the residuals from the previous model. In the
context of complex datasets, especially those with nonlinear
relationships and intricate interactive effects, XGBoost
provides highly accurate solutions. It creates multiple
decision trees sequentially and merges their outputs to
enhance the overall prediction’s accuracy and reliability.
In the diabetes risk prediction model you mentioned,
XGBoost can be utilized either for feature selection or as
anintegral part of the predictive model, enhancing the
overall performance.

At the heart of XGBoost is the following optimization
problem:

Obj =
∑n

i=1
l(yi, ŷi) +

∑K

k=1
Ω(fk) (7)
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where, l(yi, ŷi) is the loss function, measuring the
discrepancy between the predicted values ŷi and the actual
values yi ·Ω(fk) is a regularization term that penalizes overly
complex models to avoid overfitting, typically including the
number and depth of the trees. The contribution of each
tree is calculated as follows:

ŷ
(t)
i = ŷ

(t−1)
i + η · ft(xi) (8)

where ŷ(t)i is the prediction after the t-th round of iteration,
η is the learning rate controlling the contribution of each
tree to the final prediction, and ft(xi)is the prediction of the
t-th tree for sample xi. XGBoost iteratively adds trees,each
time attempting to reduce the residuals from the previous
round, thereby gradually enhancing the model’s predictive
capability. By combining regularization with multiple
iterations, XGBoost effectively prevents overfitting while
providing accurate predictive results.

4 Experiments
4.1 Experimental design
The goal of this experiment is to apply natural language
processing and machine learning techniques to extract
diabetes-related insights from EHR data and predict
diabetes risk. The main goal is to develop a system capable
of accurately predicting diabetes risk while extracting
valuable insights from EHR data. This system has the
potential to greatly enhance clinical decision support and
improve disease management practices.

4.1.1 Data Preprocessing
The initial step of our experiment involves data input and
preprocessing. We utilize raw textual data from Electronic
Health Records (EHR) as our input. Prior to processing, we
perform data cleaning to remove irrelevant characters and
standardizemedical terminology, ensuring data consistency.
Additionally, we employ entity recognition using the ’BIO’
(Begin, Inside, Outside) tagging format for preprocessing.
We identify and label medical entities in the text, such
as diseases, symptoms, and treatment methods. We use
Natural Language Processing (NLP) techniques to perform
this task, marking the beginning of each entity as ’B’ (Begin),
the middle part as ’I’ (Inside), and non-entity parts as ’O’
(Outside). Subsequently, we use the preprocessed text data
for feature extraction. In the feature extraction phase, we
use the Bag ofWordsmodel with a vocabulary size of 10,000
and Word Embeddings with a vector dimensionality of
300. This process results in a structured feature dataset
where each sample contains text information represented
as numerical vectors along with ’BIO’ tags related to
entity recognition. To address the issue of limited data
in our dataset and improve model generalization, we
applied data augmentation techniques such as SMOTE
(Synthetic Minority Over-sampling Technique) to balance
class distribution and prevent overfitting during training.

4.1.2 Deep Text Analysis with BiLSTM-CRF
Moving on to the deep text analysis phase, we employ
the BiLSTM-CRF model. This model takes as input the

structured feature dataset obtained earlier. Internally,
the model utilizes bidirectional Long Short-Term Memory
networks (BiLSTM) to process text sequences, capturing
contextual information within the text. Furthermore, a
Conditional Random Field (CRF) layer is incorporated
to enhance entity recognition accuracy, converting tag
sequences into optimal entity label sequences. During
training, we set the following parameters: a learning rate
of 0.001, a batch size of 32, LSTM layer units of 128, and
a BiLSTM layer with 2 layers. We also employ the Adam
optimization algorithm for model training.

4.1.3 Risk Prediction Model Construction
Subsequently, we proceed to feature fusion and the
construction of risk prediction models. In this step, we
combine the output tag sequences from the BiLSTM-CRF
model with other structured data from the EHR, forming a
comprehensive feature set. We then build two independent
risk prediction models: the XGBoost model and the Logistic
Regression model. For the XGBoost model, we set specific
parameters, including a learning rate of 0.1, amaximum tree
depth of 5, a minimum child weight of 1, subsampling with
a ratio of 0.8, and column subsampling with a ratio of 0.8.
For the Logistic Regression model, we set the regularization
parameter (C) to 0.1 and utilize the L-BFGS optimization
algorithm.

4.1.4 Model Evaluation and Metrics
In our study, we used BiLSTM-CRF, XGBoost, and Logistic
Regression models for training and evaluating data. We
carefully set the training data ratio, input data, and
evaluation methods for each model.

For the BiLSTM-CRF model, we split the dataset into an
80% training set and a 20% test set. This means that 80%
of the data is used to train the model, while the remaining
20% is reserved for testing and evaluating its performance.
To address potential overfitting in the BiLSTM-CRF model,
we implemented early stopping based on validation loss
and applied dropout regularization with a rate of 0.5
during training. With the XGBoost and Logistic Regression
models, the input data usually comes in the form of
structured features from electronic health records, including
patient physiological parameters andmedical history. These
models might not directly process raw textual data but
use features that have been converted into numerical form.
To ensure that our models generalize well across different
populations and datasets, we adopt several strategies to
improve model robustness. First, we employ transfer
learning by fine-tuning pre-trained models like Med-BERT,
which has been trained on a large, diverse corpus of medical
data. Fine-tuning this model on our specific dataset allows
the model to leverage broader knowledge, reducing the
risk of overfitting to the specific characteristics of our
training data. Additionally, to enhance the model’s ability
to generalize to diverse populations, we ensure that our
training set includes a variety of demographic groups,
healthcare conditions, and medical practices. By doing
so, the model learns more generalized features that are
applicable across different sub-populations. To further
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mitigate overfitting and ensure robust model performance,
we applied 5-fold cross-validation for both XGBoost and
Logistic Regression models. This helps to assess how well
the models generalize by evaluating them on multiple
different data subsets. Additionally, Logistic Regression
was regularized using an L2 penalty to prevent overfitting.

For evaluation, in addition to Accuracy, Recall, and F1-Score,
we also use other metrics. In classification tasks, each
sample in the data has a true class, and the model predicts
a class for each sample. Classification evaluation metrics
are divided into those for binary classification problems
and those for multiclass classification problems. In binary
classification, we can categorize samples into four classes
based on the Confusion Matrix:

True Positive (TP): Correctly identified positive instances.
TrueNegative (TN): Correctly identified negative instances.
False Positive (FP): Incorrectly classified as positive, but
truly negative.
False Negative (FN): Incorrectly classified as negative, but
truly positive.

Accuracy:

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Precision:

Precision =
TP

TP + FP
(10)

Recall:

Recall = TP

TP + FN
(11)

F1-Score:

F1-Score =
2 · Precision · Recall
Precision+ Recall

(12)

Specificity: Specificity is the proportion of True Negatives
out of all actual negative instances. It measures the model’s
ability to correctly identify negative instances.

Specificity =
TN

TN + FP
(13)

Cohen’s Kappa(Kappa):

Kappa =
Po − Pe

1− Pe
(14)

Po represents the observed agreement, and Pe represents
the expected agreement under random chance.

4.2 Dataset
Font: Open Sans; Font size; 10. Paragraph comes content
here. Paragraph comes content here.

Our experiment utilized a dataset from a renowned health
check center in Beijing, consisting of health records of
5,046 individuals, focusing on data from January 2010
to December 2015. To ensure a comprehensive and
standardized dataset, we selectively included individuals
with annual health checks and excluded those with
either fewer than five years of records or multiple checks
per year, narrowing down to 1,097 individuals with 48
features, including gender, age, AST/ALT ratio, proportion,
hematocrit, red cell distribution width, mean corpuscular
volume, creatine kinase (CK), fasting blood glucose, pupil
dilation, lymphocyte percentage, total lymphocyte count,
urine bilirubin, urine urobilinogen, urine protein, urinalysis
-white bloodcells, urinalysis - red blood cells, urea, urine pH,
urine glucose, urine ketones, mean corpuscular hemoglobin
concentration, mean platelet volume, height, lower limb
edema, weight, body mass index (BMI), electrocardiogram
(ECG), heart rate, complete blood count - white blood
cells, complete blood count - red blood cells, serum
aspartate aminotransferase (AST), serum low-density
lipoprotein cholesterol (LDL-C), serum triglycerides, serum
high-density lipoprotein cholesterol (HDL-C), serum
alanine aminotransferase (ALT), serum total cholesterol,
platelet distribution width,platelet count, nitrites, waist
circumference, fatty liver, neutrophil percentage, total
neutrophil count, systolic blood pressure, diastolic blood
pressure, and diabetes status.

The preprocessing of this data involved a meticulous
process of cleaning and standardization, where irrelevant
characters were removed, and medical terminologies
were standardized to maintain uniformity. In extracting
meaningful features from the rich textual descriptions in
the health reports, such as doctor’s annotations, diagnostic
results, and treatment recommendations, we deployed
Natural Language Processing (NLP) techniques. Two
primary methods were utilized: the BIO tagging format
and Word Embeddings. This intricate process of feature
extraction and fusion was pivotal in discerning the complex
layers of information embedded in the health reports,
playing a critical role in assessing the risk of diabetes,
monitoring its progression, and aiding in the development
of tailored health recommendations. Our integrated

Table 1. Comparison between different models.

Model Accuracy Precision Recall F1 Score Specificity Kappa Coefficient

LSTM 0.70 0.6240 0.694 0.700 0.6875 0.4003
BiLSTM 0.76 0.7828 0.671 0.722 0.6962 0.5560
CNN-Bi-LSTM 0.777 0.7812 0.681 0.728 0.6981 0.5624
3D-CNN-SPP 0.80 0.7981 0.687 0.734 0.6997 0.5681
Med-BERT 0.81 0.8073 0.798 0.739 0.7055 0.6182
BiLSTM-M-CRF 0.82 0.8090 0.696 0.748 0.7097 0.6219
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approach significantly bolstered the depth and effectiveness
of our analysis, proving crucial in the predictive modeling
of diabetes-related outcomes.

4.3 Comparison study results and analysis
The Table 1 displays the performance metrics of various
models. The BiLSTM-CRF model achieves the highest
accuracy of 82%, followed by Med-BERT at 81%,
3D-CNN-SPP at 80%, and CNN-Bi-LSTM at 77%. In
terms of precision, BiLSTM-CRF leads with 80.90%,
followed closely by Med-BERT at 80.73% and BiLSTM at
78.28%. The BiLSTM-CRF model also shows the highest
F1 score of 74.87%, outperforming BiLSTM at 72.29%
and CNN-Bi-LSTM at 73.41%. In terms of recall, LSTM
achieves the highest recall at 79.82%, but sacrifices precision
and specificity. BiLSTM-CRF, however, achieves a more
balanced performance across precision, recall, and F1
score, demonstrating its superiority in predicting diabetes
risk. The Kappa coefficient is highest for BiLSTM-CRF at
0.6219, indicating strong agreement between the model’s
predictions and the actual outcomes. This suggests
that BiLSTM-CRF has minimal overfitting and is highly
generalizable. BiLSTM-CRF outperforms all other models
across key metrics, demonstrating the effectiveness of
combining Bidirectional LSTM for enhanced contextual
understanding of medical texts and Conditional Random
Fields for optimizing entity recognition. This hybrid
approach strengthens the model’s ability to handle both
structured and unstructured data, which is crucial for
accurate diabetes risk prediction. Figure 4 shows the
graphical representation of the model comparison.

Figure 5 depicts the F1 score trajectories of three deep
learning models over 100 training epochs. The F1 score,
as a harmonic mean of precision and recall, serves as a
robustmetric formodel accuracy, particularly in imbalanced
dataset contexts. The LSTM model, represented by the blue
line, exhibits a steep initial learning curve that plateaus just
above the 0.70. The BiLSTMmodel, indicated by the orange
line, follows a similar trajectory with a marginally higher
convergence value, suggesting a slightly better balance
between precision and recall. The BiLSTM-CRF model,
denoted by the green line, shows a comparable initial rise
but fluctuates around the 0.75 level after the 20-epoch
mark, indicating the CRF layer’s nuanced capabilityto
capture dependencies, resulting in a higher F1 score. All
models demonstrate rapid performance improvements
within the initial 20 epochs, followed by a deceleration
in learning rate and subsequent stabilization around their
respective score levels. This pattern of quick initial
improvement followed by a plateau is indicative of models
reaching their learning capacity with the given training data.
The closeness of the curves post the 20-epoch threshold
implies similar predictive capabilities across the models,
with the CRF-enhanced model potentially offering slight
enhancements in performance.

The Table 2 presents the performance metrics of
three models – XGBoost, Logistic Regression, and
an Ensemble model. The Ensemble model outperforms

Figure 4. Comparison between different models.

both XGBoost and Logistic Regression across all keymetrics,
demonstrating the benefits of combining multiple models.
In terms of accuracy, the Ensemble model achieved 89%,
surpassing XGBoost at 86% and Logistic Regression at 81%.
This highlights the Ensemble model’s ability to improve
classification accuracy. For precision, the Ensemble model
leads with 90%, followed by XGBoost at 88% and Logistic
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Figure 5. Comparison F1 score between different models.

Table 2. Comparative Performance Metrics between
different models.

Metric XGBoost Logistic
Regression Ensemble

Accuracy 0.86 0.81 0.89
Precision 0.88 0.83 0.90
Recall 0.85 0.79 0.87
F1 Score 0.86 0.81 0.88
AUC 0.91 0.87 0.93

Regression at 83%. This suggests the Ensemble model
excels at minimizing false positives. In recall, the Ensemble
model is again the best with 87%, compared to XGBoost at
85% and Logistic Regression at 79%. The Ensemble model
achieves a better balance between precision and recall.

The F1 score, combining precision and recall, also favors
the Ensemble model at 88%, with XGBoost at 86% and
Logistic Regression at 81%. This shows the Ensemble
model’s balanced performance. The AUC, indicating
discriminatory power, is highest for the Ensemble model at
93%, followed by XGBoost at 91% and Logistic Regression
at 87%. This confirms the Ensemble model’s superior ability
to distinguish between classes. In conclusion, the Ensemble
model consistently outperforms the other models, making
it the most effective choice for this predictive task, with
superior accuracy, precision, recall, F1 score, and AUC.

5 Conclusion
In this study, we aimed to address the challenge of diabetes
risk prediction and knowledge discovery from EHR in a
data-driven manner. Our primary goal was to accurately
predict diabetes risk and extract valuable insights from
extensive medical text and structured EHR data. To achieve
this, we employed several key methods: first, preprocessing
the textual data through text cleaning, standardization, and
extraction of medical features. The BiLSTM-CRFmodel was
then used for in-depth text analysis, with BiLSTM capturing
contextual information and the CRF layer improving
entity recognition accuracy. The extracted text features

were integrated with structured data, such as patient
demographics and lab results, to create a comprehensive
feature set. This formed the basis for diabetes risk prediction
models built using XGBoost, which excels at handling large
datasets, and Logistic Regression, known for its effective
classification and probability estimation.

Despite achieving certain milestones in our research, two
primary deficiencies and future prospects are evident: Our
experimental dataset is relatively small, consisting of only
1000 clinical electronic health records. To comprehensively
train and validate our models, it is essential to expand the
dataset to capture a more extensive range of diseases and
patient characteristics. Future work should concentrate
on data collection and augmentation, possibly through
collaborations with multiple healthcare institutions to
ensure diversity and representativeness of the data. While
we employed deep learning and machine learning models
for prediction and knowledge discovery, these models are
often considered black-box models, making it challenging
to interpret their prediction results. Future research
should focus on enhancing the interpretability of the
models, enabling healthcare professionals to understand
the decision-making process. Additionally, further model
optimization is a future direction to improve prediction
accuracy and stability. While we focused on structured
and textual data, incorporating additional factors such
as genetic, environmental, and behavioral data could
further enhance model performance and better capture the
multifaceted nature of diabetes. In addition, although this
study used a public dataset, we acknowledge the ethical
concerns regarding privacy, informed consent, and data
security with personal health data. Future studies involving
private health data should ensure compliance with ethical
standards and institutional review board (IRB) approvals.
We also suggest exploring privacy-preserving techniques,
such as federated learning, to protect sensitive data while
enabling meaningful analysis.

In summary, this study’s approach harnessed the strengths
of Natural Language Processing and machine learning to
create a system capable of accurately predicting diabetes
risk and extracting valuable insights from EHR. Through
ongoing model optimization and retraining, this system
could make significant contributions to clinical decision
support and disease management, ultimately improving
patient outcomes and healthcare efficiency. This research
presents an innovative approach to combining data-driven
diabetes risk prediction and medical knowledge discovery,
holding significant clinical and research significance. Future
work should focus on overcoming deficiencies related to
data limitations and model interpretability while further
advancing this field to benefit both healthcare professionals
and patients.
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