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Abstract
The integration of graph neural networks (GNNs)
with brain functional network analysis is an
emerging field that combines neuroscience and
machine learning to enhance our understanding of
complex brain dynamics. We first briefly introduce
the fundamentals of brain functional networks,
followed by an overview of Graph Neural Network
principles and architectures. The review then
focuses on the applications of these networks and
address current challenges in the field, such as
the need for interpretable models and effective
integration of multi-modal neuroimaging data. We
also highlight the potential of GNNs in clinical
perimenopausal areas such as perimenopausal
depression research, demonstrating the broad
applicability of this approach. The review concludes
by outlining future research directions, including
the development of more sophisticated architectures
for large-scale, heterogeneous brain graphs, and the
exploration of causal inference in brain networks.
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By synthesizing recent advances and identifying key
research directions, this review aims to summarize
the focal points of brain functional network
analysis and GNNs, explore the potential of their
integration, and provide a reference for advancing
this interdisciplinary field.
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1 Introduction
Brain functional networks represent the complex
patterns of neural interactions that underlie cognitive
processes and behavior [1]. These networks are
typically derived from neuroimaging data, such
as functional magnetic resonance imaging (fMRI)
or electroencephalography (EEG), which capture
the temporal correlations between different brain
regions [2]. Understanding these networks is crucial
for unraveling the intricacies of brain function in both
health and disease [3].

Graph-based approaches have emerged as powerful
tools for modeling and analyzing brain functional
networks. By representing brain regions as nodes
and their interactions as edges, these methods
can capture the topological properties of neural
systems [4]. These functional network analyses
have shown promising potential in contributing to
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disease prediction and risk assessment across various
neurological and psychiatric conditions [5, 6]. For
example, graph theory provides a rich set of metrics to
quantify network characteristics, such as modularity,
efficiency, and hub structures, offering insights into
brain organization and function [7]. Network
theory researches on complex networks have also
revealed novel principles of network resilience, such as
cascading failures and recovery processes, potentially
offering valuable insights into the robustness and
adaptive mechanisms of brain functional networks in
response to perturbations [8, 9].

Recent advances in machine learning have led to the
development of graph neural networks (GNNs), a
class of deep learning models specifically designed to
operate on graph-structured data. GNNs also emerged
as a powerful tool in neuroscience for analyzing
brain networks. They process graph-structured
spatio-temporal signals, combining structural
and functional neuroimaging data. GNNs have
already shown promise in applications like disease
classification [10] and causal inference [11] in brain
networks. These studies highlight GNNs’ potential
to enhance our understanding of brain function and
neurological disorders.

This review aims to provide an overview of the concept
and application of GNNs in modeling brain functional
networks. We will explore:

1. The fundamentals of brain functional networks
and their graph-theoretic representations.

2. The principles and architectures of GNNs.

3. Current applications of GNNs in analyzing brain
functional networks.

4. Challenges and future directions in this rapidly
evolving field.

2 Brain Functional Network
2.1 Measure Brain Functional activity and Establish

brain network
Functional Magnetic Resonance Imaging (fMRI) is a
non-invasive technique used to measure brain activity
by detecting changes in blood oxygenation and flow,
referred to as the Blood Oxygen Level Dependent
(BOLD) signal [12]. This process works by capturing
the fluctuations in oxygen levels that occur when active
neurons increase their consumption of oxygen, which
is subsequently replenished by increased blood flow.
These shifts in deoxyhemoglobin concentrations are

what fMRI scans detect as changes in the BOLD signal.

From the temporal correlations of BOLD signals across
different brain regions, researchers can determine
functional connectivity. This connectivity reflects
synchronized activity patterns between regions,
indicative of network-level communication. By
leveraging this data, fMRI enables the detailed
mapping of functional networks, which provides
crucial insights into how various parts of the brain
interact during tasks or in resting states.

Electroencephalography (EEG) is a non-invasive
technique used to record electrical activity in the brain
by measuring voltage fluctuations from neurons. EEG
offers a significant advantage in functional connectivity
studies due to its high temporal resolution, capturing
rapid neuronal oscillations with millisecond precision.
This is particularly useful for investigating real-time
dynamics of brain networks, as described by Kim et
al. (1997) [13]. However, its spatial resolution is more
limited compared to techniques like fMRI.

Magnetoencephalography (MEG), which records
magnetic fields generated by neural activity,
complements EEG by providing similarly high
temporal resolution with better spatial localization,
as outlined by da Silva (2013) [14]. Together, EEG
and MEG allow for the detailed analysis of oscillatory
synchronization and functional connectivity, critical
for understanding the rapid temporal dynamics of
brain networks. Additionally, the integration of EEG
and fMRI data provides a more comprehensive view
of brain function, combining EEG’s high temporal
precision with fMRI’s superior spatial mapping.
Zhang et al. (2024) demonstrated this in their study,
where they used simultaneous EEG-fMRI to reveal
the spatiotemporal dynamics of brain activity during
covert and overt speech [15]. This combination
enables researchers to explore both the timing and
location of brain processes more effectively, offering
deeper insights into network-level communication
and function.

2.2 Graphical Theory and Metrics of Network
Graph theory provides a mathematical framework
for analyzing complex brain systems [16]. In this
context, nodes represent brain regions or sensors,
while edges depict functional connections between
them. The network structure is mathematically
represented by an adjacency matrix. Graphs can
be categorized as weighted (edges have associated
strengths) or unweighted (edges simply indicate
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connection presence), and as directed (edges have
directionality) or undirected. These concepts allow
for a comprehensive representation and analysis of
brain network organization and dynamics.

Graph theory provides a robust framework for
analyzing the structure and function of brain networks
by offering a variety of metrics. These metrics help
characterize network properties, shedding light on
how different regions of the brain interact.

One key metric is modularity, which quantifies the
extent to which a network is divided into distinct
communities or modules. According to Girvan and
Newman (2002) [17], modularity provides insights
into the community structure of complex networks,
helping identify clusters of brain regions that function
together.

Centrality measures identify important nodes within
a network. Barthelemy (2004) [18] explored
betweenness centrality, which determines how often a
node acts as a bridge along the shortest path between
other nodes. This metric highlights regions that play
a crucial role in connecting different parts of the
brain network. Additionally, Ravasz and Barabási
(2003) [19] examined **hierarchical organization**
in complex networks, showing how centrality can
help elucidate the multi-level organization of brain
networks, revealing the presence of hubs and their
connectivity patterns.

The concept of small-worldness is another critical
feature of brain networks. Bassett and Bullmore
(2017) [20] revisited the small-world characteristics
of brain networks, demonstrating that the human
brain exhibits both high clustering and short path
lengths, indicating an efficient balance between local
specialization and global integration. Further, van
den Heuvel et al. (2008) [21] discussed scale-free
organization, showing that brain networks exhibit
a few highly connected nodes (hubs), akin to a
scale-free topology, which has implications for the
brain’s resilience and efficiency.

To facilitate the analysis of these complex network
properties, several software tools have been developed.
For instance, GAT (Graph Analysis Toolbox),
introduced by Hosseini et al. (2012) [22], is designed
for analyzing group differences in structural and
functional brain networks. This toolbox is particularly
useful for comparing brain networks across different
populations or conditions.

GRETNA (Graph Theoretical Network Analysis),

described byWang et al. (2015) [23], is another toolbox
that allows for comprehensive graph-theoretical
analyses of brain connectomics. It offers a wide range
of metrics to assess brain network properties, making
it a versatile tool for imaging connectomics research.

Finally, GraphVar, developed by Kruschwitz et
al. (2015) [24], provides an easy-to-use platform
for performing graph analyses on functional brain
connectivity data. This toolbox enables researchers
to conduct in-depth graph analyses, visualize network
metrics, and perform statistical tests on brain
connectivity data.

Together, these metrics and tools enable researchers to
explore the complex structure and function of brain
networks, providing valuable insights into how the
brain’s architecture supports cognitive processes and
behaviors.

3 Graph Neural Network (GNN)
3.1 Overview of GNN
Graph Neural Networks (GNNs) emerged as
an extension of neural networks to handle
graph-structured data. GNNs excel at capturing
complex relationships and interdependencies in
graph-structured data, making them particularly
effective for tasks involving relational information
and network analysis. The fundamental principle of
GNNs lies in their ability to learn representations of
nodes, edges, and graphs through an iterative process
of information propagation and aggregation. The
fundamental workflow of GNNs can be described as
follows:

Initialization: The process begins with the
initialization of node features.

Message Passing and Aggregation: Through
multiple iterations, each node engages in a
message-passing mechanism, receiving information
from its neighboring nodes.

Iterative Update and Convolution: After receiving
and aggregating messages, each node updates its own
representation through a learnable function, typically
combining the aggregated information with the node’s
previous state. The message passing, aggregation, and
update steps are repeated multiple times, enabling
the propagation of information across the entire graph
structure.

Pooling and Readout: For graph-level tasks, an
additional pooling or readout step is performed to
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obtain a comprehensive graph representation.

3.2 GNN Initialization
In the context of functional network analysis,
initialization plays a crucial role in determining the
initial representation of brain regions (nodes) and
their connections (edges). Feature initialization
refers to using specific attributes like regional labels
or physical properties to define these initial node
states. In their study, Cui et al. (2022) [25] introduced
Braingb, a benchmark designed for brain network
analysis using graph neural networks (GNNs). This
benchmark allows for the comparison of different
GNN models in terms of their ability to capture brain
network features, emphasizing the importance of
initialization strategies for nodes and edges. The
authors highlight how feature initialization can impact
the ability of GNNs to model brain connectivity and
how using appropriate initial features is vital for
achieving accurate analysis.

When no prior information is available for
initialization, random methods are often employed.
Abboud et al. (2020) [26] explored the surprising
effectiveness of random node initialization in GNNs.
Their study revealed that even without explicit
prior knowledge, random initialization can yield
strong performance across various tasks. This
finding challenges traditional approaches that
emphasize the need for carefully designed initial
representations, suggesting that randomness can still
lead to meaningful learning in GNNs.

Furthermore, Li et al. (2023) [27] conducted an
in-depth analysis of different initialization strategies
for GNNs, focusing on how these strategies influence
model convergence and performance. Their research
demonstrates that the choice of initialization
has a significant impact on GNNs, particularly
in complex networks such as brain functional
networks. They show that careful consideration of
initialization techniques can lead to better model
performance, emphasizing the importance of selecting
an appropriate method for specific tasks.

These studies collectively highlight the critical role
that initialization plays in functional network analysis
with GNNs. Whether using feature-based or random
initialization, the way in which nodes and edges
are represented initially can significantly affect the
outcome of the analysis.

3.3 GNN Aggregation and Pooling
Aggregation and pooling are fundamental operations
in GNNs, crucial for processing brain network data
effectively.

Aggregation combines information from a node’s
neighborhood, capturing local structure information
around each brain region. Various aggregation
schemes have been proposed, from simple mean or
sum operations to more sophisticated attention-based
mechanisms. For instance, GraphSAGE introduced
trainable aggregation functions [28], while Graph
Attention Networks (GATs) assign different
importance to different neighboring regions [29].
Pooling serves two main purposes in GNNs: reducing
the graph size for hierarchical representation learning
and generating graph-level embeddings [30]. This
is particularly useful for analyzing brain networks
at different scales or for tasks requiring a single
representation of the entire brain state.

Global pooling methods (e.g., mean, sum, or max
of node features) are commonly used to obtain
fixed-size representations of the entire brain network.
Hierarchical pooling methods, such as DiffPool [31]
and SAGPool [32], learn a coarsened graph structure,
allowing the model to capture multi-scale properties
of brain organization.

Recent advancements in graph neural network
pooling techniques have significantly improved
the stability and expressiveness of models used for
brain network analysis. Mesquita et al. (2020) [30]
rethought traditional pooling strategies, proposing
newmethods to better preserve structural information.
Ying et al. (2018) [31] introduced hierarchical graph
representation learning through differentiable pooling.
Lee et al. (2019) [32] focused on self-attention
mechanisms to enhance pooling. Meanwhile, Zhang
et al. (2021) [33] developed multi-view pooling
techniques for structure learning, and Ranjan et al.
(2020) [34] proposed adaptive pooling strategies
tailored to hierarchical graph representations.
Together, these innovations enable more nuanced and
accurate analyses of brain function across various
scales and modalities.

3.4 GNN Convolution
Graph convolution is a fundamental operation in graph
neural networks (GNNs) that generalizes the concept
of convolution, traditionally used in grid-like data
(such as images), to irregular graph-structured data.
In standard convolutional neural networks (CNNs),
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the convolution operation extracts features by applying
filters to local neighborhoods of pixels, capturing
spatial relationships. Similarly, in GNNs, graph
convolution aggregates information from neighboring
nodes in a graph to capture both local and global
structural patterns. This operation is crucial for
analyzing functional brain networks, where nodes
represent different brain regions and edges represent
connections or interactions between these regions.

The key idea behind graph convolution is that it
iteratively updates the representation of each node
by aggregating information from its neighbors.
This allows the network to build hierarchical
representations of the graph, progressively capturing
more complex relationships. The process typically
involves two main steps: aggregation, where the
node’s neighbors’ features are combined using
a function such as summation or averaging, and
transformation, where the aggregated features are
passed through a learnable weight matrix (often
followed by a non-linear activation function).

Graph convolution is particularly useful in
brain network analysis because brain regions
are interconnected in complex ways that don’t
follow a regular grid structure. By applying graph
convolutions, GNNs can effectively learn patterns of
connectivity that are crucial for understanding brain
function and dysfunction. The ability to capture both
local interactions (e.g., between closely connected
brain regions) and global patterns (e.g., broader
network-wide properties) makes graph convolution
a powerful tool for tasks such as disease diagnosis,
brain state classification, and network comparison
across individuals.

Graph convolution operations can be classified
into two main approaches: spectral-based and
spatial-based methods [36]. Spectral methods
operate in the frequency domain of graph Laplacian
eigenvectors, capturing global graph structure by
applying filters in the spectral domain. While these
methods offer strong theoretical foundations and
global insights, they are computationally expensive
and difficult to generalize across different graphs.
The need for eigen-decomposition of the Laplacian
matrix makes them impractical for large graphs, and
their specificity to individual graphs limits their
transferability.

In contrast, spatial-based methods perform
convolution directly in the graph’s vertex domain by
aggregating information from local neighborhoods

around each node. These methods are more
scalable and flexible, making them well-suited for
large graphs. However, they focus on local node
interactions, potentially missing out on global
patterns. A significant development in the field
is the Graph Convolutional Network (GCN) [37],
which approximates spectral convolutions using local
operations. GCNs balance computational efficiency
and expressiveness, but they tend to rely on shallow
architectures and can suffer from over-smoothing
when extended to deeper networks. Overall, GCNs
strike a middle ground, combining the strengths of
both spectral and spatial approaches.

4 Combine Brain Functional Network andGNN
As shown in Figure 1, GNNs integration with
brain functional network analysis has emerged as a
powerful approach to understanding complex brain
dynamics and neurological disorders. This fusion
has significantly advanced neuroscience research in
several key areas, offering potential for more precise
and individualized assessments of brain health.

Figure 1. (a) Workflow of applying graph neural networks
(GNNs) to brain functional network analysis. (b) An

example of brain functional connectivity in brain anatomy,
graph, and circular views.

In brain state classification, GNN models have
demonstrated remarkable performance. A
local-to-global graph neural network was developed
for classifying brain disorders in resting-state
functional magnetic resonance imaging (rs-fMRI).
This method enhanced classification accuracy by
capturing brain functional connectivity patterns
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at different spatial scales [38]. Another study
empirically evaluated EEG-based graph neural
network classification of Alzheimer’s disease,
comparing the effectiveness of various functional
connectivity methods. This research not only
showcased GNN’s potential in processing EEG data
but also provided guidance for selecting appropriate
functional connectivity methods [39]. Furthermore,
a graph neural network approach using imaging of
effective brain connectivity successfully achieved
dementia classification, demonstrating GNN’s
advantages in handling complex brain connectivity
patterns [40].

In the field of biomarker identification, GNNmodels
have shown exceptional capabilities. A graph neural
networkmethod for interpreting task-fMRI biomarkers
was proposed, which not only improved prediction
accuracy but also enhanced the interpretability of
results [41]. A comprehensive review explored
the use of GNNs in discovering robust biomarkers
of neurological disorders from functional MRI,
highlighting the growing importance of this approach
in neuroscience research [42]. Additionally, a pooling
regularized graph neural network for fMRI biomarker
analysis was developed, addressing the challenge of
extracting meaningful features from complex brain
network data [43]. In the context of autism spectrum
disorder diagnosis, a graph attention network based on
spatial-constrained sparse functional brain networks
was employed, showcasing the potential of GNNs in
analyzing specific neurological conditions [44].

Specialized GNN architectures have been employed
to model dynamic functional connectivity, providing
insights into how brain function evolves over time.
A graph-generative neural network for EEG-based
epileptic seizure detection was developed, which
discovered dynamic brain functional connectivity
patterns. This approach demonstrated the potential
of GNNs in capturing the temporal aspects of brain
function, particularly in the context of neurological
disorders [45].

The versatility of GNNs extends to multi-modal
integration, combining functional connectivity data
with other types of information, such as structural
connectivity. A study on joint embedding of
structural and functional brain networks with GNNs
for mental illness diagnosis showcased this capability.
This comprehensive approach allows for a deeper
understanding of brain organization and function by
leveraging complementary information from different

neuroimaging modalities [46].

As the field progresses, there is a growing focus
on developing interpretable GNNmodels, aiming to
provide not just accurate predictions but also insights
into the biological basis of their decisions [47]. This
trend towards interpretability is crucial for bridging
the gap between machine learning models and clinical
applications, potentially leading to more informed
decision-making in neurological and psychiatric care.

5 Discussion and Outlook
This review has illuminated the remarkable strides
made in applying GNNs to various facets of brain
network analysis. From brain state classification
to biomarker identification and dynamic functional
connectivity analysis, GNNs have demonstrated their
potential to revolutionize our understanding of the
brain’s complex network dynamics.

GNNs have shown exceptional prowess in detecting
subtle network topology differences that often elude
traditional methods [54]. This capability is paramount
for distinguishing healthy from diseased brain states,
offering a level of precision that was previously
unattainable. The power of GNNs lies not just in
their ability to classify states, but in their capacity
to identify discriminative subnetworks and node
properties. This granular level of analysis paves
the way for more precise and personalized brain
health assessments, potentially transforming how we
approach neurological and psychiatric disorders.

The application of GNNs to dynamic functional
connectivity analysis represents a significant leap
forward in our ability to understand the brain’s
ever-changing landscape. By capturing the temporal
evolution of brain function, its response to stimuli,
and its alterations in neurological disorders, GNNs
offer a window into the brain’s adaptive processes that
was previously obscured. This dynamic perspective
could be instrumental in unraveling the complexities
of disorders characterized by altered brain dynamics,
such as epilepsy or schizophrenia.

As shown in Table 1, the application of GNNs to
dynamic functional connectivity analysis represents a
significant leap forward in our ability to understand
the brain’s ever-changing landscape. By capturing the
temporal evolution of brain function, its response to
stimuli, and its alterations in neurological disorders,
GNNs offer a window into the brain’s adaptive
processes that was previously obscured. This dynamic
perspective could be instrumental in unraveling the
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Table 1. GNNs Application Examples in Brain Functional
Networks.

Applications Innovations References

Brain
State

Classification

Hierarchical architecture;
Effective connectivity;
EEG-based graphs

[38], [39],
[40]

Neurological
Disorder
Diagnosis

Interpretable biomarkers;
Pooling regularization;

Spatial-constrained networks

[41], [42],
[43], [44]

Dynamic
Functional
Network

Graph-generative models;
Spatio-temporal attention [45], [48]

Longitudinal
Brain

Analysis

Temporal GNN;
Brain tokenization [49], [50]

Cross-modal
Integration

Joint embedding;
Cross-modal learning [46], [51]

Causal
Inference

Causal discovery;
Interpretable GNN;

Multimodal coarsening

[11], [47],
[52], [53]

complexities of disorders characterized by altered
brain dynamics, such as epilepsy or schizophrenia.

1. Interpretable GNNs: While the predictive power
of GNNs is impressive, their ’black box’ nature
often hinders their adoption in clinical settings.
Developing GNN architectures that not only make
accurate predictions but also provide insights into
the biological mechanisms underlying their decisions
is paramount [55]. For example, GNNs provide
clinically relevant insights into the neurobiological
basis of ASD, potentially informing diagnosis and
treatment strategies [56]. Future research could focus
on developing attention mechanisms or saliency maps
specifically tailored to brain network data, allowing
for more intuitive interpretation of GNN decisions.

2. Longitudinal Studies: The brain is not a static
entity but a dynamic system that changes over time.
Applying GNNs to longitudinal neuroimaging
functional data holds immense promise for
understanding brain development, aging, and disease
progression [49, 50]. This approach could reveal
temporal patterns in brain network evolution that are
invisible in cross-sectional studies. Moreover, it could
lead to early detection methods for neurodegenerative
diseases, potentially allowing for intervention before
significant symptoms manifest.

3. Large-scale, Heterogeneous Graph Datasets:
As our ability to collect and store neuroimaging
data grows, so does the complexity of our datasets.
Deep learning-based methods will face more
challenges in handling diverse datasets with uncertain
information [57]. GNNs will need to evolve to handle
these large-scale, heterogeneous brain graphs that
incorporate multiple types of nodes and edges [58].
This challenge is not just about computational
efficiency, but about developing models that can
meaningfully integrate diverse data types – from
functional connectivity to structural connectivity, and
even genetic information. Success in this area could
lead to more holistic models of brain function that
account for the multi-faceted nature of neural systems.

4. Causal Inference: While current GNN models excel
at finding correlations in brain network data, the
holy grail of neuroscience is understanding causation.
Developing GNN models that can infer causal
relationships in brain networks could revolutionize
our understanding of how activity propagates
through the brain and how interventions affect
neural dynamics [11]. This could have far-reaching
implications, from optimizing neurostimulation
therapies to designing more targeted pharmacological
interventions.

5. Clinical Translation: Translating GNN insights into
clinical practice represents both a significant challenge
and an exciting opportunity. For instance, in the realm
of perimenopausal depression, GNNs could help
unravel the complex interactions between hormonal
changes, brain network alterations, and depressive
symptoms [59]. By modeling how menopausal
hormonal fluctuations causally influence brain
network properties, such as functional connectivity
in emotion regulation circuits [60], we could gain
new insights into the neurobiological underpinnings
of mood disorders in this population. Similarly, like
Alzheimer’s disease, GNNs can be applied to model
disease progression [39], aiding in early diagnosis and
help tailor interventions based on individual patient
profiles.

As we look to the future, the integration of
GNNs with other cutting-edge technologies presents
intriguing possibilities. For instance, combining
GNNs with advanced neuroimaging techniques like
high-field MRI or novel PET tracers could provide
unprecedented resolution in mapping brain networks.
Similarly, integrating GNNs with techniques from the
burgeoning field of computational psychiatry could
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lead to more sophisticated models of mental illness
that account for both neural network dynamics and
cognitive processes.

6 Conclusion
In this extensive review, we delved into the landscape
of Graph Convolutional Networks (GCNs) and their
growing relevance in the analysis of graph-structured
data. Beginning with a discussion of foundational
concepts, we distinguished between the two main
categories of convolution operations—spectral-based
and spatial-based methods. Spectral-based methods
leverage graph Laplacian eigenvectors to operate
within the frequency domain, capturing the global
structure of graphs. On the other hand, spatial-based
methods aggregate information from a node’s
immediate neighbors, offering advantages in
terms of computational scalability and efficiency.
Each approach brings distinct strengths, and the
development of GCNs has been pivotal in balancing
the expressiveness of spectral methods with the
scalability of spatial techniques, especially in the
context of large-scale graphs.

Looking ahead, the future of GCNs hinges on
overcoming several key challenges that are central
to advancing their practical applications. First and
foremost, improving model interpretability is a critical
issue. GCNs, like other complex machine learning
models, often operate as “black boxes,” making their
decision-making processes opaque. This lack of
transparency poses significant risks, particularly in
sensitive areas such as healthcare and finance, where
high-stakes decisions require a clear understanding
of the underlying rationale. In applications such
as diagnosing diseases or making financial forecasts,
the ability to interpret a model’s outputs is crucial
for building trust and ensuring accountability. As
such, future research must prioritize developing more
interpretable GCN models, enabling users to better
understand, verify, and trust their predictions.

Second, scalability and computational efficiency are
persistent challenges as the complexity of both models
and data continues to increase. Real-world data,
particularly in fields like neuroscience, is often
heterogeneous and multi-modal, comprising diverse
sources such as imaging modalities, temporal data,
and connectomic information. In the study of Brain
Functional Networks, for example, researchers must
integrate fMRI, EEG, and other neuroimaging data
types to create a comprehensive model of brain
activity. Effectively managing this level of complexity

without sacrificing computational efficiency remains
a major challenge. Innovations in GCN architectures
must focus on handling this diversity of data while
maintaining the ability to perform large-scale, efficient
computations. Successfully achieving this will be
instrumental in advancing not only brain research but
also the broader application of GCNs to other complex
systems.

Lastly, the integration of causal inference mechanisms
into GNN frameworks represents a promising
direction for future research. Causal inference allows
for the identification of cause-and-effect relationships,
a crucial capability for understanding the interactions
and dependencies within complex systems such
as brain networks or social ecosystems. In the
study of brain networks, where neural activity is
influenced by both external stimuli and internal states,
understanding the causal pathways behind observed
behaviors can lead to more effective interventions,
particularly in the realm of mental health and
neurological disorders. Similarly, in social science,
incorporating causal inference can yield deeper
insights into how social interactions shape behavior,
providing valuable data for policy-making and
educational reform. By integrating these mechanisms,
GCNs will enable a more nuanced analysis of
dynamic, interconnected systems, thereby pushing
the boundaries of what is possible in data-driven
research.

In summary, the continued advancement of GCNs will
depend on our ability to overcome these challenges.
By improving interpretability, enhancing scalability
and efficiency, and incorporating causal inference,
GCNs have the potential to unlock new frontiers in
data analysis across a wide array of fields. From
revolutionizing the way we understand the brain
to providing more reliable models for financial
forecasting, GCNs are poised to have a transformative
impact. As these models evolve, their applications
will extend far beyond their current capabilities,
driving innovation and fostering deeper insights across
industries such as healthcare, finance, and social
science. The future of GCNs is rich with potential, and
by addressing these pressing issues, researchers will
pave theway formore accurate, efficient, and impactful
analyses of complex data.
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