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Abstract
Accurate predictions of traffic flow are very
meaningful to city managers. With such information,
traffic systems can better coordinate traffic signals
and reduce congestion. By understanding traffic
patterns, navigation systems can provide real-time
routing suggestions that avoid traffic jams, save time,
and reduce fuel consumption. However, traffic flow
will be interfered with by multiple factors such as
collection time and place. In this paper, we propose
to use stochastic configuration networks (SCNs)
to predict the traffic flow. The network is trained
through stepwise construction, and the network
parameters are effectively optimized based on the
approximation theorem and convergence analysis
optimization mechanism. The proposed network
automatically adjusts its structure according to
the complexity of traffic flow to better adapt to the
complex non-linearity of traffic flow. We observed
that the proposed model achieves better prediction
performance overall and greater flexibility in
the length of the prediction period compared
to the benchmarks using the Guangzhou urban
traffic flow dataset. It’s worth noting that SCNs
consistently outperform other models across
different prediction intervals. They yield RMSE
improvements of up to 10.73% for 10-minute
predictions, 5.02% for 30-minute predictions,
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and 11.21% for 60-minute predictions compared
to the least effective models. The R-value also
exhibits steady enhancement, increasing up to
0.78%, 0.65%, and 2.33% for 10-minute, 30-minute,
and 60-minute predictions, respectively. These
notable advancements, combined with the model’s
computational efficiency, especially in short-term
predictions, underscore the effectiveness and
practicality of SCNs in traffic flow prediction tasks.
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1 Introduction
In the era of information, the robust data processing
capabilities of deep learning have begun to
demonstrate their advantages across various fields,
notably within transportation systems. Traffic flow
prediction (TFP) stands at the heart of modern
transportation studies and is pivotal for the evolution
of smart cities [1]. Accurate TFP enables residents
to optimize their travel plans, thereby conserving
time. While short-term TFP is beneficial, medium and
long-term TFP also serves important roles in various
scenarios, such as implementing long-term traffic
controls to alleviate congestion and accidents [2].
Thus, TFP across all time frames is a critical and
valuable area of research [3].

The number of factors that can influence traffic speeds
is immense, encompassing emergencies, accidental
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events, andweather conditions. Thanks to the ongoing
advancements in deep learning, vast amounts of traffic
flow data can be analyzed using computer vision,
significantly enhancing the precision and efficiency
of TFP.

However, traffic time series data are typically
irregular and highly nonlinear. During data
collection, for example, traffic sensors may introduce
uncertainties, such as abnormal driver behaviors,
sensor malfunctions, and extreme weather conditions,
which can diminish the performance of traditional
statistical methods [4]. Additionally, some models
may suffer from overfitting, resulting in poor
robustness during the training phase [5]. Moreover,
classic deep neural networks face challenges in
uncovering intrinsic features and achieving high
accuracy when predicting periodic data, such as traffic
flow speeds [6].

The complexity of long-term prediction could be
more manageable. Unlike short-term forecasts,
which often rely on immediate and recent data,
long-term predictions must account for many
variables that can change over time, including urban
development, population growth, and evolving traffic
patterns. These long-term factors are inherently more
unpredictable and can significantly affect traffic flow.
The challenge is compounded by the need to maintain
model accuracy over extended periods, which requires
the models to be adaptable and resilient to a wide
range of future scenarios. Consequently, while
the potential benefits of accurate long-term TFP
are immense, the difficulties in achieving reliable
long-term predictions are substantial, making it a
particularly challenging area within the broader field
of transportation studies.

With the rise of deep learning, neural networks
have been pushed to new heights in recent years.
Deep learning methods have a solid ability to learn
complex non-linear data and thus can produce better
predictions [7].

In recent years, Recurrent neural networks (RNNs)
have been widely used in recognizing nonlinear
relationships in time series data. Nonetheless, when
capturing long-term dependencies using traditional
RNNs, the gradient disappearance problem easily
occurs. On the other hand, through recent investigation
and development, long-short-term memory networks
(LSTM) and GRU now gain a relatively higher
resistance to this problem [8], so it has been extensively
used in traffic prediction.

LSTM and GRU networks offer significant advantages
in traffic flow prediction due to their superior ability to
handle long-term dependencies. Their key strengths
include long-term memory capability, allowing them
to capture distant temporal relationships, and selective
memory through gating mechanisms, which helps
in filtering out noise and irrelevant data. These
networks mitigate the vanishing gradient problem,
ensuring better gradient flow across time steps.
Their adaptability to various time scales makes them
ideal for capturing both short-term fluctuations and
long-term trends in traffic patterns. Additionally,
LSTM and GRU excel in modeling complex non-linear
relationships, crucial for understanding intricate traffic
dynamics. They demonstrate robustness to noise
and outliers in real-world traffic data, enhancing
their reliability. Furthermore, their scalability allows
for integration with other deep learning techniques,
enabling the creation of more sophisticated hybrid
models. These combined advantages make LSTM and
GRU powerful tools for accurate and long-term traffic
flow forecasting, significantly advancing the field of
intelligent transportation systems.

Despite their impressive performance, classic
deep neural networks often suffer from significant
drawbacks related to their architecture and efficiency.
A primary concern is their propensity for structural
and parametric redundancy. As these networks grow
deeper and wider in pursuit of better performance,
they frequently accumulate unnecessary neurons,
layers, and connections. This redundancy not only
increases the computational complexity but also
leads to overfitting, where the model memorizes
training data rather than learning generalizable
patterns. Consequently, the actual running networks
become excessively large, demanding substantial
computational resources and memory. This size
inflation poses challenges for deployment in
resource-constrained environments, such as mobile
devices or real-time systems, where quick inference
is crucial. Moreover, these oversized networks
often exhibit diminishing returns in performance
improvement relative to their increased complexity.
The redundancy also makes the models more
challenging to interpret and analyze, hindering
efforts to understand their decision-making processes.
Addressing these issues of bloated architectures and
inefficient parameterization has become a critical focus
in the field, spurring research into model compression,
pruning techniques, and the development of more
efficient network architectures.
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Self-Constructing Networks (SCNs) offer several
advantages over traditional deep learning models.
Firstly, SCNs determine the output weights of
hidden layer nodes using a pseudo-inverse operation,
eliminating the need for iterative updates through
back-propagation. This approach enhances the
learning rate and effectively avoids issues such
as local optima, vanishing gradients, or gradient
explosions. Secondly, SCNs employ incremental
modeling techniques and monitoring mechanisms to
configure the input weights and biases of hidden
layer nodes within a preset parameter range, ensuring
a strong general approximation without predefined
parameters. In contrast, traditional randomized
neural networks rely on the number of hidden layer
nodes and the random parameter range, which can
lead to overfitting or underfitting if not properly set,
reducing the likelihood of accurately approximating
the objective function. Consequently, SCNs require
less human intervention, avoid time-consuming
network structure adjustments, and exhibit superior
generalization performance. Compared to other
models, SCNs incorporate more automation during
the training process, significantly improving overall
efficiency.

The rest of the paper is arranged as follows. Section
2 introduces recent research results on time series
data prediction, especially in traffic flow prediction.
Since this research mainly focuses on classical deep
networks, we will introduce these deep learning
networks. In particular, we will focus on the baseline
model of this paper’s experiments. Section 3 describes
the general algorithm and construction process of
the models. Section 4 exhibits the experimental
results and analysis. It shows that compared with
other baseline methods, the proposed model has good
prediction performance and has a better adaptability
in all terms of prediction. The model’s validity is
proven by conducting practical demonstrations on the
Guangzhou urban traffic flow data set. Ultimately, we
conclude the article with future research directions
and objects in Section 4.

2 Related Work
In time series prediction, various models have been
employed to capture temporal dependencies and
make accurate forecasts. Linear models [9] offer
simplicity and interpretability, suitable for basic
trends but limited in capturing complex patterns.
Recurrent Neural Networks (RNNs) introduced
the ability to process sequential data, retaining

information from previous time steps. However,
RNNs often struggle with long-term dependencies
due to vanishing gradients. Long Short-Term
Memory (LSTM) networks [10] further refined this
approachwith additional gates, providing even greater
control over information flow and memory retention.
Meng [11] append dynamic time-warping model
into LSTM to outperform the traditional LSTM in
traffic prediction. Chen [12] introduced a hybrid
traffic flow prediction model based on LSTM and
Sparse Auto-Encoder, which significantly reduces the
computation complexity in TFP by achieving a high
compression ratio for high-dimensional traffic data.
Theoretically, due to issues in long-term predictions,
the performance of the above deep neural networks
would have better performance for the short term.

Gated Recurrent Units (GRUs) [13] addressed
this limitation by incorporating gating mechanisms,
allowing for better long-term memory and more
efficient training. Both GRU and LSTM have shown
remarkable success in capturing intricate temporal
patterns and long-term dependencies in various
time series prediction tasks, including traffic flow
forecasting, financial market analysis, and natural
language processing applications.

While traditional RNN series models fix the size of
input and output sequences, the encoder-decoder
network breaks through this limitation. The
encoder-decoder is a sequence-to-sequence structure
using deep neural networks. It is effective in features
extraction for time series data [14], but when the size
of the input information increases, later information
overlays the earlier one, which leads to the missing
of earlier information during long-term prediction,
causing the decline of prediction accuracy [15]. The
attention mechanism [16] is introduced to resolve
the issue by assigning different attention weights
to all time steps to enhance more important time
frames while suppressing others. Currently, attention
mechanisms have been widely used in time series
prediction. Jin et al. [17] combined bidirectional LSTM
networks with wavelet decomposition and attention
mechanisms to perform a better prediction of the
temperature and humidity of a smart greenhouse.
Qiu et al. [18] designed an event-aware graph
attention fusion network to effectively capture the
spatiotemporal dependencies for TFP, including event
impacts, in road networks, which improves the
accuracy of TFP by a lot.

Kao et al. [19] explored a Long-Short-Term Memory
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(LSTM)- based encoder-decoder framework for
multi-step-ahead flood forecasting. This approach
demonstrated the capability to capture complex
temporal dependencies, making it particularly suitable
for long-term predictions in hydrological systems.
However, the model’s reliance on extensive training
data and computational resources, coupled with
potential instability in extreme events or anomalous
patterns, presents challenges for widespread
implementation.

Du et al. [20] proposed an attention-based
encoder-decoder framework for multivariate time
series forecasting. By incorporating attention
mechanisms, their model enhances the ability to focus
on relevant input features, potentially improving
prediction accuracy. While this approach shows
promise in handling complex multivariate data,
the added complexity of the attention mechanism
may increase model training difficulty and the risk
of over-fitting in simpler scenarios, necessitating
careful consideration of the trade-off between model
sophistication and practical applicability.

In the realm of smart agriculture, Kong et al. [21]
developed BMAE-Net, a data-driven weather
prediction network. This model integrates various
deep-learning techniques to enhance forecasting
precision for agricultural applications. While
BMAE-Net showcases the potential of hybrid
models in specialized domains, it may suffer
from over-parameterization, leading to reduced
interpretability. Furthermore, the generalizability of
such complex models across diverse geographical
locations and climate conditions remains a concern,
highlighting the need for extensive validation in
varied environments.

From the above literature, we can conclude that the
classical network is still the mainstream network
structure for time series prediction. As we know,
classic deep neural networks, while powerful, often
suffer from structural and parametric redundancy
as they grow larger. This redundancy increases
computational complexity, leads to over-fitting, and
results in excessively large models that are challenging
to deploy in resource-constrained environments. The
oversized networks show diminishing returns in
performance relative to their increased complexity and
are difficult to interpret.

This paper proposes a predictor based on stochastic
configuration networks(SCNs), which omits the
backpropagation process, to perform traffic speed

Figure 1. Basic Structure of SCNs.

prediction. It aims to overcome gradient-related
problems and improve the efficiency and accuracy of
the prediction.

The contribution of this paper is:

1. Application of Stochastic Configuration Networks
(SCNs) to traffic flow prediction: The paper
introduces a novel approach to predicting traffic
flow using SCNs, which is a departure from
traditional methods in this field.

2. Adaptive network structure based on traffic flow
complexity: The proposed network has the
capability to automatically adjust its structure
according to the complexity of the traffic flow
data. This adaptive feature allows the model to
better handle the non-linear nature of traffic flow
patterns.

3. Improved performance and flexibility in
prediction length: The model demonstrates
superior overall prediction performance
compared to benchmark methods. Additionally,
it offers greater flexibility in terms of the length
of the prediction period, which is a significant
advantage in traffic flow forecasting applications.

The following paper presents an experiment
comparing SCN with the above models. They are
selected because they have been used in traffic flow
prediction multiple times, so the information about
their structure (code) is easily approachable, and
their prediction results are reliable due to constant
verification. Thus, the above models creates a good
baseline for comparison in testing the performance of
SCN.
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3 Methodology
This paper proposes stochastic configuration networks
(SCNs), an innovative deep learning network that
determines the parameters of hidden layer nodes by
monitoring a mechanism to maintain fast convergence.
It has a relatively faster learning speed and requires
less human intervention, which fits the purpose of
traffic flow prediction well. The detailed structure of
SCNs will be introduced in the following paragraphs.

3.1 Basic Structure
The SCN’s network structure is similar to that of a
traditional single hidden layer feedforward neural
network (SFLN), as shown in Figure 1, which includes
an input layer, a hidden layer, and an input layer [22].

The network construction process follows a
progressive, data-dependent supervision approach,
beginning with a single hidden layer node. Initially,
the input weight and bias of this node are randomly
initialized, providing a starting point for the
network’s learning by breaking symmetry and
enabling exploration of the parameter space. As the
network develops, additional hidden layer nodes are
incrementally introduced, allowing the network’s
complexity to adapt to the nuances of the input
data. Each new node’s addition is informed by the
data-dependent supervision mechanism, ensuring
meaningful contributions to the network’s predictive
performance. The input weights and biases of these
newly added nodes are also randomly initialized,
preserving the network’s ability to capture diverse
patterns and avoid local optima throughout its
construction.

Crucially, after each addition of a new hidden layer
node, the output weights of the entire network are
recalculated using the least squares method. This step
is vital for optimizing the network’s performance. The
least squares method ensures that the output of the
network minimizes the sum of the squared differences
between the predicted and actual values in the training
data.

This iterative process of adding nodes and
recalculating weights continues until a predefined
stopping criterion is met. This criterion could be based
on factors such as the network’s performance, its size,
or computational constraints.

By employing this stepwise construction method, the
network can effectively adapt its structure to the
complexity of the problem at hand, potentially leading

to improved performance and efficiency compared to
networks with fixed architectures.

3.2 Algorithm in Network Construction
The main part of constructing SCNs involves the
algorithms of adding hidden layer nodes. The
following calculation illustrates the process of creating
a single new node in the hidden layer to reduce the
error of prediction. This process will repeat as long as
the number of nodes does not exceed the maximum
node amount (the hyper-parameters).

For instance, a training data set {X,Y } has features
X = {x1, x2, . . . , xN}, xi = {xi,1, xi,2, . . . , xi,m} ∈
Rd and tag data Y = {y1, y2, . . . , yN}, yi =
{yi,1, yi,2, . . . , yi,d} ∈ Rm, i = 1, 2, . . . , N . We suppose
now the hidden layer of SCNs has L− 1 nodes.

First, the output of the network can be calculated by:

fL−1(X) =

L−1∑
j=1

βjgj(w
T
j X + bj),

L = 1, 2, . . . , Lmax f0 = 0

(1)

where fL−1 denotes the output function of L− 1 node;
Lmax denotes the upper limit of the number of nodes
in the hidden layer; βj denotes the output weight of
hidden layer node j; gj denotes the activation function,
wj and bj denote the input weight and the bias of
hidden layer node j.

Second, we calculate the network residual vector eL−1

by:

eL−1 = f − fL−1(X) =


eL−1,1(X)
eL−1,2(X)

...
eL−1,m(X)

 ∈ RN×m (2)

If ∥eL−1∥2 does not meet the expected error ε and the
number of hidden layer node L does not reachLmax,
we can add the Lth hidden layer node to reduce the
error. Hidden layer node L’s input weight hL and bias
ξL,q are related to following equations:

hL =


gL(w

T
LX1 + bL)

gL(w
T
LX2 + bL)

...
gL(w

T
LXN + bL)

 ∈ RN (3)

ξL,q =

(
eTL−1,q · hL

)2

hTLhL
− (1− r − µL)∥eL−1∥2,

q = 1, 2, . . . ,m

(4)
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where hL denotes the output of hidden layer node
L, wL and bL are the candidates parameters, r ∈
(0, 1), {µL} is a non-negative real number sequence
that satisfies µL ≤ 1 − r, limL→+∞ µL = 0. We
take the candidates parameters wL, bL that satisfies∑m

q=1 ξL,q ≥ 0 and maximize ξL as the parameters for
hidden layer node L.

Next, the hidden layer node L’s output weight,βL , can
be determined by:

βL = argmin
β

∥Hβ − Y ∥2 = H+Y (5)

where H = [h1, h2, . . . , hL] , and H+ denotes the
Moore-Penrose generalized inverse of.

Finally, we calculated the output f of the network :

f = Hβ (6)

Through the above process, a new hidden layer node
is added to the network. This process is repeated
again and again until the number of hidden layer node
reaches Lmax or the error is smaller than the expected
error ε.

3.3 Approach Ability Proof
Wang [23] provided the proof of the approach ability
of SCNs model. Suppose Γ = {g1, g2, g3, . . .} is a set of
real-valued functions. Span(Γ) is the function space
of Γ. Span(Γ) is denser than L2 and ∀g ∈ Γ, 0 < ∥g∥ <
bg, bg ∈ R+.

For L = 1, 2, 3, . . . , we define δL =
∑m

q=1δL,q,
δL,q = (1− γ − µL) ∥eL−1,q∥2, where γ ∈ (0, 1) , µL1−
γ, limL→+∞ µL = 0.

If function gL satisfies:

⟨eL−1,q, gL⟩2 ≥ b2gδL,q, q = 1, 2, . . . ,m (7)

and the output weight β satisfies:

β = [β1, β2, . . . , βL] = argminβ

∥∥∥∥∥∥f −
L∑

j=1

βjgj

∥∥∥∥∥∥ (8)

Then,
lim

L→+∞
∥f − fL∥ = 0.

When we constructing the SCNs network in the
previous part, all requirements listed above are
satisfied, which means as we gradually increase the
size of L, the residual will gradually reduce. The
technique of SCN is thus proven to be valid.

Figure 2. Partial traffic flow time series data.

4 Experimental And Result Analysis
4.1 Data set
We use the Guangzhou urban traffic flow data
set(https://zenodo.org/record/1205229) [24] due to
its well-processed integrated data and availability. As
shown in Figure 2, the data set includes the traffic
speeds on 121 different urban roads from August 1st
to September 30th in 2016, with amiss rate of 1.29%. To
avoid the influence of missing data on the prediction,
four roads without any missing data are selected to
train and test the models. Data from the first 48 days
were used as training samples for the model, and data
from the next 13 days were used as testing samples.

4.2 Evaluation Metrics
The experiments used root mean squared error
(RMSE), symmetric mean absolute percentage error
(SMAPE), and Pearson’s correlation coefficient R as
the indexes and indicators for evaluating the model.
RMSE quantifies the difference between the predicted
traffic speed of a model and the actual observed traffic
speed in the data. A smaller RMSE value represents a
smaller deviation, showing that the model performs
better prediction. R measures the correlation between
the prediction and actual values. The closer R is to
1, the maximum, the better the regression line fits
the actual values, and the closer the patterns from
the prediction and the actual values are. SMAPE is
a statistical measure used to assess the accuracy of
predictions in time series forecasting. The formulas of
these indicators are listed as follows.

RMSE =

√√√√ 1

m

m∑
i=1

(yi − ŷi)2 (9)

SMAPE =
100%

m

m∑
i=1

|ŷi − yi|(
|ŷi|+|yi|

2

) (10)
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Table 1. Evaluation Of Different Models.

Model 10 mins 30 mins 60 mins

RMSE SMAPE R Time(s) RMSE SMAPE R Time(s) RMSE SMAPE R Time(s)

Linear[9] 2.171 5.223 0.9686 7.439 3.149 7.022 0.9332 7.360 4.152 9.096 0.8805 7.010
RNN[13] 2.159 5.222 0.9690 27.536 3.012 6.829 0.9391 34.773 4.071 9.027 0.8855 33.936
GRU[25] 2.348 5.830 0.9632 90.971 3.020 6.917 0.9386 86.998 3.958 8.876 0.8921 86.807
LSTM[10] 2.237 5.520 0.9667 24.699 3.133 6.992 0.9337 24.272 3.899 8.966 0.8944 24.402

En-Decoder[19] 2.128 5.157 0.9699 37.493 3.012 6.946 0.9389 37.131 3.922 8.756 0.8942 38.684
Attention[20] 2.254 5.511 0.9662 56.538 3.027 6.918 0.9383 56.745 3.998 8.959 0.8898 55.685
Mhatt[21] 2.358 5.833 0.9629 86.340 3.115 7.186 0.9345 84.237 4.388 9.729 0.8742 83.014

Proposed SCNs 2.105 5.145 0.9704 12.858 2.991 6.932 0.9393 31.304 3.896 8.965 0.8946 58.681

R =

∑T
t=1(ŷt − ¯̂yt)(yt − ȳt)√∑T

t=1(ŷt − ¯̂yt)2
∑T

t=1(yt − ȳt)2
(11)

where yi is the actual traffic speed, ŷi is the prediction,
m represents the number of samples, ȳi is the average
of the actual traffic speed, and ¯̂yi is the average of the
predicted speed.

Furthermore, the time each model took to complete
the training and testing process is recorded. By
doing that, we can better compare the efficiency of
different models and create a baseline to compare the
complexity of SCNs, which have a unique structure
due to no back-propagation steps, with other models.
With all calculations done on the same device, we
expect that the time consumed is directly related to the
energy consumption of the model.

Also, in the training process of some models, data
is normalized, which leads to inconsistent results.
Therefore, after training the training process, data
de-normalized before the calculation of the above three
indexes is calculated.

4.3 Comparison and Analysis
We compared the proposed model
with Linear [9], RNN [13], GRU [25],
LSTM [10], En-decoder [19], Attention [20],
Multi-head attention (Mhatt) [21].

The training parameters of the model are set as follows:
the number of iterations is 100, the optimizer is Adam,
and the learning rate is 0.001. The number of the neural
network layer is 2, and the units per layer are 64. The
batch size is 12, the number of encoder and decoder
layers is 1, and the number of attention heads is 2. For
SCNs, the maximum number of hidden layer nodes is
100.

All models were written in a Python 3.8 environment
based on the Pytorch deep learning framework. All
experiments were done on a server with the following

parameters: Ubuntu 20.04 bit-64 operating system;
Intel Core i7-13620H processor CPU 2.4GHz; NVIDIA
GTX1080Ti 11G. Each model was repeated 5 times
independently and the result from the best trial(high
R, low RMSE, low SMAPE, relatively) is recorded.
The evaluation of model prediction performance is
performed using the evaluation metrics mentioned in
Section 3.2.

1) Comparing Different Prediction Intervals:

Weuse the proposed SCNs to perform short-, medium-,
and long-term (10mins/30mins/60mins) traffic speed
predictions. Different models’ performances are
compared in Table 1. According to the result, SCNs
outperform baseline models in each index most of
the time. Relatively low RMSE and SMAPE values
indicate SCNs have a small difference between actual
and predicted values, and high R indicates the SCNs’
predicted value and the actual value have a high
goodness-of-fit. Specifically, in Figure 3, in the
short-term (10-minute) prediction, SCNs outperform
every other model by having the lowest RMSE of 2.105,
the lowest SMAPE of 5.145, and the highest R of 0.9704.
It also consumed the second shortest time, 12.858s, to
complete the prediction. In the 30-minute prediction,
SCNs have the lowest RMSE of 2.991 and the highest
R of 0.9393. SCNs have a SMAPE of 6.932. The
proposed SCNs demonstrate significant advantages
over other models across various prediction time
intervals. In short-term predictions (10 minutes),
SCNs achieve the lowest RMSE of 2.105, outperforming
the next-best model (En-Decoder) by 1.08% and
the worst-performing model (Mhatt) by 10.73%. It
also shows the highest R-value of 0.9704, marginally
surpassing the En-Decoder model by 0.05% and
significantly exceeding theMhatt model by 0.78%. The
SMAPE value of 5.145 for SCNs is only slightly higher
than the Linear model but lower than all other models,
representing a 1.49% improvement over the Linear
model. For medium-term predictions (30 minutes),
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Figure 3. Traffic speed prediction evaluation index in different indicators.

Figure 4. Time consumed(complexity) of different models
in different terms of forecasting.

SCN maintains its strong performance. It shares the
lowest RMSE of 2.991 with the RNN model, showing
a 0.96% improvement over the next best model (GRU)
and a 5.02% improvement over the worst-performing
model (Linear). SCNs also achieve the highest R-value
of 0.9393, slightly outperforming the RNN model
by 0.02% and showing a more substantial 0.65%
improvement over the Linear model.

In long-term predictions (60 minutes), SCNs
demonstrate their superior predictive capabilities. It
achieves the lowest RMSE of 3.896, marginally better
than the LSTM model by 0.08% but significantly
outperforming the worst model (Mhatt) by 11.21%.
The R-value of 0.8946 is the highest among all models,
showing a slight improvement of 0.02% over the LSTM

model and a more substantial 2.33% improvement
over the Mhatt model.

It’s worth noting that while SCNs consistently perform
well in terms of RMSE and R-value, their SMAPE
values are generally in the mid-range compared to
other models. However, this is offset by its outstanding
performance in other metrics. Additionally, SCNs
demonstrate good computational efficiency, especially
in short-term predictions, where they process data
much faster than most complex models. This
combination of accuracy and efficiency makes SCNs
a highly practical and effective model for traffic flow
prediction across various time intervals.

More importantly, SCNs have overall better flexibility
in different lengths of prediction periods. To be
specific, in the short-term (10 min) prediction, the
linear model performs better than most models, except
SCNs. However, in long-term (60 min) prediction,
it becomes one of the worst models. On the other
hand, the GRU model seems to be the worst model
in short-term prediction, but it performs well in the
long term. One explanation is the complexity of
models. GRU’s high complexity can be proven by long
training and testing time. Such complex models may
overfit when the data are relatively simple(short-term
prediction has 12 input variables and only 1 output
variable). Also, simple models like linear models
cannot fit complex conditions, such as 60-minute
long-term prediction(12 input variables and 6 output
variables).
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Figure 5. Prediction result of traffic flow in different Roads for 10mins prediction. (a) Road 1, (b) Road 2, (c) Road 3, (d)
Road 4.

From Figure 4, it can be seen that the time each model
consumed in different terms of prediction is similar,
meaning different numbers of output values do not
change the models, complexity a lot. However, SCNs
took different lengths in different terms, so they will
not waste sources in simple conditions and can also
fit complex conditions. While other models can only
achieve this by re-adjusting hyper-parameters, SCNs
are highly automated, and at the same time, highly
accurate.

2) Robust Performance Under Different Roads:

In our research, we concentrated on predicting traffic
flow for four specific roads in Guangzhou, a major
city in southern China renowned for its intricate urban
traffic patterns. The selection of these four roads was
deliberate, aiming to encompass a wide range of traffic
conditions and road characteristics typical of a bustling
metropolitan area.

Table 2 in our research paper provides a
comprehensive breakdown of the prediction results
for each of the four selected roads, segmented by
different time periods or terms. The evaluation
indexes are derived from the average of 5 separate
trials. This detailed presentation offers a nuanced

Table 2. Prediction Performance for Different Roads.

Model 10 mins 30 mins 60 mins

RMSE R RMSE R RMSE R

Road 1 2.105 0.9704 2.991 0.9393 3.896 0.8946
Road 2 1.969 0.9739 2.809 0.9462 3.701 0.9047
Road 3 1.626 0.9779 2.170 0.9603 2.835 0.9313
Road 4 1.546 0.9801 2.172 0.9603 2.808 0.9326

understanding of the model’s performance across
various temporal scales and road-specific conditions.
Upon analyzing these results, we observed that the
RMSE indicators consistently remained at low levels
across all four roads and different prediction terms.
Additionally, we noted that the correlation coefficients
(R indexes) were uniformly high across all scenarios,
complementing the RMSE findings. This high level
of accuracy and correlation remains consistent across
different roads, demonstrating the model’s robustness
and adaptability to varying road conditions and traffic
patterns.

To provide a more intuitive understanding of our
results, we have included visual representations in
Figures 5. Each of these figures corresponds to
one of the four selected roads, offering a graphical
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Figure 6. Performance for 10, 30, and 60 mins prediction for different roads: a. the RMSE and R, b. Box plots.

comparison between the predicted and actual traffic
flow curves. Upon examination of these figures, it’s
evident that the predicted curves align closely with
the actual traffic flow curves for the majority of the
time periods. This visual confirmation reinforces our
statistical findings and allows for easy interpretation
of the model’s performance.

The box plots in Figure 6 demonstrate the strong
performance and applicability of our method across
different roads and prediction time intervals. Here’s a
summary of the findings:

For short-term predictions (10 minutes), all roads
show low RMSE values (ranging from 1.529 to 2.132)
and R values very close to 1 (between 0.9694 and
0.9805), indicating high prediction accuracy. Notably,
Road3 and Road4 perform exceptionally well, with
average RMSE values of 1.5688 and 1.5644 and average
R values of 0.97944 and 0.97952, respectively.

For medium-term predictions (30 minutes), RMSE
values increase slightly but remain within acceptable
limits (ranging from 2.144 to 3.060), and R values
remain high (between 0.9364 and 0.9613). Road3 and
Road4 continue to perform well, with average RMSE
values of 2.1594 and 2.1642 and average R values of
0.96076 and 0.96054, respectively.

Even in long-term predictions (60 minutes), our
method maintains good prediction performance.

Although RMSE values increase further (ranging
from 2.791 to 3.923), R values remain at a good level
(between 0.8931 and 0.9335). Road3 and Road4 stand
out again, with average RMSE values of 2.8538 and
2.8048 and average R values of 0.9303 and 0.9323,
respectively.

In summary, our proposed method demonstrates
excellent applicability and stability across all tested
roads, from short-term to long-term predictions.
It maintains a high level of prediction accuracy,
particularly in the more challenging long-term
prediction tasks, proving its effectiveness and
robustness.

5 Conclusion
In this paper, the stochastic configuration network,
an innovative deep learning network that determines
the parameters of hidden layer nodes by monitoring
mechanism, is proposed to predict traffic speed. The
model is tested on the Guangzhou urban traffic flow
data set. Compared to baseline models, it has better
prediction performance and more automation. Under
short, medium, and long-term predictions, it achieves
outstanding results with the R evaluation indexes of
0.9704, 0.9393, and 0.8946 and low RMSE of 2.105,
2.991, and 3.896, respectively. Also, the flexibility that
allows the variation in models’ complexity in different
conditions can avoid wasting computing source and
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save the time of adjusting hyper-parameters.

However, the current SCN model used has limited
capability in feature extraction, which may affect the
learning and generalization performance of the model.
Also, as a new deep learning model, SCN lacks a
theoretical basis, so the construction of the network
does not focus much on the rate of converging network
residuals. This may influence the learning rate and
have potential issues of over-fitting.

In future work, besides basic SCNs, more developed
SCN models, such as DeepSCNs, 2D SCNs, or robust
SCNs, could be applied to the same field. These
advanced SCNs have better computing power and
can handle more complicated traffic data set for
longer-term predictions. It is also applicable to involve
the attention mechanism in SCN so it gains better
feature extraction ability. While keeping the flexibility
of SCNs, these models may achieve better accuracy,
which further assists traffic flow prediction and smart
city construction. Besides traffic flow predictions,
many studies show that SCNs also have great potential
in image classification, face recognition, and medical
data analysis due to their unique benefits. With future
development, SCNs may be of great help to the above
fields.
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