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Abstract
This review paper offers a thorough assessment of
three-dimensional object recognition methods, an
essential element in the perception frameworks of
autonomous systems. This analysis emphasises the
integration of LiDARand camera sensors, providing
a distinctive contrast with more economical
alternatives like camera-only or camera-Radar
combinations. This study objectively evaluates
performance and practical implementation issues,
such as cost and operational efficiency, thereby
elucidating the limitations of existing systems
and proposing avenues for further research. The
insights provided render it a significant asset for
enhancing 3D object recognition and autonomy in
intelligent systems.
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1 Introduction
Progress in 3D object identification methodologies
for autonomous systems is crucial in determining
the future of autonomous driving technologies. The
integration of deep learningwith 3D point cloud object
recognition has led to substantial advancements in the
perceptual capabilities of autonomous systems. These
autonomous vehicles employ a variety of sensors,
including mono and stereo cameras, thermal imaging,
night vision, LiDAR, Radar, Inertial Navigation
Systems (INS), Global Positioning Systems (GPS),
and Inertial Measurement Units (IMUs), to precisely
detect and classify objects in their environment,
thereby facilitating safer navigation and enhanced
situational awareness [1, 2]. Furthermore, the
incorporation of 3D object recognition techniques
has enabled the seamless integration of virtual items
into the real world, transforming interactions inside
augmented reality environments. The autonomous
driving system depends on a perception system
interconnected with multiple components, as depicted
in Figure 1. It commences with sensor data collecting,
followed by pre-processing for accuracy verification,
and subsequently advances to feature extraction to
discern pertinent information [3]. Subsequently,
environmental comprehension evaluates the scene
for risk assessment, followed by decision-making
processes to ascertain best actions. Ultimately,
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real-time control commands for vehicle maneuvering
are generated, completing this iterative process crucial
for safe and efficient autonomous navigation.

Deep learning techniques and LiDAR sensors are
dependent on the techniques that are now considered
to be the state of the art for the detection of
three-dimensional objects. Additionally, certain
approaches incorporate camera data in order to
improve the overall efficacy of the detecting process.
Despite the fact that cameras provide extensive
semantic information from images and LiDARs offer
exact depth measurements in the form of point
clouds, this combination of sensors has gained great
popularity across a variety of perception tasks [4]
and [5]. This is due to the fact that their outputs
are complementary to one another. Both LiDAR and
camera sensors are essentially light dependent, which
makes them subject to performance degradation in
adverse weather circumstances such as rain or low
light settings and other situations such as nighttime.
Despite their usefulness, both types of sensors are
sensitive to this degradation.

Radar sensors provide distinct metrics, including
radial velocity and radar cross section (RCS) on
the bird’s eye view (BEV) plane, which are not
obtainable from other sensors. These measurements
offer valuable insights into the motion, shape, size,
and material of objects, hence enhancing 3D object
detection capabilities. In contrast to light-based
sensors, radars employ radio waves, rendering them
dependable in poor visibility circumstances. Moreover,
radars possess an extended detection range, allowing
for the effective identification of distant objects.

Nevertheless, the sparse characteristics of radar
point clouds present challenges for independent 3D
object detection utilizing solely radars. Conversely,
cameras excel in delivering rich and dense semantic
information, so facilitating accurate object recognition
and scene comprehension. They record intricate
texture and color, as well as contextual information,
which is essential for perception tasks. However,
cameras lack the capability to directly assess depth
and velocity, which are required for estimating the
three-dimensional position, dimensions, and motion
of objects. Furthermore, given the intricate weather
conditions faced by autonomous driving systems, the
effectiveness of sensor data, particularly images and
point clouds obtained by the perception system, may
experience significant degradation due to the inherent
constraints associated with each sensor. For example,

visual cameras face challenges when presented with
scenes exhibiting extreme brightness or blackness [6–
10].

Moreover, LiDAR systems encounter difficulties
in accurately identifying distant or diminutive
objects due to their inherent poor resolution [11].
Furthermore, adverse weather circumstances
exacerbate the challenge by introducing environmental
noise and resulting in a significant reduction
in perceptual distance [12] and [13]. These
sensor-specific restrictions present substantial
challenges for the robust and accurate perception
necessary for safe autonomous driving in varied
real-world environments. Radar camera fusion
techniques integrate radar and camera data to identify
objects, utilizing the complementary advantages of
each sensor. Cameras provide extensive semantic
information, complementing the limited semantic data
from radar. Conversely, radar offers reliable velocity
and depth measurements at extended distances,
compensating for the depth and velocity constraints
of cameras [13].

This complementary nature allows these methods to
consistently produce precise 3D detections, even under
challenging settings. Furthermore, the aggregate
expense of radar and camera sensors is inferior to
that of a solitary LiDAR, rendering the radar-camera
amalgamation favored in advanced driving assistance
systems (ADAS) [14]. Nevertheless, despite these
advantages and the inherent differences between radar
and cameras, challenges arise in integrating their
information. Furthermore, the combination of radar
and camera-based 3D object detection methods is
less explored compared to LiDAR-based methods,
resulting in performance lag [15]. Radar point
clouds, while analogous to LiDAR point clouds, are
sparser and exhibit lower accuracy and resolution,
complicating the direct application of LiDAR-based
techniques to radar data.

Fusion-based methodologies for integrating radar
and camera data are generally categorized into
three types based on the timing of the fusion
process: Data level, feature level, and decision
level fusion [16]. Data level fusion integrates
raw data from several sensor modalities while
minimizing information loss and facilitating
joint feature learning. Nonetheless, data-level
methodologies are inflexible and susceptible to sensor
misalignment, as well as being computationally
intensive. Decision-level fusion, in contrast, integrates
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Figure 1. The components for an autonomous driving system.

detection results obtained independently from
each modality, providing flexibility and robustness
while minimizing computational costs. Nonetheless,
decision level fusion is hindered by information loss
and lacks the capacity to learn joint features. In the
context of radar-camera fusion, performing data-level
fusion is challenging due to disparities in sensor
characteristics. Decision level fusion is unfeasible
due to the inadequate performance of radar-based
methods [17] and [18].

Feature level fusion techniques in radar-camera
integration for autonomous driving systems offer a
sophisticated method for improving object detection
capabilities. These methods reconcile data level
and decision level fusion by synthesizing features
independently extracted from radar and camera
modalities. A prevalent strategy entails projecting
the radar point cloud onto surfaces, such as the
bird’s eye view (BEV) plane [19-27], or directly onto
the camera image plane. Significant methodologies,
including references [19–21], have markedly enhanced
vehicle detection through the integration of radar and
camera features. The integration of radar and camera
data addresses critical challenges, such as detecting
distant vehicles and navigating diverse environmental
circumstances, as demonstrated by the frameworks
in [22, 23]and the methodologies in [24] and [25].
Furthermore, references [26, 27] constitute significant
additions to the field by employing cross-modal
fusion to attain remarkable detection accuracy. These
breakthroughs in radar camera integration are enabled

by meticulous consideration of projection methods.
Projecting the radar point cloud into the bird’s eye
view (BEV) plan preserves spatial information and
facilitates feature extraction, while it necessitates
intricate procedures to convert image features and
integrate them with radar characteristics. Moreover,
projecting the point cloud onto the image plane
facilitates fusion but diminishes the depth dimension
and complicates spatial feature extraction. Despite
conveying semantic information, an object’s details,
including position, orientation, and size, along with
the flattened depth dimension, complicate spatial
feature extraction. This diminishes the significance
of optimization feature extraction techniques for
efficient radar-camera integration in autonomous
driving systems.

Diverse methodologies, including Cluster Fusion
and sophisticated radar camera fusion, enabling
three-dimensional object detection. Extracting
spatial features from radar point clouds directly
within clusters, Cluster Fusion improves object
recognition performance. Inspired on CenterFusion’s
methodology [14], it employs image-based
preliminary detections to filter and cluster radar
points. This method guarantees enhanced detection in
autonomous driving. In our evaluation, we compared
ClusterFusion with radar-monocular camera
fusion methods and multi-camera setups [27, 28].
ClusterFusion notably attained the greatest nuScenes
detection score (NDS) of 48.7%, surpassing other
methods in mean orientation, velocity, and attribute
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errors. Its competitive performance in mean
attribute error underscores its effectiveness in
enhancing 3D object detection for autonomous
vehicles. In manufacturing, these techniques are
essential for real-time defect detection, quality
control, and ensuring adherence to high production
standards. Furthermore, urban planners and
architects utilize 3D object recognition to analyze and
design efficient, sustainable, and visually appealing
urban environments. Moreover, in the domain of
robotics and deep learning, 3D object identification
empowers robots to traverse intricate surroundings,
manipulate objects, and aid in many jobs, spanning
logistics to healthcare. This paper seeks to examine the
accomplishments, challenges, and potential directions
in 3D object recognition techniques for autonomous
systems, offering valuable insights into their vital role
across several industries.
This review paper thoroughly examines the progress
and obstacles in 3D object identificationmethodologies
for autonomous systems. As shown in Figure 2,
section 1 delineates the importance of 3D object
detection in autonomous systems. Section 2
offers a comprehensive overview of contemporary
methodologies, encompassing contributions from
historical to current developments. Section 3
encompasses the evaluation and examination of 3D
object detection techniques utilising several sensor
technologies, including LiDAR, cameras, and radar
counted as trendy technologies and approaches.
Furthermore, Section 4 analyses the integration of
camera and LiDAR sensors, emphasizing current
accomplishments and progress comparatively. Section
5 examines integration of camera, LiDAR and fusion
sensor techniques. Section 6 addresses benefits of
fusion techniques. Section 7 alternative approaches.
Section 8 provides technical analysis whereas section
9 shares the future directions and recommendations.
Finally, one may find the conclusion of the work under
section 10.

2 State of the Art Approaches in 3D Object
Detection

Cameras and LiDAR (Light Detection and Ranging)
sensors are the most commonly employed sensors
for 3D object detection [31, 32]. Although these
technologies provide cost-effectiveness, their efficacy
has led to extensive examinations and reviews.
Nonetheless, current reviews frequently focus
exclusively on particular approaches, primarily
highlighting accuracy. This survey seeks to explore

the essential elements of Accuracy, Latency, and
Robustness for a thorough examination of existing
techniques. This section emphasizes camera-based
3D object identification techniques, which have
garnered considerable attention, particularly in the
automotive sector for applications such as multi-view
systems like BEV (bird’s-eye view). Camera-based
techniques can be categorized into three primary
types: monocular, stereo-based, and multi-view
(bird’s-eye view) [33–35].

2.1 Monocular 3D Object Detection
Monocular 3D object detection substantially employs
data from a single camera to identify and localize
3D objects, utilizing convolutional neural networks
(CNNs) for the direct estimate of 3D bounding box
parameters. Detecting 3D objects using a single
camera to infer their 3D position, size, and orientation
from one image has garnered considerable attention
in recent years due to its cost-effectiveness, low
power consumption, and ease of deployment in
practical applications [36–40]. This method facilitates
end-to-end training and exhibits practicality; however,
its exclusive dependence on individual photos presents
difficulties in precisely determining the 3D position,
dimensions [41, 42], and orientation of objects, absent
supplementary depth maps or point cloud data.
Factors like as occlusion, fluctuations in viewpoint,
and alterations in lighting conditions may adversely
affect detection accuracy, while dependence on a
single camera for depth perception may compromise
overall performance [43–46]. Nevertheless, owing
to the lack of enough 3D information in monocular
images, researchers have concentrated on using depth
information acquired from depth estimation tasks,
notwithstanding the intrinsic challenges associated
with monocular depth estimation. A significant
method is prior-guided monocular 3D object
detection [31–35] and [47–59], which persistently
investigates the incorporation of concealed prior
knowledge regarding object shapes and scene
geometry in images to address the difficulties
associated with monocular 3D object detection.
Effectively integrating past knowledge is essential for
reducing uncertainty and addressing the ill-posed
characteristics of monocular 3D object detection
challenges. Integrating pre-trained networks or
auxiliary tasks, previous knowledge offers significant
insights into object shape detection, geometric
consistency, temporal limitations, and segmentation
information [55–59]. The shape of an item provides
significant insights into its appearance and structure,
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Figure 2. The organization of this review paper.

enhancing the precision of spatial inference and pose
estimation [52]. Geometric consistency facilitates
comprehension of the positioning relationships among
objects, hence enhancing detection consistency and
robustness. Previous algorithms [50, 51] have notably
exhibited diverse methodologies for leveraging
prior information to enhance object detection. As
our comprehension and utilisation of existing
information advances, substantial advancements are
expected in monocular 3D object detection, heralding
breakthroughs and prospects in the fields of computer
vision and intelligent systems.

Conversely, an alternative method of depth-assisted
monocular 3D object detection utilizes depth
estimation networks to improve detection precision
with monocular pictures [60–68]. This methodology
incorporates depth information to overcome the
constraints of classic monocular methods, aiming for
enhanced detection accuracy. Nonetheless, a possible
disadvantage of depth-assisted monocular detection
is the performance disparity between pseudo-LiDAR
representations and LiDAR-based detectors resulting
from inaccuracies in image-to-LiDAR conversion.
Initiatives to close this gap involve transferring
intricate structure information from point clouds to
enhance monocular image detection.

2.2 Stereo-Based 3D Object Detection
Stereo-based 3D object detection utilizes the distinct
functionalities of stereo cameras to ascertain depth
through the examination of a dual image set. This
technique presents a viable approach for precise depth
estimation, a crucial element absents in monocular
configurations. Notwithstanding these benefits,
stereo-based methods continue to underperform
relative to LiDAR-based techniques. Furthermore,
investigations into 3D object identification utilizing
stereo pictures are still rather scarce. One method in
stereo-based detection entails modifying conventional
2D object detection frameworks. Stereo R-CNN [59]
use a 2D detector to generate regions of interest
(RoIs) in both the left and right images, thereafter
estimating 3D object properties derived from
these RoIs. Numerous following studies have
embraced this paradigm [70], [71–77]. Another
approach utilizes pseudo-LiDAR representations
derived from the anticipated disparity map of
stereo images. This approach converts depth maps
into point clouds similar to LiDAR data. Wang
et al. [78] presented the Pseudo-LiDAR concept,
necessitating models to estimate depth to facilitate
detection. Subsequent investigations have refined
this methodology by integrating supplementary color
data [79], auxiliary tasks [80–82], and coordinate
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transformation frameworks [83], [84]. Ma et al. [84]
introduced PatchNet, which questions the necessity
of pseudo-LiDAR by recording 3D coordinates for
every pixel. This observation indicates that the
effectiveness of pseudo-LiDAR is attributed to its
coordinate transformation rather than the point cloud
representation itself. These methodologies utilize
stereo imaging, employing both sparse and rich
information, encompassing semantic and geometric
clues, to precisely detect and localize 3D objects.
Stereo R-CNN [84] enhances the Faster R-CNN
architecture for stereo inputs, attaining state-of-the-art
outcomes by integrating additional branches
for sparse key point and perspective prediction.
These advancements have resulted in significant
enhancements in performance measures. In [86], it
presents a Deep Stereo Geometry Network (DSGN)
that uses a differentiable volumetric representation
to efficiently encode three-dimensional geometric
structures. This strategy substantially narrows
the performance disparity between image-based
and LiDAR-based techniques while also yielding
encouraging accuracy outcomes. Moreover, real-time
capabilities are highlighted in methodologies such as
that proposed in [87], which not only uphold excellent
accuracy but also exhibit notable efficiency regarding
runtime. Moreover, innovative methodologies as
R-CNN [87] emphasize instance disparity estimation
and statistical shape modelling, yielding competitive
results even in the absence of LiDAR ground
truth during training. These procedures signify
substantial advancements in stereo-based 3D object
detection, demonstrating their applicability in
real-world scenarios and reducing the performance
disparity with LiDAR-based techniques. Although
stereo-based 3D object detection demonstrates
potential, it necessitates additional investigation and
enhancement to close the performance disparity
with LiDAR-based techniques. Optimising disparity
estimation and utilizing supplementary information
could significantly advance the discipline [88–90].

2.3 Multi-view 3D object Detection
Multi-view 3D object detection has undergone
significant progress, especially in autonomous driving,
where the integration of LiDAR point cloud data with
RGB pictures has become standard practice [89], [90].
Fundamental to these methodologies is the
implementation of panoramic Birds Eye View
(BEV) techniques, which obviate the dependence
on high-precision maps and enhance detection from
2D to 3D space. Techniques such as the MV3D

network encode sparse 3D point clouds using
a compact multi-view representation, resulting
in enhanced performance in 3D localization and
detection accuracy [91]. Furthermore, end-to-end
Multiview fusion (MVF) algorithms integrate
bird’s-eye and perspective views, efficiently using
complementing information to improve detection
accuracy, particularly for distant or small objects [92].

Query-based multi-view approaches priorities
the capture of relationships between regions and
views, enhance the content of individual view
images, and amalgamate them into distinctive
3D object representations [93]. Methods like
dominating set clustering and pooling enhance
performance by grouping comparable views and
aggregating information, attaining cutting-edge
outcomes on benchmark datasets [94–97]. These
varied techniques emphasize the significance of
multi-view information in 3D object detection,
offering substantial improvements in the capabilities
of autonomous driving systems for increased road
safety and navigation. Depth-based methodologies,
such as LSS [98], enable the conversion from
two-dimensional to three-dimensional space via depth
distribution. They forecast the depth distribution of
two-dimensional characteristics and subsequently
convert them to voxel space, enabling the following
transition to bird’s-eye view space. CaDDN, using
LSS, employs actual ground truth depth values to
improve prediction precision. Subsequent research,
such as BEVDet and BEVDepth [25], has enhanced
this methodology, improving the precision of
object detection in the BEV domain. Drawing from
Transformer technology, query-based approaches
extract 2D spatial data from 3D environments.
DETR3D [99] introduces 3D object queries to
consolidate multi-view characteristics by projecting
picture features into 2D space with learnt 3D reference
points. PETR [89], leveraging ideas from DETR and
DETR3D, employs an implicit positional encoding
technique to generate the BEV space [95]. In [96], it
introduces a Multi-view Labelling Object Detector
(MLOD) that combines RGB pictures and LiDAR point
clouds for effective feature fusion, attaining superior
performance in 3D object detection. Alternative
methodologies, such as MEMR [97], advocate
for multi-view data fusion strategies grounded in
regularization techniques, exhibiting significant
enhancements in accuracy rates. These advancements
jointly enhance the progression of multi-view 3D
object identification, facilitating the development
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of more robust and efficient autonomous driving
systems [98, 99]. The entire state of the art approaches
has been summarized into Table 1 along with main
techniques and limitations.

3 Most trending approaches & Technologies
3.1 Point Based 3D Object Detection
Point-based 3D object recognition has become a
leading method in utilising point clouds in deep
learning, as demonstrated by substantial research
contributions [100–103]. This methodology is unique
in that it processes raw point clouds directly, avoiding
the preprocessing steps typical of voxel-basedmethods.
The utilisation of raw data guarantees the preservation
of complex details and the original structure of point
clouds, which is essential for extracting detailed
features vital for precise object detection. In contrast to
methods that convert point clouds into other forms like
voxels or pictures, point-based algorithms preserve
the original data’s integrity, utilizing it to capture the
subtle properties critical for detection tasks. This
methodology is underpinned by seminal research
in point cloud processing, as referenced in [100]
and [101], establishing a framework for the effective
management of raw point collections. The efficacy of
point-based detection systems depends on balancing
the density of contextual points with the size of the
context radius for feature extraction. The primary
elements propelling these developments are advanced
point cloud sampling methods and complex feature
learning systems, each playing a distinct role in the
detection process [102, 103].
A fundamental element of point-based detection
is the effective sampling of point clouds, which
seeks to minimize processing requirements while
maintaining crucial geometric and semantic data.
Farthest Point Sampling (FPS), emphasized in
foundational studies such as the PointNet++
framework [101], is distinguished for selecting
points that provide optimal spatial coverage,
hence enhancing the efficiency and efficacy of the
detection process. Methods like PointRCNN [104]
employ FPS to produce 3D suggestions directly
from unprocessed point clouds, subsequently
refining these proposals by incorporating semantic
and spatial characteristics to improve detection
precision. Notwithstanding its benefits, FPS
encounters difficulties, such as the incorporation of
extraneous points and the management of uneven
point distributions among objects. Innovations
designed to address these challenges encompass

segmentation-guided sampling [105, 106], random
and feature space sampling [107, 108], and voxel-based
sampling methods [109–118], each presenting unique
approaches to optimize computational resources
on points that are more representative of objects of
interest.

3.1.1 Advanced Feature Learning in Point-based Detection
At the core of point-based detection methods is
the extraction of rich, discriminative features from
raw point clouds. This extraction process benefits
from neural network architectures that are specifically
designed to be invariant to the order of points,
capable of recognizing local geometries, and adept
at integrating contextual information from varying
perspectives.
• PointNet-based Approaches: PointNet and its

successors [107, 111] have introduced the concept
of set abstraction, a technique that down samples
point clouds to aggregate local information
effectively. For instance, PointRCNN [104]
not only employs set abstraction for semantic
segmentation but also refines spatial features
to concentrate on significant areas for object
detection, showcasing the synergy between
semantic understanding and spatial precision.

• Graph Neural Networks (GNN): GNN-based
methods [110], [112–114], represent a dynamic
evolution in feature learning, constructing
adaptive graphs that encapsulate the complex
spatial relationships within point clouds. This
approach allows for detailed modeling of both
local and global contexts, enhancing the detection
systems ability to interpret the structural nuances
of point clouds. GNNs, like Point-GNN [110],
have demonstrated their efficacy in 3D object
detection by effectively leveraging graph-based
learning mechanisms.

• Transformer Architectures: The advent of
transformer-based methods [115], [116] has
introduced a new dimension to feature learning
from point clouds, capitalizing on the transformer
architectures capacity to model intricate
interactions and long-range dependencies [117].
These methods employ attention mechanisms
to dissect point clouds across different scales,
facilitating a detailed analysis at both the micro
(object) and macro (scene) levels. Despite their
computational intensity, transformers represent
a promising avenue for enhancing the depth
and breadth of feature extraction from point
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Table 1. Summary related to state-of-the-art approaches.
Method Technique Papers Limitations

Monocular
3D Object
Detection

Key Point
Estimation and

Object Key points
[28], [36], [29]

Limited accuracy in cluttered scenes
Sensitivity to occlusion and object scale variations
Computational complexity

Geometric
Reasoning and

Depth Estimation

[60], [61], [39],
[45], [40], [62],

[63]

Reliance on accurate depth estimation, which can be challenging.
Difficulty in handling varying lighting conditions and surface properties
Limited performance in dynamic scenes

Leveraging
Geometry

and Kinematics
[42], [33]

Dependency on accurate motion estimation
Limited applicability to stationary scenes
Challenges in handling fast-moving objects

Network
Architectures and
Learning Strategies

[31], [38], [37]
Vulnerability to overfitting due to complex architectures
Limited generalization to diverse environments and object categories
Computational resource requirements

Uncertainty and
Ambiguity
Handling

[30]
Difficulty in disentangling object occlusions
Limited performance in scenes with complex object interactions
Challenges in handling ambiguous depth estimations

Cross-Task and
Cross-Domain
Generalization

[51], [53]
Need for extensive labeled data for cross-task generalization
Limited performance in unseen domains
without domain adaptation techniques
Complexity in integrating multi-task learning objectives

Semantic
Segmentation and

Contextual
Information

[35], [64], [65]
Reliance on accurate semantic segmentation,
which can be affected by scene complexity
Difficulty in handling semantic ambiguities and misclassifications
Challenges in incorporating long-range contextual information.

Stereo-Based
3D Object
Detection

Stereo R-CNN [85] Requires refinement to bridge the performance
gap with LiDAR-based methods.

Disp R-CNN [70], [73], [88] Could improve performance with further
optimization for real-world applications.

DSGN [86] Potential limitations regarding real-time
capabilities and scalability in complex environments.

LIGA-Stereo [75], [76] May face challenges in accurately representing
complex geometric structures.

Stereo VoVNet-CNN [77], [78] Further validation is needed for its effectiveness
in diverse scenarios and datasets.

Multi-View
Based 3D
Object
Detection

Depth-based [81] Limited applicability to specific camera setups.

Multi-View Fusion [89], [90] Limited performance in complex urban environments with dense traffic.
Sensitivity to variations in LiDAR point cloud density.

Query-based [91], [92], [99]
Difficulty in accurately localizing objects with
occlusions in multiple views.
Challenges in handling large volumes of multi-view data efficiently.

MLOD [94] Limited effectiveness in scenarios with significant occlusions or clutter.
3D-R2N2 [95] Challenges in accurately reconstructing objects with complex shapes.
Multi-view
ensemble
manifold

regularization

[96], [97] ,[101],
[103],[104]

Difficulty in effectively capturing inter-view
relationships in high-dimensional feature spaces.

clouds [118].

3.1.2 Grid Point Based 3d object detection
Grid-based 3D object identification techniques
represent a leading edge in the evolution of

autonomous driving systems, providing a reliable
foundation for the rapid and precise processing
of point cloud data. These methods, essential
for the secure and dependable functioning of
autonomous cars, leverage the discretization of
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point clouds into grid representations, enabling
feature extraction and object recognition with
exceptional accuracy. The overarching foundation
of grid-based detection entails the rasterization of
point cloud data into discrete grid structures, such
as voxels, pillars, or birds-eye view (BEV) feature
maps [119]. Conventional 2D convolutional neural
networks (CNNs) or specialized 3D sparse neural
networks are employed to extract features from grid
representations, facilitating precise detection of 3D
objects [120–126]. Diverse grid-based representations
provide distinct methodologies for encoding point
cloud data, each with specific advantages and
uses [125]. Voxels represent three-dimensional
cubes that encompass points, facilitating effective
voxelization and subsequent feature extraction
from non-empty voxel cells [125]. Pillars give a
specialized representation by aggregating features
from points through methods such as PointNet
encoding, achieving a compromise between efficacy
and efficiency [127]. BEV feature maps, which are
dense 2D representations encapsulating point cloud
data within pixel regions, provide a flexible method
for extracting object features [122].
Grid-based neural networks include both 2D CNNs
and 3D sparse neural networks, designed to efficiently
analyze various grid representations [126, 127]. 2D
CNN architectures, derived from effective designs in
2D object detection, excel in processing BEV feature
maps, whereas 3D sparse neural networks utilize
specialized convolutional operators for the efficient
processing of non-empty voxels [122], [126]. In the
realm of autonomous driving systems, grid-based
methodologies, especially those employing grid
point representations, provide significant benefits
for efficiency and precision [128–130]. CenterPoint
attains exceptional outcomes with a mean Average
Precision (mAP) of 90.5% on the nuScenes dataset
and 88.7% on the Waymo dataset, underscoring the
effectiveness of grid-based methodologies in practical
applications [131]. Nonetheless, issues concerning
the selection of grid cell size and the corresponding
trade-offs between grid resolution and memory usage
continue to be significant research priorities [119].
Enhancing grid-based techniques to achieve a balance
between effectiveness and efficiency is crucial for the
progression of 3D object detection in autonomous
driving applications [126, 127] and [119].

3.1.3 Point-Voxel-Based 3D Object Detection
Point-voxel-based three-dimensional object
identification methodologies signify a progression

in autonomous driving perception systems. These
strategies reconcile point-based and voxel-based
approaches, leveraging the advantages of both
paradigms while alleviating their respective
shortcomings. This integration seeks to capitalize on
the advantages of both approaches while mitigating
their intrinsic limits, hence improving the accuracy
and reliability of object detection in dynamic
situations. Point-based approaches effectively
capture high-resolution spatial information [132],
although frequently encounter challenges related
to computational complexity, particularly when
processing sparse data [4], [133–136]. Conversely,
voxel-based methods offer a structured data
representation, hence improving computational
efficiency. Nonetheless, they may forfeit intricate
spatial information as a result of the discretization
process. Point-voxel (PV) methods seek to achieve
a balance by combining the detailed information
acquisition capabilities of point-based approaches
with the computing efficiency of voxel-based
techniques [141–143].

The main aim of PV-based approaches is to enable
feature interaction between voxels and points via
point-to-voxel or voxel-to-point transformations.
These methods provide comprehensive analysis of
point cloud data, encompassing both global structures
and micro-geometric features essential for the safety
of autonomous driving systems. Photovoltaic-based
techniques can be classified into two primary
approaches; a notable direction involves the creation
of single-stage and two-stage detection frameworks,
each providing distinct benefits in acquiring intricate
spatial information while addressing computing
complexity [144].

Single-stage architectures aim to cohesively
incorporate point and voxel properties within
backbone networks [144, 145]. By utilising the
detailed geometric information of points and
the computational efficiency of voxels, these
frameworks offer improved feature extraction
and detection accuracy [146, 147]. Significant
innovations encompass point-voxel convolutions and
auxiliary point-based networks, which enhance the
integration of point-voxel data. Conversely, two-stage
frameworks utilize a multi-step methodology,
implementing distinct data representations at each
phase to enhance object detection outcomes [148].
Voxel-based detection frameworks first produce
a collection of 3D item ideas, establishing a basis
for further refining. During the refining phase,
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Table 2. Summary related to most trending approaches and technologies.

Method Technique Paper
Name(s) Limitations

Point-Based
3d Object
Detection

Point-based [108], [104] Limited performance in dense and cluttered environments.
Lack of contextual information. Limited scalability to large scenes.

Graph neural [109], [110] Complexity in defining and designing graph structures.
Computationally expensive for large graphs. Difficulty in capturing long-range dependencies.

Point cloud
-based [112], [118]

Computationally intensive due to processing large point clouds.
Limited performance in handling irregular point densities.
Limited capability to handle objects with complex shapes.
Dependency on accurate object center estimation.

Transformer-
based [116], [114]

Computationally expensive due to self-attention mechanisms.
Difficulty in capturing fine-grained spatial relationships.
Difficulty in capturing long-range dependencies. Limited scalability to large scenes.

Feature-based [105], [103]
Limited performance in preserving fine details.
Difficulty in handling non-uniform point densities. Limited scalability to large point clouds.
Dependency on accurate feature interpolation methods.

Grid Based
3d Object
Detection

3D Fully
Convolutional
Network

[133], [121] Limited to vehicle detection, may not generalize
well to other object types

Birdnet [122] Limited to bird detection, may not generalize well to other object types
PointPillars [127], [128] Requires substantial computational resources
Vote3Deep [120] Limited to fast object detection, may not perform well in scenarios with complex environments
Voting for
Voting [119] May not scale well to large point cloud datasets

From Points
to Parts [129] Limited to detecting objects with distinguishable parts

SECOND [126] May struggle with dense scenes or cluttered environments
HDNet [124] Relies on availability of high-definition maps
PIXOR [123] May struggle with detecting small or occluded objects
Center-based
3D Object
Detection
and Tracking

[131] May have challenges with tracking objects in crowded scenes

Point- Voxel
Based
3d detection

Voxel-to-Point
Decoder [137] Lack of fine spatial details in voxels

VoxelNet,
PV-RCNN++

[125], [132],
[134], [133],
[135], [148],

[152]

Requires substantial computational resources
May struggle with detecting small or occluded objects
Computational complexity for sparse data

Pyramid
R-CNNLiDAR
R-CNN,

[146], [141]
Limited to monocular input; lacks stereo vision for depth perception,
relies on LiDAR data; may be affected by occlusions and adverse
weather conditions

RTS3D [143] Requires stereo camera setup; may struggle in complex lighting conditions
M3DSSD [144] Limited to monocular input; may lack depth perception in certain scenarios
Hollow-3D
R-CNN [146] Limited to monocular input; may lack depth perception in certain scenarios

PP-RCNN,
PillarNext [150], [151] Limited to LiDAR point cloud input; may struggle with sparse data

SVGA
-NeHVPR [145], [139] Limited by voxel-based representation; may lose fine details

PVNAS [142] May require extensive computational resources for architecture search
M3DETR [147] May be computationally intensive due to transformer-based architecture
PVGNet [138] Limited to voxel-based representation; may struggle with fine-grained details
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essential points are extracted from the input point
cloud, and innovative point operators are utilized
to further improve detection accuracy [149–151].
Techniques like RoI-grid pooling and point-wise
attention are essential for enhancing object suggestions
and augmenting the overall robustness of detection
outcomes. The incorporation of these advancements
into point-voxel-based algorithms promises enhanced
accuracy and efficiency in 3D object detection for
applications like autonomous driving [152]. However,
obstacles persist, especially in reconciling detection
precision with processing economy. Nevertheless,
continuous research endeavors persist in advancing
point-voxel-based detection, enhancing safety
perception and decision-making for autonomous
systems. Table 2 summarizes all such techniques
along with their limitations on next page.

4 Comparative Analysis of Camera, LiDAR,
and Radar Sensors

4.1 Utilization of Camera
Cameras are an economical alternative for applications
that incorporate radar and imaging technology. They
are frequently utilised in forward collision warning
systems, lane departure warning systems, traffic sign
recognition systems, parking assistance systems, and
blind spot monitoring systems.
Cameras function by exposing photosensitive cells
to light, resulting in a photoelectric effect that
produces electrical charges. The picture signals
are conveyed to the respective analogue signal
processing unit and digital-to-analog conversion
circuit. Cameras are categorized into monocular and
binocular types, with monocular cameras offering a
perspective of 50° to 60° with visual ranges of 100m to
200m. Binocular cameras can replicate human visual
perception for three-dimensional imaging, enhance
object recognition accuracy, and acquire distance and
velocity data via algorithms. In contrast to LiDAR,
cameras may utilize natural daylight and identify
distant objects with superior resolution and reduced
costs in well-lit environments [154, 155]. Cameras are
vulnerable to variations in weather and lighting, and
existing technology complicates the identification of
distant objects in static images.

4.2 Utilization of LiDAR
LiDAR technology enables real-time environmental
data sensing and the generation of high-definition
3D visuals. LiDAR employs pulsed modulated light
to produce signals, track the time interval between

emitted and reflected light, and simultaneously scan
or measure several light beams to ascertain range and
collect angular data [156]. This sensor system is the
most accurate among regularly used environmental
measurement choices, including rapid response,
expanded detection range, and high precision. Noise is
inevitably composed of the point cloud data gathered
by the onboard LiDAR system due to several factors
such as acceleration, deceleration, and alterations in
driving direction [157]. Most LiDAR systems may
provide strength data on the reflected pulse, reflecting
the energy returned from the target surface and other
object characteristics. The quantity of information
conveyed by the light from the laser point cloud will,
however, vary considerably according on the LiDAR
systems, atmospheric conditions, and other specific
circumstances.
Furthermore, LiDAR point cloud data is devoid of
item category information, complicating automatic
recognition and feature extraction. LiDAR’s high cost
for mass manufacturing may result in market trends
such as the development of LiDAR with restricted
detection ranges for particular applications and the use
of solid-state LiDAR to lower expenses. These trends
seek to enhance performance and save expenses in the
LiDAR market [158–160].

4.3 Utilization of Radar
Radar sensors are crucial in autonomous cars
for navigation, obstacle detection, and collision
prevention. They produce radio waves throughout the
microwave or radio frequency spectrum, specifically
from 24 GHz to 77 GHz, and analyze reflections to
discern the vehicle’s surroundings [160, 161]. These
sensors are engineered to function effortlessly in
all locations and weather situations, guaranteeing
uninterrupted and dependable detection capabilities.
It generally functions within designated frequency
bands, including the X-band (8-12 GHz), Ku-band
(12-18 GHz), or mmWave band (24-77 GHz). These
bands provide differing degrees of performance
regarding range, resolution, and vulnerability to
interference. Radar sensors can identify objects both
in proximity and at a distance; they are essential for
recognizing stationary barriers as well as tracking
dynamic entities and forecasting their trajectories,
hence improving safety and comfort for passengers
and road users [162–165].
Cameras, LiDAR, and radar sensors are essential
elements of perception systems in autonomous
vehicles, delivering vital information regarding the
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Table 3. Comparison for the utilization of Camera, Radar and LiDAR Sensors for different purpose.

Aspect Camera Radar LiDAR

Object Detection Good Good Excellent
Object Classification Good Fair Fair to Good
Distance Estimation Fair to Good Excellent Excellent
Edge Detection Good Fair to Good Excellent
Lane Tracking Fair to Good Excellent Fair to Good
Visibility Range Limited Long range Moderate to Long range
Poor Weather Performance Poor Excellent Moderate to Good
Low Light Performance Poor Fair to Good Moderate to Good

vehicle’s environment. Table 3 delineates the functions
of cameras, LiDAR, and radar sensors, which exhibit
varying performance metrics contingent upon range,
meteorological conditions, data density, and cost.

4.4 Comparative analysis of Radar and LiDAR
Research comparing radar and LiDAR [162] for
SLAM (Simultaneous Localization and Mapping)
applications assesses the efficacy of both sensors
utilizing two advanced SLAM algorithms: NDT-OM
fuser and Gmapping. The Mechanical Pivoting Radar
(MPR) utilised in their experiment was designed at
Fraunhofer FHR, incorporating a 2D millimeter-wave
radar affixed to a pivoting motor with a rotational
velocity of 2.5Hz. The MPR offered a measurement
precision of ±3.75 cm within a range of 19 m,
yielding 200 range readings for each complete rotation
of the antenna. For comparison, they employed
the Velodyne VLP-16, a 3D range scanner with a
100-meter range and a channel distribution of 2.00°
between channels, providing a range accuracy of ±3
cm [165]. The assessment technique utilized was
the Relative Pose Error (RPE) method introduced
in [167]. for the KITTI dataset. This method
assessed the displacement at each posture relative
to a surrounding neighborhood of poses, treating
translation and rotation errors independently. The
experimental results presented in the table elucidated
the efficacy of radar and LiDAR sensors in SLAM
applications [168]. The Velodyne LiDAR exhibited
enhanced precision in calculating robot trajectories
and constructing environmental maps relative to the
MPR radar. Gmapping typically produced trajectory
estimates that were more aligned with the ground
truth endpoint than the NDT-OM fuser when utilizing
the MPR, however the NDT-OM fuser exhibited
marginally superior performance with the Velodyne
LiDAR. One may see Table 4 that summarizes the
performance of Radar and LiDAR [169].

A comparative research study [162] on heuristic
fusion with adaptive gating versus track-to-track
fusion algorithms for sensor fusion in forward vehicle
tracking, utilizing simulated data from camera
and radar sensors, indicates that the track-to-track
fusion algorithm surpassed the heuristic fusion with
adaptive gating algorithm, achieving an average
accuracy enhancement of 29.39% across multiple
scenarios [170]. The track-to-track fusion technique
demonstrated a decrease in data association failures,
as evidenced by the OSPA distance graphs. In
the evaluation of camera and radar sensor fusion
performance, both methodologies demonstrated
efficacy across various scenarios. Radar sensor
fusion exhibited comparable or marginally superior
performance in scenarios such as linear motion,
creation, and elimination. Camera sensor fusion
demonstrated superior accuracy enhancement
rates in situations including stopping and curved
motion. The results indicate the superiority of the
track-to-track fusion method for forward vehicle
tracking applications, with ramifications for practical
vehicle systems [161–165].

5 Integration of Camera and LiDAR Sensor
The integration of camera and LiDAR sensors
in autonomous cars promises to substantially
improve perception capabilities, especially in difficult
environmental situations. Researchers [164–170] seek
to enhance perception systems by integrating the
advantages of both cameras, which offer extensive
visual information, and LiDAR, known for its precise
3D mapping capabilities, therefore addressing the
limits of individual sensors.
In these studies, researchers performed trials to
assess object detection performance in autonomous
vehicle sensors, both separately and in combination.
They examine the constraints of current object
detecting methods, especially under adverse lighting
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Table 4. Performance comparison between Radar and LiDAR

Sensor SLAM Accuracy Translation Error Orientation Error Map Accuracy

Radar (MPR) NDT-OM fuser High Similar to LiDAR Similar to LiDAR Inferior
Gmapping High Similar to LiDAR Similar to LiDAR Inferior

LiDAR (Velodyne) NDT-OM fuser High Similar to Radar Similar to Radar Superior
Gmapping High Similar to Radar Similar to Radar Superior

and meteorological circumstances. Conventional
object detection systems predominantly depend on
vision sensors, which may falter in low visibility
conditions [171]. To tackle these problems, some
studies advocate for sensor fusion systems that
integrate thermal infrared cameras with LiDAR
sensors. Thermal infrared cameras perform
exceptionally well in low visibility environments, but
LiDAR sensors deliver accurate three-dimensional
spatial data. The integration of these sensors
seeks to enhance the reliability of object detection,
particularly in areas with limited visibility [164], [167].
Prior to integration, the documents emphasize the
necessity for precise extrinsic parameter calibration
between the thermal infrared camera and the LiDAR
sensor. Conventional calibration techniques may
not be immediately applicable to thermal infrared
cameras due to difficulties in precisely extracting
three-dimensional shapes. A article presents an
innovative calibration technique employing a 3D
calibration target and feature point extraction to
accurately align the sensors. During daylight
conditions, the object detection Average Precision
(AP) for the visual camera and LiDAR sensor is
56.167%, but for the thermal infrared camera and
LiDAR sensor, it is 55.914%. During dark conditions,
the visual camera and LiDAR sensor exhibit a
performance level with an Average Precision (AP) of
49.878%, but the thermal infrared camera and LiDAR
sensor get an AP of 57.516% [164].

5.1 Probabilistic Sensor Fusion Approach
Adifferentmethod employs an innovative probabilistic
sensor fusion technique to amalgamate semantic
information from cameras with accurate 3D data from
LiDAR sensors, thereby generating three-dimensional
semantic voxelized maps for autonomous cars in
urban settings [165], [168]. This methodology
tackles essential difficulties such as sensor
synchronization, motion distortion compensation,
occlusion management, and uncertainty propagation.
The effectiveness of this pipeline is confirmed
through stringent experiments utilizing datasets

that include pictures, point clouds, and odometry
data. The experimental evaluation assesses three
LIDAR-image projection methodologies: direct
projection, motion-corrected projection, and projection
with occlusion management, using ground truth
labels from 20 LIDAR scans as a benchmark. The
results provide strong evidence for the efficacy of the
proposed approach, especially with the integration of
motion correction and occlusion handling techniques.
Quantitative metrics, like as recall and precision, act
as essential indicators of performance improvement.
The occlusion management technique exhibits a
significant reduction in the mislabeling of occluded
points, leading to a 7% drop in the quantity of labelled
points per scan relative to direct projection [165].

5.2 Object Detection and Ranging System
A vision system that is specifically designed for
autonomous driving is another key contribution. This
system places an emphasis on the vital need for
exact object recognition, categorization, and ranging
under driving settings that are both complicated and
unpredictable. This sensor fusion technique takes
advantage of the complimentary characteristics of
camera and LiDAR sensors in order to improve the
resilience and accuracy of the system [166], [169].
While cameras are excellent at recognizing color, form,
and different types of objects, they are not capable
of detecting depth. In contrast, LiDAR is capable of
producing accurate three-dimensional mapping, but it
has difficulty detecting objects due to the presence of
sparse point clouds and a wide range of geometric
shapes. The method of fusion involves projecting
LiDAR point clouds onto camera images in order to
integrate information in a seamless manner. This
process is confirmed by employing algorithms such as
YOLOv3 and Point Pillars.

5.3 EnhancingAccuracy andReal-timeperformance
By combining the raw data from LiDAR and video
sensors, additional research is being conducted to
investigate the possibility of improving obstacle
detection in autonomous cars [169], [170].
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Inaccuracies in perception, sensor calibration,
and data synchronization are all subjects that are
addressed by the methodology. These constraints
are intended to be overcome by the fusion, which
also intends to improve perceptual accuracy. The
procedure involves the calibration of both intrinsic and
extrinsic sensors, which is validated by the analysis
of real-time data. It also enables the identification of
obstacles, classification of obstacles, and assessment of
depth. Sensor data fusion has been shown to increase
accuracy in various tasks, with considerable reductions
in translational, rotational, and projection errors,
as demonstrated by the results of the experiments.
Real-time perception is made possible for autonomous
vehicles through the combination of raw data from
LiDAR and image sensors, which dramatically
minimizes the amount of time required for processing.

5.4 Indoor Mapping & Combined Sensor Efficacy
Another innovative method involves data fusion
mapping using single-line LiDAR, depth camera, and
IMU sensors to overcome limitations in single-sensor
mapping in indoor environments. Individual sensors
faced challenges such as sparse point cloud data
from LiDAR, limitations in weak light or texture less
environments for the depth camera, and IMUdrift over
time as shown in Figure 3. This approach compensates
for errors caused by LiDAR measurements through
fusion of environmental feature data from LiDAR
and pseudo laser data from the depth camera,
and pose information from the IMU using Kalman
Filtering [170]. The global map generated after
fusion ensures mapping accuracy and provides a more
comprehensive environmental map for mobile robots,
reducing the possibility of collisions with obstacles
during operation.

The analysis of combined sensor effectiveness,
as evidenced in multiple studies, highlights the
integration of thermal infrared cameras with LiDAR
sensors for object detection in autonomous cars. These
investigations underscore the difficulties encountered
by conventional object detecting systems, especially
under unfavorable lighting and meteorological
circumstances. Researchers advocate for sensor fusion
systems to improve the reliability of object detection,
particularly in low-visibility conditions. Accurate
calibration between thermal infrared cameras and
LiDAR sensors is essential prior to integration,
necessitating calibration techniques to overcome
obstacles in precisely extracting 3D shapes [170]. The
Table 5 presents diverse efficacy results from the tests,

Figure 3. Indoor mapping and combined sensor.

indicating promising outcomes. In daylight conditions,
the amalgamation of thermal infrared cameras with
LiDAR sensors achieves object detection performance
on par with the combination of visual cameras and
LiDAR sensors. In low-light circumstances, thermal
infrared cameras and LiDAR sensors outperform
visual cameras and LiDAR sensors, underscoring the
efficacy of thermal infrared sensors in enhancing object
identification reliability in difficult lighting scenarios.
The findings highlight the effectiveness of sensor
fusion methods in improving object identification
abilities in autonomous cars, especially in challenging
weather situations. Table 5 summarizes further
insights into the usefulness of coupled sensor systems,
highlighting enhanced results for their effectiveness.

6 Benefits of Integrating LiDAR and Camera
The integration of camera and LiDAR systems in
autonomous cars offers significant advantages
by utilizing their complementary strengths
and mitigating their unique limitations. This
amalgamation fosters a more dependable perceptual
system. It improves perception by integrating
high-resolution images from cameras with the
intricate 3D point clouds produced by LiDAR
sensors [168]. Cameras provide visual data on item
characteristics, including look, color, and texture,
whilst LiDAR delivers precise distance measurements,
culminating in a comprehensive system for object
detection and classification. Furthermore, it enhances
object detection. Cameras excel at identifying
visual characteristics but may encounter difficulties in
low-light or adverse visibility circumstances [169, 170].
LiDAR, impervious to lighting conditions, provides
accurate depth information, enhancing the reliability
of object detection across diverse environmental
scenarios. Furthermore, it guarantees resilience
under unfavorable circumstances. LiDAR operates
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Table 5. Summary related to Combined Sensor Technologies and Approaches.
Paper Limitations of Individual Sensors Technique Improvements

Object Detection
in AV Sensors [161]

Reliance on vision sensors,
limited visibility conditions

Sensor fusion,
Extrinsic calibration

-Improving object detection reliability in
poor visibility scenarios for day and night.

Probabilistic
Sensor Fusion
Approach for Avs
[162]-[163]

Sensor synchronization,
motion distortion,
occlusion handling,
uncertainty propagation

Sensor fusion,
Calibration,
Motion correction

-Improved recall and precision metrics.
-Reduced mislabeling of occluded points.
-Enhanced accuracy in object recognition and
semantic mapping, addressing challenges of
motion distortion and occlusions.

Multimodal
Object Detection
and Ranging [164]

Lack of depth perception in
cameras, sparse point
clouds from LiDAR

Sensor fusion,
Camera-LiDAR
calibration

-Successful detection and ranging in dynamic
driving environments.
-Achieving heightened perception accuracy.
-Precise fusion through meticulous calibration.
-Real-time processing for successful detection.

Sensor Fusion in
Autonomous Vehicles
[165]

Adverse weather, low light,
errors in position estimation

Sensor fusion,
Odometry,
Kalman filters

Enhancing estimation accuracy, reducing errors
in AV performance, seamless integration of sensor data.

LiDAR and Camera
Raw Data Sensor
Fusion [166]

Sparse point clouds from LiDAR,
limitations in weak light for cameras

Sensor fusion,
Intrinsic and
extrinsic calibration

-Reduction in processing time for real-time perception.
-Enhancing obstacle detection, classification,
and depth estimation accuracy.
-Real-time processing for improved autonomous
vehicle (AV) perception.

Data Fusion Mapping
Using LiDAR, Depth
Camera, and IMU
Sensors [167]-[168]

Sparse point clouds from LiDAR,
limitations in weak light or texture
less environments for depth camera,
IMU drift over time

Data fusion,
Kalman Filtering

-Significant improvements in mapping accuracy.
-Global map generation ensuring accuracy.
-Comprehensive environmental mapping.
-Overcoming limitations of single-sensor mapping.
-Enhancing map construction accuracy.
-Reducing collisions with obstacles during operation.

independently of light conditions or weather by
assessing the time-of-flight of laser pulses. Cameras
provide contextual elements such as color and
texture, facilitating object identification in conditions
of fog, rain, or darkness. The incorporation of
these sensors improves overall performance and
dependability [171].

Furthermore, it offers precise geographical mapping.
LiDAR produces rich three-dimensional point clouds
with accurate spatial data, whilst cameras provide
intricate visual information. The integration of these
elements facilitates precise environmental mapping,
crucial for navigation and obstacle evasion. Fifthly,
it enhances redundancy and reliability. Should one
sensor encounter problems, such as obstructions or
malfunctions, the other might provide compensation.
For instance, if a camera encounters glare or shadows,
LiDAR maintains depth information, guaranteeing
consistent functionality and safety. Sixthly, it
is economically advantageous. Although LiDAR
technology is costly, cameras are comparatively
economical. Combining both diminishes total
system expenses while preserving high performance,
hence enhancing the accessibility and scalability of

autonomous systems. Ultimately, it provides diversity
and adaptability. Cameras record visual data such as
colors and textures, while LiDAR delivers accurate
spatial information. This combination enables the
system to address a range of applications, from
autonomous driving to environmental monitoring, by
meeting varied constraints and requirements [171].

7 Affordable Alternatives
The advancement of sensor technology for
autonomous vehicles and advanced driver assistance
systems (ADAS) has led to the exploration of many
cost-effective alternatives to LiDAR, mostly focusing
on camera and radar sensor technologies. These
LiDAR alternatives provide substantial advantages in
terms of cost-effectiveness and usefulness, although
they come with inherent constraints. This section
examines the technical analysis and performance
implications of diverse sensors, substantiated by
recent research and conclusions in the domain [172].
Previous studies have investigated the effectiveness
of camera and radar systems under various driving
situations, providing a foundation for current beliefs
about their viability as economical alternatives to
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LiDAR. A study [173] suggested that using these
sensors could deliver sufficient environmental
awareness for autonomous vehicles at a significantly
reduced cost compared to LiDAR systems. The
working hypothesis posits that despite the inherent
limitations of each sensor, their combined application
through sophisticated sensor fusion algorithms
can achieve performance comparable to that of
LiDAR. Camera-based systems are extensively
employed for their enhanced resolution and ability to
record complex visual details. These systems utilize
sophisticated computer vision algorithms, including
convolutional neural networks (CNNs) and deep
learning techniques, to examine and classify objects,
lane markings, traffic signals, and pedestrians. Recent
developments in camera technology, such as high
dynamic range (HDR) pictures and greater low-light
performance, have boosted their functionalities. A
study by [23] demonstrates that multi-camera systems
significantly improve the field of view and depth
perception, rendering them more useful for intricate
driving situations.

Camera systems have difficulties in inclement weather
and low-light environments. Precipitation, fog, and
glare can impair image quality, thus diminishing the
effectiveness of computer vision algorithms [174].
To resolve these challenges, proposed solutions
include polarizing filters and sophisticated image
processing techniques, such as noise reduction
and contrast enhancement algorithms. Polarizing
filters can diminish glare from wet road surfaces
and enhance image quality in inclement weather,
while sophisticated image processing techniques
can alleviate problems associated with low-light
and fog, so enhancing the overall dependability of
camera-based systems in adverse situations. Radar
sensors operate by producing radio waves and
examining their reflections off objects, guaranteeing
dependable operation in many environmental
situations, including fog, rain, and darkness. The
capacity of radar to precisely evaluate object
velocity is very advantageous for collision avoidance
systems. The cost-efficiency of radar, along with
recent developments in high-resolution imaging
radar technologies, such as Frequency-Modulated
Continuous Wave (FMCW) radar, renders it a
compelling option. A study [174] demonstrates
that contemporary radar systems can get significant
resolution enhancements through synthetic aperture
radar (SAR) methodologies, improving their capacity
to differentiate between closely positioned objects.

Notwithstanding these developments, radar sensors
frequently yield inferior spatial resolution compared
to LiDAR, so constraining their capacity to generate
intricate 3D representations of the environment.
Sensor fusion methodologies are utilized to alleviate
this constraint. Research [153] indicates that the
amalgamation of radar and camera data merges the
high resolution of cameras with the dependability of
radar, yielding a more resilient and precise perception
system. This method employs deep learning models
that can analyze multi-sensor data, enhancing object
recognition and classification precision. Previous
investigations and the foundational premise suggest
that a multi-sensor strategy, combining cameras and
radar, can mitigate the limitations inherent in the
exclusive use of individual sensors. Algorithms
for sensor fusion, particularly those utilizing deep
learning frameworks like YOLO (You Only Look
Once) and SSD (Single Shot Multibox Detector), are
being designed to effectively integrate data from these
sensors. These algorithms can evaluate extensive
datasets in real-time, providing critical environmental
awareness necessary for autonomous driving [173].
Radar and camera technologies offer considerable
advantages over LiDAR in terms of cost-effectiveness.
Cameras are generally economical, and even advanced
radar sensors are far more affordable than LiDAR
systems [174]. The diminished cost of these sensors
can decrease the total expenditure of autonomous
vehicle systems, enhancing their accessibility for
general use. Future research directions include
the enhancement of sensor fusion methodologies,
the fortification of camera systems under adverse
conditions, and the advancement of radar technology
for superior resolution and enhanced environmental
awareness. Investigating advanced machine learning
techniques for sensor fusion, such as Transformer
models and Graph Neural Networks (GNNs), has the
potential to enhance the precision and dependability
of these systems. Furthermore, investigating
meta-learning and transfer learning may enhance the
adaptability of these systems to novel contexts and
situations [175].

8 Technical Discussion on Limitations &
Shortcomings

The incorporation of many sensors in autonomous
vehicles is essential for attaining dependable
and precise environmental perception. This
integration poses numerous problems and limitations
stemming from the fundamental disparities in
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sensor technologies, data processing necessities, and
operational situations. A significant problem is the
intricacy of sensor fusion. Integrating data from
LiDAR, radar, and cameras necessitates meticulous
calibration and synchronization, given that each
sensor functions on varying physical principles
and generates data in unique formats [175]. This
integration necessitates advanced algorithms adept
at handling temporal and spatial inconsistencies
to provide precise item detection and localization.
Misalignment or synchronization issues may result in
unreliable outcomes, jeopardizing the vehicle’s safety
and performance. Moreover, real-time data processing
presents a considerable hurdle. Autonomous vehicles
rely on swift decision-making for secure navigation,
and the substantial data generated by high-resolution
sensors such as LiDAR and cameras necessitates
robust processing units and refined algorithms. The
requirement for substantial processing capacity not
only elevates energy consumption but also contributes
to the overall expense and intricacy of the autonomous
system [152, 153].

Environmental variables exacerbate the complexities
of sensor integration. Although LiDAR and radar
are less influenced by lighting conditions, they
may encounter difficulties in severe weather, like
heavy rain, snow, or fog, which might compromise
data quality. Cameras, as passive sensors, exhibit
heightened sensitivity to fluctuations in lighting and
atmospheric conditions, which may impair visibility
and diminish image quality. Integrating data from
various sensors necessitates resilient algorithms to
counteract environmental influences. The substantial
expense associated with the implementation and
upkeep of various sensor systems, especially LiDAR,
constrains access to sophisticated autonomous
systems, hindering their acceptance and elevating
operational costs due to continuous maintenance
and calibration demands. Privacy issues emerge
with camera usage, as they record intricate visual
information that may encompass identifying personal
data [149]. Reconciling environmental awareness with
privacy concerns necessitates meticulous planning
and data management techniques. Scalability is
a significant concern, as handling extensive data
from numerous sensors while maintaining real-time
processing and decision-making requires sophisticated
communication infrastructure and resilient data
management systems. Notwithstanding considerable
progress in 3D object detection technologies,
contemporary state-of-the-art methodologies face

numerous constraints that impact their efficacy and
wider use. These constraints encompass sensor
capability, data processing efficiency, environmental
adaptability, and computational requirements [123].
LiDAR sensors, despite generating high-density
point clouds, pose issues related to computational
complexity and resource requirements. Real-time
processing and interpretation of extensive data
necessitates sophisticated gear, which may be
impractical in resource-limited settings. Moreover,
LiDAR data may be sparse and partial, particularly at
extended distances or in the presence of obstructions,
hence complicating the detection and classification
processes. While less influenced by lighting conditions,
LiDAR performance may deteriorate in inclement
weather such as heavy rain, snow, or fog. The
elevated expense of LiDAR sensors continues to pose
a substantial obstacle, hindering widespread adoption
despite declining prices. Radar sensors, although
resilient in diverse environmental circumstances,
generally provide worse resolution relative to LiDAR
and cameras. This diminished resolution can impede
the identification and distinction of small or closely
positioned items, hence impacting the precision of 3D
object detection [134]. Moreover, radar’s capacity to
deliver specific information regarding item forms and
dimensions is constrained, affecting applications that
necessitate accurate object detection and classification.
Signal interference and crosstalk, especially in settings
with numerous radar systems, can adversely impact
detection accuracy [135], [163].
Cameras depend on ambient illumination, rendering
them vulnerable to fluctuating lighting conditions.
Factors such as insufficient illumination, shadows,
and glare can considerably affect image quality and
detection precision. Cameras produce 2D images
devoid of intrinsic depth sense, hence confounding
the assessment of distance and size. Stereo vision
techniques provide limited depth information but
are generally less precise and more computationally
demanding than LiDAR. Cameras are particularly
susceptible to inclement weather, which can obstruct
visibility and diminish image quality [170].

9 Future Directions and Recommendations
When it comes to achieving dependable and precise
environmental perception, the incorporation of
several sensors into autonomous cars is absolutely
necessary. Nevertheless, in order to ensure the
progression of technology, it is necessary to conquer
the difficulties that are related with this integration.

19



IECE Transactions on Sensing, Communication, and Control

Enhancing sensor fusion techniques should be the
primary emphasis of future research in order to better
manage the difficulties involved in merging data from
LiDAR technologies, radar, and cameras. Specifically,
this entails the development of more sophisticated
algorithms for calibration and synchronization, the
resolution of temporal and spatial inconsistencies,
and the enhancement of the robustness of data
fusion in order to guarantee accurate object detection
and localization. Furthermore, it is of the utmost
importance to effectively solve the difficulty of
real-time data processing. For the purpose of
managing the huge amounts of data that are produced
by high-resolution sensors, this can be accomplished
through the development of algorithms that are more
effective and by the utilisation of developments in
hardware acceleration, such as graphics processing
units (GPUs) and specialized processors [11–15].
Additionally, the investigation of edge computing and
distributed processing strategies can be of assistance
in lowering latency and increasing the speed of
decision-making. In particular, environmental
adaptation continues to be a key concern, especially
when poor weather conditions are present. In the
future, research should concentrate on either building
adaptive algorithms that can react to changing
environmental elements or designing sensors that
are more resistant to the conditions that are now
being encountered [25–35]. Furthermore, in order
to facilitate wider use, it is necessary to achieve
a reduction in the high prices associated with
advanced sensors, particularly LiDAR. The goal
of research should be to find alternatives that are
more cost-effective and to investigate improvements
in the fabrication of sensors. The protection of
privacy, in particular with regard to camera data,
necessitates the implementation of sophisticated
data management systems that strike a compromise
between environmental perception and privacy
concerns [166]. This comprises the implementation of
procedures that protect individuals’ privacy and the
guaranteeing of conformity with rules. Last but not
least, it is essential to address scalability difficulties
by creating effective communication infrastructure
and data management systems in order to handle
large amounts of data while preserving the ability to
analyze it in real time [170–175].

10 Conclusion
The combination of LiDAR, radar, and cameras
is crucial for ensuring dependable and precise
environmental perception in autonomous vehicles.

This integration, while utilizing the advantages
of several sensors, poses several obstacles. Sensor
fusion’s complexity necessitates advanced algorithms
to process data from several sensors, each functioning
on distinct physical principles and data formats.
Misalignment or synchronization issues might
compromise object detection accuracy and localization,
hence affecting vehicle performance and safety.
Furthermore, handling the extensive data streams
produced by high-resolution sensors requires
substantial computer resources, rendering real-time
processing a formidable issue. Environmental
considerations exacerbate integration challenges;
LiDAR and radar efficacy diminishes in inclement
weather, whilst cameras are influenced by variations
in lighting and atmospheric conditions. A notable
obstacle to widespread adoption is the elevated
expense of sensors, especially LiDAR. Financial
considerations significantly influence the viability
of extensive deployment of autonomous systems.
In addition to technical and budgetary obstacles,
data privacy poses a significant barrier, especially
in the management of camera data, which may
unintentionally record sensitive personal information.
Adherence to data protection standards, including
the General Data Protection Regulation (GDPR)
in Europe, is essential for mitigating these issues.
Autonomous vehicles may need to employ real-time
data anonymisation methods or restrict data retention
to prevent incorrect storage or misuse of personal
information. Measures such as encrypted data storage
and restricting image collection to non-identifiable
information are now being investigated to alleviate
privacy problems. Despite progress in 3D object
detection technologies, existing methodologies
continue to encounter constraints concerning
sensor performance, data processing efficacy, and
environmental adaptability. Mitigating these limits
via focused research and development is essential for
enhancing sensor integration, augmenting reliability,
decreasing costs, and progressing the future of
autonomous systems. Furthermore, continuous
initiatives to mitigate privacy threats via technological
innovations and legal structures will guarantee that
autonomous vehicle systems function in a way that
honours individual privacy while delivering strong
and efficient performance.

Conflicts of Interest
The authors declare no conflicts of interest.

20



IECE Transactions on Sensing, Communication, and Control

Acknowledgement
Thisworkwas supported by Interdisciplinary Research
Centre for Aviation and Space Exploration (IRCASE),
King Fahd University of Petroleum and Minerals
(KFUPM, Kingdom of Saudi Arabia).

References
[1] Banham, M. R., & Katsaggelos, A. K. (1997). Digital

image restoration. IEEE signal processing magazine,
14(2), 24-41. [CrossRef]

[2] Bao, W., Xu, B., & Chen, Z. (2019). Monofenet:
Monocular 3d object detection with feature
enhancement networks. IEEE Transactions on
Image Processing, 29, 2753-2765. [CrossRef]

[3] Barabas, I., Todoruţ, A., Cordoş, N., &Molea, A. (2017,
October). Current challenges in autonomous driving.
In IOP conference series: materials science and engineering
(Vol. 252, No. 1, p. 012096). IOPPublishing. [CrossRef]

[4] Li, J., Yang, B., Chen, C., Huang, R., Dong, Z., &
Xiao, W. (2018). Automatic registration of panoramic
image sequence and mobile laser scanning data using
semantic features. ISPRS Journal of Photogrammetry and
Remote Sensing, 136, 41-57. [CrossRef]

[5] Liao, Y., Li, J., Kang, S., Li, Q., Zhu, G., Yuan, S., ...
& Yang, B. (2023). SE-Calib: Semantic Edge-Based
LiDAR–Camera Boresight Online Calibration inUrban
Scenes. IEEE Transactions on Geoscience and Remote
Sensing, 61, 1-13. [CrossRef]

[6] Wang, J. G., & Zhou, L. B. (2018). Traffic light
recognition with high dynamic range imaging
and deep learning. IEEE Transactions on Intelligent
Transportation Systems, 20(4), 1341-1352. [CrossRef]

[7] Melotti, G., Premebida, C., Gonçalves, N. M. D.
S., Nunes, U. J., & Faria, D. R. (2018, November).
Multimodal CNN pedestrian classification: a study
on combining LIDAR and camera data. In 2018 21st
International Conference on Intelligent Transportation
Systems (ITSC) (pp. 3138-3143). IEEE. [CrossRef]

[8] Wang, K., Ma, S., Ren, F., & Lu, J. (2021). SBAS: Salient
bundle adjustment for visual SLAM. IEEE Transactions
on Instrumentation andMeasurement, 70, 1-9. [CrossRef]

[9] Kurihata, H., Takahashi, T., Ide, I., Mekada, Y.,
Murase, H., Tamatsu, Y., & Miyahara, T. (2005, June).
Rainy weather recognition from in-vehicle camera
images for driver assistance. In IEEE Proceedings.
Intelligent Vehicles Symposium, 2005. (pp. 205-210).
IEEE. [CrossRef]

[10] Webster, D. D., & Breckon, T. P. (2015, September).
Improved raindrop detection using combined shape
and saliency descriptors with scene context isolation.
In 2015 IEEE International Conference on Image
Processing (ICIP) (pp. 4376-4380). IEEE. [CrossRef]

[11] Zhang,W.,Wang, Z., &Change Loy, C.Multi-modality
cut and paste for 3d object detection. arXiv 2020. arXiv
preprint arXiv:2012.12741.

[12] Filgueira, A., González-Jorge, H., Lagüela, S.,
Díaz-Vilariño, L., & Arias, P. (2017). Quantifying the
influence of rain in LiDAR performance. Measurement,
95, 143-148. [CrossRef]

[13] Rasshofer, R. H., Spies, M., & Spies, H. (2011).
Influences of weather phenomena on automotive
laser radar systems. Advances in radio science, 9, 49-60.
[CrossRef]

[14] Abro, G. E. M., Zulkifli, S. A. B., Kumar, K., El
Ouanjli, N., Asirvadam, V. S., & Mossa, M. A. (2023).
Comprehensive review of recent advancements in
battery technology, propulsion, power interfaces, and
vehicle network systems for intelligent autonomous
and connected electric vehicles. Energies, 16(6), 2925.
[CrossRef]

[15] Feng, D., Haase-Schütz, C., Rosenbaum, L., Hertlein,
H., Glaeser, C., Timm, F., ... & Dietmayer, K. (2020).
Deep multi-modal object detection and semantic
segmentation for autonomous driving: Datasets,
methods, and challenges. IEEE Transactions on
Intelligent Transportation Systems, 22(3), 1341-1360.
[CrossRef]

[16] Wei, Z., Zhang, F., Chang, S., Liu, Y., Wu, H., & Feng,
Z. (2022). Mmwave radar and vision fusion for object
detection in autonomous driving: A review. Sensors,
22(7), 2542. [CrossRef]

[17] Svenningsson, P., Fioranelli, F., & Yarovoy, A.
(2021, May). Radar-pointgnn: Graph based object
recognition for unstructured radar point-cloud data.
In 2021 IEEE Radar Conference (RadarConf21) (pp. 1-6).
IEEE. [CrossRef]

[18] Ulrich, M., Braun, S., Köhler, D., Niederlöhner, D.,
Faion, F., Gläser, C., & Blume, H. (2022, October).
Improved orientation estimation and detection with
hybrid object detection networks for automotive radar.
In 2022 IEEE 25th International Conference on Intelligent
Transportation Systems (ITSC) (pp. 111-117). IEEE.
[CrossRef]

[19] Kim, Y., Choi, J. W., & Kum, D. (2020, October).
Grif net: Gated region of interest fusion network for
robust 3d object detection from radar point cloud
and monocular image. In 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (pp.
10857-10864). IEEE. [CrossRef]

[20] Chadwick, S., Maddern, W., & Newman, P. (2019,
May). Distant vehicle detection using radar and
vision. In 2019 International Conference on Robotics and
Automation (ICRA) (pp. 8311-8317). IEEE. [CrossRef]

[21] Nobis, F., Geisslinger, M., Weber, M., Betz, J., &
Lienkamp, M. (2019, October). A deep learning-based
radar and camera sensor fusion architecture for object
detection. In 2019 Sensor Data Fusion: Trends, Solutions,
Applications (SDF) (pp. 1-7). IEEE. [CrossRef]

[22] John, V., & Mita, S. (2019). RVNet: Deep sensor
fusion ofmonocular camera and radar for image-based
obstacle detection in challenging environments. In

21

https://doi.org/10.1109/79.581363
https://doi.org/10.1109/TIP.2019.2952201
https://iopscience.iop.org/article/10.1088/1757-899X/252/1/012096/pdf
https://doi.org/10.1016/j.isprsjprs.2017.12.005
https://doi.org/10.1109/TGRS.2023.3278024
https://doi.org/10.1109/TITS.2018.2849505
https://doi.org/10.1109/ITSC.2018.8569666
https://doi.org/10.1109/TIM.2021.3105243
https://doi.org/10.1109/IVS.2005.1505103
https://doi.org/10.1109/ICIP.2015.7351633
https://doi.org/10.1016/j.measurement.2016.10.009
https://ars.copernicus.org/articles/9/49/2011/
https://doi.org/10.3390/en16062925
https://doi.org/10.1109/TITS.2020.2972974
https://doi.org/10.3390/s22072542
https://doi.org/10.1109/RadarConf2147009.2021.9455172
https://doi.org/10.1109/ITSC55140.2022.9922457
https://doi.org/10.1109/IROS45743.2020.9341177
https://doi.org/10.1109/ICRA.2019.8794312
https://doi.org/10.1109/SDF.2019.8916629


IECE Transactions on Sensing, Communication, and Control

Image and Video Technology: 9th Pacific-Rim Symposium,
PSIVT 2019, Sydney, NSW, Australia, November
18–22, 2019, Proceedings 9 (pp. 351-364). Springer
International Publishing. [CrossRef]

[23] Li, L. Q., & Xie, Y. L. (2020, December). A feature
pyramid fusion detection algorithm based on radar
and camera sensor. In 2020 15th IEEE International
Conference on Signal Processing (ICSP) (Vol. 1, pp.
366-370). IEEE. [CrossRef]

[24] Chang, S., Zhang, Y., Zhang, F., Zhao, X., Huang, S.,
Feng, Z., & Wei, Z. (2020). Spatial attention fusion for
obstacle detection using mmwave radar and vision
sensor. Sensors, 20(4), 956. [CrossRef]

[25] Nabati, R., & Qi, H. (2021). Centerfusion:
Center-based radar and camera fusion for 3d
object detection. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision (pp.
1527-1536). [CrossRef]

[26] Li, Y., Zeng, K., & Shen, T. (2023). CenterTransFuser:
radar point cloud and visual information fusion for
3D object detection. EURASIP Journal on Advances in
Signal Processing, 2023(1), 7. [CrossRef]

[27] Long, Y., Kumar, A., Morris, D., Liu, X., Castro,
M., & Chakravarty, P. (2023, June). RADIANT:
Radar-image association network for 3D object
detection. In Proceedings of the AAAI Conference on
Artificial Intelligence (Vol. 37, No. 2, pp. 1808-1816).
[CrossRef]

[28] Li, P., Zhao, H., Liu, P., & Cao, F. (2020, August).
Rtm3d: Real-time monocular 3d detection from
object keypoints for autonomous driving. In European
Conference on Computer Vision (pp. 644-660). Cham:
Springer International Publishing. [CrossRef]

[29] Zhang, Y., Lu, J., & Zhou, J. (2021). Objects are
different: Flexible monocular 3d object detection. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (pp. 3289-3298).
[CrossRef]

[30] Simonelli, A., Bulo, S. R., Porzi, L., López-Antequera,
M., & Kontschieder, P. (2019). Disentangling
monocular 3d object detection. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(pp. 1991-1999). [CrossRef]

[31] Brazil, G., & Liu, X. (2019). M3d-rpn: Monocular
3d region proposal network for object detection. In
Proceedings of the IEEE/CVF international conference on
computer vision (pp. 9287-9296). [CrossRef]

[32] Cai, Y., Li, B., Jiao, Z., Li, H., Zeng, X., & Wang,
X. (2020, April). Monocular 3d object detection
with decoupled structured polygon estimation and
height-guided depth estimation. In Proceedings of the
AAAI Conference on Artificial Intelligence (Vol. 34, No.
07, pp. 10478-10485). [CrossRef]

[33] Chen, H., Huang, Y., Tian, W., Gao, Z., & Xiong,
L. (2021). Monorun: Monocular 3d object detection
by reconstruction and uncertainty propagation. In

Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (pp. 10379-10388).
[CrossRef]

[34] Chen, Y., Tai, L., Sun, K., & Li, M. (2020). Monopair:
Monocular 3d object detection using pairwise spatial
relationships. InProceedings of the IEEE/CVFConference
on Computer Vision and Pattern Recognition (pp.
12093-12102). [CrossRef]

[35] Heylen, J., De Wolf, M., Dawagne, B., Proesmans, M.,
Van Gool, L., Abbeloos, W., ... & Reino, D. O. (2021).
Monocinis: Camera independent monocular 3d object
detection using instance segmentation. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision (pp. 923-934). [CrossRef]

[36] Liu, Z., Wu, Z., & Tóth, R. (2020). Smoke: Single-stage
monocular 3d object detection via keypoint estimation.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition workshops (pp. 996-997).
[CrossRef]

[37] Liu, L., Lu, J., Xu, C., Tian, Q., & Zhou, J. (2019). Deep
fitting degree scoring network for monocular 3d object
detection. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition (pp. 1057-1066).
[CrossRef]

[38] Luo, S., Dai, H., Shao, L., & Ding, Y. (2021). M3dssd:
Monocular 3d single stage object detector. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition (pp. 6145-6154).
[CrossRef]

[39] Wang, T., Zhu, X., Pang, J., & Lin, D. (2021).
Fcos3d: Fully convolutional one-stage monocular
3d object detection. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (pp.
913-922). [CrossRef]

[40] Lu, Y., Ma, X., Yang, L., Zhang, T., Liu, Y., Chu,
Q., ... & Ouyang, W. (2021). Geometry uncertainty
projection network for monocular 3d object detection.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision (pp. 3111-3121). [CrossRef]

[41] Mousavian, A., Anguelov, D., Flynn, J., & Kosecka,
J. (2017). 3d bounding box estimation using deep
learning and geometry. In Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition
(pp. 7074-7082). [CrossRef]

[42] Brazil, G., Pons-Moll, G., Liu, X., & Schiele, B. (2020).
Kinematic 3d object detection in monocular video. In
Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part
XXIII 16 (pp. 135-152). Springer International
Publishing. [CrossRef]

[43] Simonelli, A., Bulo, S. R., Porzi, L., Ricci, E., &
Kontschieder, P. (2020). Towards generalization across
depth for monocular 3d object detection. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XXII 16
(pp. 767-782). Springer International Publishing.

22

https://link.springer.com/chapter/10.1007/978-3-030-34879-3_27
https://doi.org/10.1109/ICSP48669.2020.9320985
https://doi.org/10.3390/s20040956
https://openaccess.thecvf.com/content/WACV2021/papers/Nabati_CenterFusion_Center-Based_Radar_and_Camera_Fusion_for_3D_Object_Detection_WACV_2021_paper.pdf
https://link.springer.com/article/10.1186/s13634-022-00944-6
https://doi.org/10.1609/aaai.v37i2.25270
https://link.springer.com/chapter/10.1007/978-3-030-58580-8_38
https://openaccess.thecvf.com/content/CVPR2021/papers/Zhang_Objects_Are_Different_Flexible_Monocular_3D_Object_Detection_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2019/papers/Simonelli_Disentangling_Monocular_3D_Object_Detection_ICCV_2019_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2019/papers/Brazil_M3D-RPN_Monocular_3D_Region_Proposal_Network_for_Object_Detection_ICCV_2019_paper.pdf
https://doi.org/10.1609/aaai.v34i07.6618
https://openaccess.thecvf.com/content/CVPR2021/papers/Chen_MonoRUn_Monocular_3D_Object_Detection_by_Reconstruction_and_Uncertainty_Propagation_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Chen_MonoPair_Monocular_3D_Object_Detection_Using_Pairwise_Spatial_Relationships_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content/ICCV2021W/3DODI/papers/Heylen_MonoCInIS_Camera_Independent_Monocular_3D_Object_Detection_Using_Instance_Segmentation_ICCVW_2021_paper.pdf
https://openaccess.thecvf.com/content_CVPRW_2020/papers/w60/Liu_SMOKE_Single-Stage_Monocular_3D_Object_Detection_via_Keypoint_Estimation_CVPRW_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Liu_Deep_Fitting_Degree_Scoring_Network_for_Monocular_3D_Object_Detection_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Luo_M3DSSD_Monocular_3D_Single_Stage_Object_Detector_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content/ICCV2021W/3DODI/papers/Wang_FCOS3D_Fully_Convolutional_One-Stage_Monocular_3D_Object_Detection_ICCVW_2021_paper.pdf
https://openaccess.thecvf.com/content/ICCV2021/papers/Lu_Geometry_Uncertainty_Projection_Network_for_Monocular_3D_Object_Detection_ICCV_2021_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2017/papers/Mousavian_3D_Bounding_Box_CVPR_2017_paper.pdf
https://link.springer.com/chapter/10.1007/978-3-030-58592-1_9


IECE Transactions on Sensing, Communication, and Control

[CrossRef]
[44] Li, B., Ouyang, W., Sheng, L., Zeng, X., & Wang,

X. (2019). Gs3d: An efficient 3d object detection
framework for autonomous driving. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition (pp. 1019-1028). [CrossRef]

[45] Qin, Z., Wang, J., & Lu, Y. (2019, July). Monogrnet: A
geometric reasoning network for monocular 3d object
localization. In Proceedings of the AAAI conference on
artificial intelligence (Vol. 33, No. 01, pp. 8851-8858).
[CrossRef]

[46] Shi, X., Chen, Z., & Kim, T. K. (2020).
Distance-normalized unified representation
for monocular 3d object detection. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XXIX 16 (pp.
91-107). Springer International Publishing. [CrossRef]

[47] Hu, H. N., Cai, Q. Z., Wang, D., Lin, J., Sun, M.,
Krahenbuhl, P., ... & Yu, F. (2019). Joint monocular
3D vehicle detection and tracking. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(pp. 5390-5399). [CrossRef]

[48] Ku, J., Pon, A. D., &Waslander, S. L. (2019).Monocular
3d object detection leveraging accurate proposals and
shape reconstruction. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition (pp.
11867-11876). [CrossRef]

[49] Lian, Q., Ye, B., Xu, R., Yao, W., & Zhang, T. (2022).
Exploring geometric consistency for monocular 3d
object detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(pp. 1685-1694). [CrossRef]

[50] Zeeshan Zia, M., Stark, M., & Schindler, K. (2014).
Are cars just 3d boxes?-jointly estimating the 3d
shape of multiple objects. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(pp. 3678-3685). [CrossRef]

[51] Chabot, F., Chaouch, M., Rabarisoa, J., Teuliere, C.,
& Chateau, T. (2017). Deep manta: A coarse-to-fine
many-task network for joint 2d and 3d vehicle analysis
from monocular image. In Proceedings of the IEEE
conference on computer vision and pattern recognition (pp.
2040-2049). [CrossRef]

[52] He, T., & Soatto, S. (2019, July). Mono3d++:
Monocular 3d vehicle detection with two-scale 3d
hypotheses and task priors. In Proceedings of the AAAI
Conference on Artificial Intelligence (Vol. 33, No. 01, pp.
8409-8416). [CrossRef]

[53] Rogage, K., & Doukari, O. (2024). 3D object
recognition using deep learning for automatically
generating semantic BIM data. Automation in
Construction, 162, 105366. [CrossRef]

[54] Manhardt, F., Kehl, W., & Gaidon, A. (2019).
Roi-10d: Monocular lifting of 2d detection to 6d pose
and metric shape. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition

(pp. 2069-2078). [CrossRef]
[55] Beker, D., Kato, H., Morariu, M. A., Ando,

T., Matsuoka, T., Kehl, W., & Gaidon, A.
(2020). Monocular differentiable rendering for
self-supervised 3d object detection. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XXI 16
(pp. 514-529). Springer International Publishing.
[CrossRef]

[56] Zakharov, S., Kehl, W., Bhargava, A., & Gaidon, A.
(2020). Autolabeling 3d objects with differentiable
rendering of sdf shape priors. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (pp. 12224-12233). [CrossRef]

[57] Jörgensen, E., Zach, C., & Kahl, F. (2019). Monocular
3d object detection and box fitting trained end-to-end
using intersection-over-union loss. arXiv preprint
arXiv:1906.08070. [CrossRef]

[58] Naiden, A., Paunescu, V., Kim, G., Jeon, B., &
Leordeanu, M. (2019, September). Shift r-cnn: Deep
monocular 3d object detection with closed-form
geometric constraints. In 2019 IEEE international
conference on image processing (ICIP) (pp. 61-65). IEEE.
[CrossRef]

[59] Shi, X., Ye, Q., Chen, X., Chen, C., Chen, Z., & Kim,
T. K. (2021). Geometry-based distance decomposition
for monocular 3d object detection. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(pp. 15172-15181). [CrossRef]

[60] Wang, T., Pang, J., & Lin, D. (2022, October).
Monocular 3d object detection with depth from
motion. In European Conference on Computer Vision
(pp. 386-403). Cham: Springer Nature Switzerland.
[CrossRef]

[61] Wang, Y., Chao, W. L., Garg, D., Hariharan,
B., Campbell, M., & Weinberger, K. Q. (2019).
Pseudo-lidar from visual depth estimation: Bridging
the gap in 3d object detection for autonomous
driving. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition (pp. 8445-8453).
[CrossRef]

[62] You, Y., Wang, Y., Chao, W. L., Garg, D., Pleiss,
G., Hariharan, B., ... & Weinberger, K. Q. (2019).
Pseudo-lidar++: Accurate depth for 3d object
detection in autonomous driving. arXiv preprint
arXiv:1906.06310. [CrossRef]

[63] Ding, M., Huo, Y., Yi, H., Wang, Z., Shi, J., Lu, Z., &
Luo, P. (2020). Learning depth-guided convolutions
for monocular 3d object detection. In Proceedings of
the IEEE/CVF Conference on computer vision and pattern
recognition workshops (pp. 1000-1001). [CrossRef]

[64] Weng, X., & Kitani, K. (2019). Monocular 3d object
detectionwith pseudo-lidar point cloud. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision Workshops (pp. 0-0). [CrossRef]

[65] Wang, L., Du, L., Ye, X., Fu, Y., Guo, G., Xue,

23

https://link.springer.com/chapter/10.1007/978-3-030-58542-6_46
https://openaccess.thecvf.com/content_CVPR_2019/papers/Li_GS3D_An_Efficient_3D_Object_Detection_Framework_for_Autonomous_Driving_CVPR_2019_paper.pdf
https://doi.org/10.1609/aaai.v33i01.33018851
https://link.springer.com/chapter/10.1007/978-3-030-58526-6_6
https://openaccess.thecvf.com/content_ICCV_2019/papers/Hu_Joint_Monocular_3D_Vehicle_Detection_and_Tracking_ICCV_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Ku_Monocular_3D_Object_Detection_Leveraging_Accurate_Proposals_and_Shape_Reconstruction_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Lian_Exploring_Geometric_Consistency_for_Monocular_3D_Object_Detection_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2014/papers/Zia_Are_Cars_Just_2014_CVPR_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2017/papers/Chabot_Deep_MANTA_A_CVPR_2017_paper.pdf
https://doi.org/10.1609/aaai.v33i01.33018409
https://doi.org/10.1016/j.autcon.2024.105366
https://openaccess.thecvf.com/content_CVPR_2019/papers/Manhardt_ROI-10D_Monocular_Lifting_of_2D_Detection_to_6D_Pose_and_CVPR_2019_paper.pdf
https://link.springer.com/chapter/10.1007/978-3-030-58589-1_31
https://openaccess.thecvf.com/content_CVPR_2020/papers/Zakharov_Autolabeling_3D_Objects_With_Differentiable_Rendering_of_SDF_Shape_Priors_CVPR_2020_paper.pdf
https://doi.org/10.48550/arXiv.1906.08070
https://doi.org/10.1109/ICIP.2019.8803397
https://openaccess.thecvf.com/content/ICCV2021/papers/Shi_Geometry-Based_Distance_Decomposition_for_Monocular_3D_Object_Detection_ICCV_2021_paper.pdf
https://link.springer.com/chapter/10.1007/978-3-031-20077-9_23
https://openaccess.thecvf.com/content_CVPR_2019/papers/Wang_Pseudo-LiDAR_From_Visual_Depth_Estimation_Bridging_the_Gap_in_3D_CVPR_2019_paper.pdf
https://doi.org/10.48550/arXiv.1906.06310
https://openaccess.thecvf.com/content_CVPRW_2020/papers/w60/Ding_Learning_Depth-Guided_Convolutions_for_Monocular_3D_Object_Detection_CVPRW_2020_paper.pdf
https://openaccess.thecvf.com/content_ICCVW_2019/papers/CVRSUAD/Weng_Monocular_3D_Object_Detection_with_Pseudo-LiDAR_Point_Cloud_ICCVW_2019_paper.pdf


IECE Transactions on Sensing, Communication, and Control

X., ... & Zhang, L. (2021). Depth-conditioned
dynamic message propagation for monocular 3d
object detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(pp. 454-463). [CrossRef]

[66] Ma, X., Wang, Z., Li, H., Zhang, P., Ouyang, W.,
& Fan, X. (2019). Accurate monocular 3d object
detection via color-embedded 3d reconstruction for
autonomous driving. In Proceedings of the IEEE/CVF
international conference on computer vision (pp.
6851-6860). [CrossRef]

[67] Park, D., Ambrus, R., Guizilini, V., Li, J., &
Gaidon, A. (2021). Is pseudo-lidar needed for
monocular 3d object detection?. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(pp. 3142-3152). [CrossRef]

[68] Ma, X., Liu, S., Xia, Z., Zhang, H., Zeng, X., & Ouyang,
W. (2020). Rethinking pseudo-lidar representation. In
Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XIII
16 (pp. 311-327). Springer International Publishing.
[CrossRef]

[69] Chang, J., & Wetzstein, G. (2019). Deep optics for
monocular depth estimation and 3d object detection.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision (pp. 10193-10202). [CrossRef]

[70] Li, P., Chen, X., & Shen, S. (2019). Stereo r-cnn
based 3d object detection for autonomous driving. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (pp. 7644-7652).
[CrossRef]

[71] Sun, J., Chen, L., Xie, Y., Zhang, S., Jiang,
Q., Zhou, X., & Bao, H. (2020). Disp r-cnn:
Stereo 3d object detection via shape prior guided
instance disparity estimation. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition (pp. 10548-10557). [CrossRef]

[72] Liu, Y., Wang, L., & Liu, M. (2021, May). Yolostereo3d:
A step back to 2d for efficient stereo 3d detection.
In 2021 IEEE international conference on Robotics
and automation (ICRA) (pp. 13018-13024). IEEE.
[CrossRef]

[73] Qin, Z., Wang, J., & Lu, Y. (2019). Triangulation
learning network: from monocular to stereo 3d object
detection. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition (pp. 7615-7623).
[CrossRef]

[74] Chen, Y., Liu, S., Shen, X., & Jia, J. (2020). Dsgn:
Deep stereo geometry network for 3d object detection.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition (pp. 12536-12545).
[CrossRef]

[75] Guo, X., Shi, S., Wang, X., & Li, H. (2021). Liga-stereo:
Learning lidar geometry aware representations
for stereo-based 3d detector. In Proceedings of the
IEEE/CVF international conference on computer vision

(pp. 3153-3163). [CrossRef]
[76] Guo, X., Wang, S. S. X., & Li, H. Supplementary

Materials of LIGA-Stereo: Learning LiDAR Geometry
Aware Representations for Stereo-based 3D Detector.
[CrossRef]

[77] Su, K., Yan, W., Wei, X., & Gu, M. (2022). Stereo
VoVNet-CNN for 3D object detection.Multimedia Tools
and Applications, 81(25), 35803-35813. [CrossRef]

[78] Xu, Z., Zhang, W., Ye, X., Tan, X., Yang, W., Wen, S.,
... & Huang, L. (2020, April). Zoomnet: Part-aware
adaptive zooming neural network for 3d object
detection. In Proceedings of the AAAI Conference on
Artificial Intelligence (Vol. 34, No. 07, pp. 12557-12564).
[CrossRef]

[79] Shi, Y., Guo, Y., Mi, Z., & Li, X. (2022). Stereo
CenterNet-based 3D object detection for autonomous
driving. Neurocomputing, 471, 219-229. [CrossRef]

[80] Chen, L., Sun, J., Xie, Y., Zhang, S., Shuai, Q., Jiang, Q.,
... & Zhou, X. (2021). Shape prior guided instance
disparity estimation for 3d object detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
44(9), 5529-5540. [CrossRef]

[81] Peng, W., Pan, H., Liu, H., & Sun, Y. (2020). Ida-3d:
Instance-depth-aware 3d object detection from stereo
vision for autonomous driving. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition (pp. 13015-13024). [CrossRef]

[82] Peng, X., Zhu, X., Wang, T., & Ma, Y. (2022). Side:
Center-based stereo 3d detector with structure-aware
instance depth estimation. In Proceedings of the
IEEE/CVF winter conference on applications of computer
vision (pp. 119-128). [CrossRef]

[83] Qian, R., Garg, D., Wang, Y., You, Y., Belongie,
S., Hariharan, B., ... & Chao, W. L. (2020).
End-to-end pseudo-lidar for image-based 3d object
detection. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition (pp. 5881-5890).
[CrossRef]

[84] Liu, Y., Yixuan, Y., & Liu, M. (2021). Ground-aware
monocular 3d object detection for autonomous driving.
IEEE Robotics and Automation Letters, 6(2), 919-926.
[CrossRef]

[85] Peng, L., Liu, F., Yu, Z., Yan, S., Deng, D., Yang, Z., ...
& Cai, D. (2022, October). Lidar point cloud guided
monocular 3d object detection. In European conference
on computer vision (pp. 123-139). Cham: Springer
Nature Switzerland. [CrossRef]

[86] Wang, X., Yin, W., Kong, T., Jiang, Y., Li, L., & Shen, C.
(2020, April). Task-aware monocular depth estimation
for 3d object detection. In Proceedings of the AAAI
Conference on Artificial Intelligence (Vol. 34, No. 07, pp.
12257-12264). [CrossRef]

[87] Ye, X., Du, L., Shi, Y., Li, Y., Tan, X., Feng, J., ... & Wen,
S. (2020). Monocular 3d object detection via feature
domain adaptation. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28,

24

https://openaccess.thecvf.com/content/CVPR2021/papers/Wang_Depth-Conditioned_Dynamic_Message_Propagation_for_Monocular_3D_Object_Detection_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2019/papers/Ma_Accurate_Monocular_3D_Object_Detection_via_Color-Embedded_3D_Reconstruction_for_ICCV_2019_paper.pdf
https://openaccess.thecvf.com/content/ICCV2021/papers/Park_Is_Pseudo-Lidar_Needed_for_Monocular_3D_Object_Detection_ICCV_2021_paper.pdf
https://link.springer.com/chapter/10.1007/978-3-030-58601-0_19
https://openaccess.thecvf.com/content_ICCV_2019/papers/Chang_Deep_Optics_for_Monocular_Depth_Estimation_and_3D_Object_Detection_ICCV_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Li_Stereo_R-CNN_Based_3D_Object_Detection_for_Autonomous_Driving_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Sun_Disp_R-CNN_Stereo_3D_Object_Detection_via_Shape_Prior_Guided_CVPR_2020_paper.pdf
https://doi.org/10.1109/ICRA48506.2021.9561423
https://openaccess.thecvf.com/content_CVPR_2019/papers/Qin_Triangulation_Learning_Network_From_Monocular_to_Stereo_3D_Object_Detection_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Chen_DSGN_Deep_Stereo_Geometry_Network_for_3D_Object_Detection_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content/ICCV2021/papers/Guo_LIGA-Stereo_Learning_LiDAR_Geometry_Aware_Representations_for_Stereo-Based_3D_Detector_ICCV_2021_paper.pdf
https://openaccess.thecvf.com/content/ICCV2021/supplemental/Guo_LIGA-Stereo_Learning_LiDAR_ICCV_2021_supplemental.pdf
https://link.springer.com/article/10.1007/s11042-021-11506-7
https://doi.org/10.1609/aaai.v34i07.6945
https://doi.org/10.1016/j.neucom.2021.11.048
https://doi.org/10.1109/TPAMI.2022.3206148
https://openaccess.thecvf.com/content_CVPR_2020/papers/Peng_IDA-3D_Instance-Depth-Aware_3D_Object_Detection_From_Stereo_Vision_for_Autonomous_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content/WACV2022/papers/Peng_SIDE_Center-Based_Stereo_3D_Detector_With_Structure-Aware_Instance_Depth_Estimation_WACV_2022_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Qian_End-to-End_Pseudo-LiDAR_for_Image-Based_3D_Object_Detection_CVPR_2020_paper.pdf
https://doi.org/10.1109/LRA.2021.3052442
https://link.springer.com/chapter/10.1007/978-3-031-19769-7_8
https://doi.org/10.1609/aaai.v34i07.6908


IECE Transactions on Sensing, Communication, and Control

2020, Proceedings, Part IX 16 (pp. 17-34). Springer
International Publishing. [CrossRef]

[88] Wang, L., Zhang, L., Zhu, Y., Zhang, Z., He, T., Li, M.,
& Xue, X. (2021). Progressive coordinate transforms
for monocular 3d object detection. Advances in
Neural Information Processing Systems, 34, 13364-13377.
[CrossRef]

[89] Meng, H., Li, C., Chen, G., & Chen, L. (2023).
Efficient 3D Object Detection Based on Pseudo-LiDAR
Representation. IEEE Transactions on Intelligent Vehicles.
[CrossRef]

[90] Tao, C., Cao, C., Cheng, H., Gao, Z., Luo, X.,
Zhang, Z., & Zheng, S. (2023). An efficient 3D object
detection method based on fast guided anchor stereo
RCNN. Advanced Engineering Informatics, 57, 102069.
[CrossRef]

[91] Xia, Y., Shi, L., Ding, Z., Henriques, J. F., & Cremers,
D. (2024). Text2loc: 3d point cloud localization from
natural language. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(pp. 14958-14967). [CrossRef]

[92] Königshof, H., Salscheider, N. O., & Stiller, C.
(2019, October). Realtime 3d object detection for
automated driving using stereo vision and semantic
information. In 2019 IEEE Intelligent Transportation
Systems Conference (ITSC) (pp. 1405-1410). IEEE.
[CrossRef]

[93] Tao, C., He, H., Xu, F., & Cao, J. (2021). Stereo
priori RCNN based car detection on point level for
autonomous driving. Knowledge-Based Systems, 229,
107346. [CrossRef]

[94] Chen, X., Ma, H., Wan, J., Li, B., & Xia, T.
(2017). Multi-view 3d object detection network for
autonomous driving. In Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition
(pp. 1907-1915). [CrossRef]

[95] Zhou, Y., Sun, P., Zhang, Y., Anguelov, D., Gao,
J., Ouyang, T., ... & Vasudevan, V. (2020, May).
End-to-end multi-view fusion for 3d object detection
in lidar point clouds. In Conference on Robot Learning
(pp. 923-932). PMLR. [CrossRef]

[96] Rubino, C., Crocco, M., & Del Bue, A. (2017). 3d object
localisation from multi-view image detections. IEEE
transactions on pattern analysis and machine intelligence,
40(6), 1281-1294. [CrossRef]

[97] Yang, Z., & Wang, L. (2019). Learning relationships
for multi-view 3D object recognition. In Proceedings of
the IEEE/CVF international conference on computer vision
(pp. 7505-7514). [CrossRef]

[98] Wang, C., Pelillo, M., & Siddiqi, K. (2019). Dominant
set clustering and pooling for multi-view 3d
object recognition. arXiv preprint arXiv:1906.01592.
[CrossRef]

[99] Deng, J., & Czarnecki, K. (2019, October). MLOD:
A multi-view 3D object detection based on robust
feature fusion method. In 2019 IEEE intelligent

transportation systems conference (ITSC) (pp. 279-284).
IEEE. [CrossRef]

[100] Choy, C. B., Xu, D., Gwak, J., Chen, K., &
Savarese, S. (2016). 3d-r2n2: A unified approach for
single and multi-view 3d object reconstruction. In
Computer Vision–ECCV 2016: 14th European Conference,
Amsterdam, The Netherlands, October 11-14, 2016,
Proceedings, Part VIII 14 (pp. 628-644). Springer
International Publishing. [CrossRef]

[101] Ku, J., Pon, A. D., Walsh, S., & Waslander, S. L.
(2019, November). Improving 3d object detection
for pedestrians with virtual multi-view synthesis
orientation estimation. In 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (pp.
3459-3466). IEEE. [CrossRef]

[102] Hong, C., Yu, J., You, J., Chen, X., & Tao, D. (2015).
Multi-view ensemble manifold regularization for 3D
object recognition. Information sciences, 320, 395-405.
[CrossRef]

[103] Philion, J., & Fidler, S. (2020). Lift, splat, shoot:
Encoding images from arbitrary camera rigs
by implicitly unprojecting to 3d. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XIV 16
(pp. 194-210). Springer International Publishing.
[CrossRef]

[104] Wang, Y., Guizilini, V. C., Zhang, T., Wang, Y., Zhao,
H., & Solomon, J. (2022, January). Detr3d: 3d object
detection frommulti-view images via 3d-to-2d queries.
In Conference on Robot Learning (pp. 180-191). PMLR.
[CrossRef]

[105] Lin, J., Rickert, M., & Knoll, A. (2021, May).
Deep hierarchical rotation invariance learning with
exact geometry feature representation for point cloud
classification. In 2021 IEEE international conference
on robotics and automation (ICRA) (pp. 9529-9535).
IEEE. [CrossRef]

[106] Zhang, K., Hao, M., Wang, J., Chen, X., Leng, Y.,
de Silva, C. W., & Fu, C. (2021, November). Linked
dynamic graph cnn: Learning through point cloud by
linking hierarchical features. In 2021 27th international
conference on mechatronics and machine vision in practice
(M2VIP) (pp. 7-12). IEEE. [CrossRef]

[107] Zhang, J., Liu, J., Liu, X., Wei, J., Cao, J., & Tang, K.
(2021). Feature interpolation convolution for point
cloud analysis. Computers & Graphics, 99, 182-191.
[CrossRef]

[108] Shi, S., Wang, X., & Li, H. (2019). Pointrcnn: 3d object
proposal generation and detection from point cloud.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition (pp. 770-779). [CrossRef]

[109] Liu, Z., Tang, H., Lin, Y., &Han, S. (2019). Point-voxel
cnn for efficient 3d deep learning. Advances in neural
information processing systems, 32. [CrossRef]

[110] Chen, C., Chen, Z., Zhang, J., & Tao, D. (2022,
June). Sasa: Semantics-augmented set abstraction for

25

https://link.springer.com/chapter/10.1007/978-3-030-58545-7_2
https://proceedings.neurips.cc/paper/2021/hash/6f3ef77ac0e3619e98159e9b6febf557-Abstract.html
https://doi.org/10.1109/TIV.2023.3319985
https://doi.org/10.1016/j.aei.2023.102069
https://openaccess.thecvf.com/content/CVPR2024/papers/Xia_Text2Loc_3D_Point_Cloud_Localization_from_Natural_Language_CVPR_2024_paper.pdf
https://doi.org/10.1109/ITSC.2019.8917330
https://doi.org/10.1016/j.knosys.2021.107346
https://openaccess.thecvf.com/content_cvpr_2017/papers/Chen_Multi-View_3D_Object_CVPR_2017_paper.pdf
http://proceedings.mlr.press/v100/zhou20a/zhou20a.pdf
https://doi.org/10.1109/TPAMI.2017.2701373
https://openaccess.thecvf.com/content_ICCV_2019/papers/Yang_Learning_Relationships_for_Multi-View_3D_Object_Recognition_ICCV_2019_paper.pdf
https://doi.org/10.48550/arXiv.1906.01592
https://doi.org/10.1109/ITSC.2019.8917126
https://link.springer.com/chapter/10.1007/978-3-319-46484-8_38
https://doi.org/10.1109/IROS40897.2019.8968242
https://doi.org/10.1016/j.ins.2015.03.032
https://link.springer.com/chapter/10.1007/978-3-030-58568-6_12
https://proceedings.mlr.press/v164/wang22b/wang22b.pdf
https://doi.org/10.1109/ICRA48506.2021.9561307
https://doi.org/10.1109/M2VIP49856.2021.9665104
https://doi.org/10.1016/j.cag.2021.06.015
https://openaccess.thecvf.com/content_CVPR_2019/papers/Shi_PointRCNN_3D_Object_Proposal_Generation_and_Detection_From_Point_Cloud_CVPR_2019_paper.pdf
https://proceedings.neurips.cc/paper/2019/hash/5737034557ef5b8c02c0e46513b98f90-Abstract.html


IECE Transactions on Sensing, Communication, and Control

point-based 3d object detection. In Proceedings of the
AAAI Conference on Artificial Intelligence (Vol. 36, No.
1, pp. 221-229). [CrossRef]

[111] Ngiam, J., Caine, B., Han, W., Yang, B., Chai, Y.,
Sun, P., ... & Vasudevan, V. (2019). Starnet: Targeted
computation for object detection in point clouds. arXiv
preprint arXiv:1908.11069. [CrossRef]

[112] Yang, Z., Sun, Y., Liu, S., & Jia, J. (2020).
3dssd: Point-based 3d single stage object detector.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition (pp. 11040-11048).
[CrossRef]

[113] Yang, H., Liu, Z., Wu, X., Wang, W., Qian, W., He,
X., & Cai, D. (2022, October). Graph r-cnn: Towards
accurate 3d object detection with semantic-decorated
local graph. In European Conference on Computer Vision
(pp. 662-679). Cham: Springer Nature Switzerland.
[CrossRef]

[114] NShi, W., & Rajkumar, R. (2020). Point-gnn: Graph
neural network for 3d object detection in a point
cloud. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition (pp. 1711-1719).
[CrossRef]

[115] Zhou, D., Fang, J., Song, X., Liu, L., Yin, J.,
Dai, Y., ... & Yang, R. (2020). Joint 3d instance
segmentation and object detection for autonomous
driving. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (pp.
1839-1849). [CrossRef]

[116] He, Q., Wang, Z., Zeng, H., Zeng, Y., & Liu, Y.
(2022, June). Svga-net: Sparse voxel-graph attention
network for 3d object detection from point clouds.
In Proceedings of the AAAI Conference on Artificial
Intelligence (Vol. 36, No. 1, pp. 870-878). [CrossRef]

[117] Zarzar, J., Giancola, S., & Ghanem, B. (2019).
PointRGCN: Graph convolution networks for
3D vehicles detection refinement. arXiv preprint
arXiv:1911.12236. [CrossRef]

[118] Feng, M., Gilani, S. Z., Wang, Y., Zhang, L., &Mian, A.
(2020). Relation graph network for 3D object detection
in point clouds. IEEE Transactions on Image Processing,
30, 92-107. [CrossRef]

[119] Pan, X., Xia, Z., Song, S., Li, L. E., & Huang, G. (2021).
3d object detection with pointformer. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition (pp. 7463-7472). [CrossRef]

[120] Liu, Z., Zhang, Z., Cao, Y., Hu, H., & Tong, X. (2021).
Group-free 3d object detection via transformers. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (pp. 2949-2958). [CrossRef]

[121] Fayyad, J., Jaradat, M. A., Gruyer, D., & Najjaran, H.
(2020). Deep learning sensor fusion for autonomous
vehicle perception and localization: A review. Sensors,
20(15), 4220. [CrossRef]

[122] Wang, Q., Chen, J., Deng, J., & Zhang, X. (2021).
3D-CenterNet: 3D object detection network for

point clouds with center estimation priority. Pattern
Recognition, 115, 107884. [CrossRef]

[123] Wang, D. Z., & Posner, I. (2015, July). Voting for
voting in online point cloud object detection. In
Robotics: science and systems (Vol. 1, No. 3, pp. 10-15).
[CrossRef]

[124] Engelcke, M., Rao, D., Wang, D. Z., Tong, C.
H., & Posner, I. (2017, May). Vote3deep: Fast
object detection in 3d point clouds using efficient
convolutional neural networks. In 2017 IEEE
International Conference on Robotics and Automation
(ICRA) (pp. 1355-1361). IEEE. [CrossRef]

[125] Cui, Y., Zhang, Y., Dong, J., Sun, H., Chen, X., & Zhu,
F. (2024). Link3d: Linear keypoints representation
for 3d lidar point cloud. IEEE Robotics and Automation
Letters. [CrossRef]

[126] Bai, L., Li, Y., Cen, M., & Hu, F. (2021). 3D
instance segmentation and object detection framework
based on the fusion of LIDAR remote sensing and
optical image sensing. Remote Sensing, 13(16), 3288.
[CrossRef]

[127] Wang, B., Zhu, M., Lu, Y., Wang, J., Gao, W., & Wei,
H. (2021). Real-time 3D object detection from point
cloud through foreground segmentation. IEEE Access,
9, 84886-84898. [CrossRef]

[128] Yang, B., Liang, M., & Urtasun, R. (2018, October).
Hdnet: Exploiting hd maps for 3d object detection.
In Conference on Robot Learning (pp. 146-155). PMLR.
[CrossRef]

[129] Zhou, Y., & Tuzel, O. (2018). Voxelnet: End-to-end
learning for point cloud based 3d object detection. In
Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 4490-4499). [CrossRef]

[130] Yan, Y., Mao, Y., & Li, B. (2018). Second: Sparsely
embedded convolutional detection. Sensors, 18(10),
3337. [CrossRef]

[131] Lang, A. H., Vora, S., Caesar, H., Zhou, L., Yang, J.,
& Beijbom, O. (2019). Pointpillars: Fast encoders for
object detection from point clouds. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition (pp. 12697-12705). [CrossRef]

[132] Wang, Y., Fathi, A., Kundu, A., Ross, D. A., Pantofaru,
C., Funkhouser, T., & Solomon, J. (2020). Pillar-based
object detection for autonomous driving. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XXII 16 (pp.
18-34). Springer International Publishing. [CrossRef]

[133] Shi, S., Wang, Z., Shi, J., Wang, X., & Li, H.
(2020). From points to parts: 3d object detection from
point cloud with part-aware and part-aggregation
network. IEEE transactions on pattern analysis and
machine intelligence, 43(8), 2647-2664. [CrossRef]

[134] Li, B. (2017, September). 3d fully convolutional
network for vehicle detection in point cloud. In 2017
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS) (pp. 1513-1518). IEEE. [CrossRef]

26

https://doi.org/10.1609/aaai.v36i1.19897
https://doi.org/10.1109/CVPR46437.2021.01437
https://openaccess.thecvf.com/content_CVPR_2020/papers/Yang_3DSSD_Point-Based_3D_Single_Stage_Object_Detector_CVPR_2020_paper.pdf
https://link.springer.com/chapter/10.1007/978-3-031-20074-8_38
https://openaccess.thecvf.com/content_CVPR_2020/papers/Shi_Point-GNN_Graph_Neural_Network_for_3D_Object_Detection_in_a_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Zhou_Joint_3D_Instance_Segmentation_and_Object_Detection_for_Autonomous_Driving_CVPR_2020_paper.pdf
https://doi.org/10.1609/aaai.v36i1.19969
https://doi.org/10.48550/arXiv.1911.12236
https://doi.org/10.1109/TIP.2020.3031371
https://openaccess.thecvf.com/content/CVPR2021/papers/Pan_3D_Object_Detection_With_Pointformer_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content/ICCV2021/papers/Liu_Group-Free_3D_Object_Detection_via_Transformers_ICCV_2021_paper.pdf
https://doi.org/10.3390/s20154220
https://doi.org/10.1016/j.patcog.2021.107884
https://roboticsproceedings.org/rss11/p35.pdf
https://doi.org/10.1109/ICRA.2017.7989161
https://doi.org/10.1109/LRA.2024.3354550
https://doi.org/10.3390/rs13163288
https://doi.org/10.1109/ACCESS.2021.3087179
http://proceedings.mlr.press/v87/yang18b/yang18b.pdf
https://doi.org/10.1109/CVPR46437.2021.01437
https://doi.org/10.3390/s18103337
https://openaccess.thecvf.com/content_CVPR_2019/papers/Lang_PointPillars_Fast_Encoders_for_Object_Detection_From_Point_Clouds_CVPR_2019_paper.pdf
https://link.springer.com/chapter/10.1007/978-3-030-58542-6_2
https://doi.org/10.1109/TPAMI.2020.2977026
https://doi.org/10.1109/IROS.2017.8205955


IECE Transactions on Sensing, Communication, and Control

[135] Yin, T., Zhou, X., & Krahenbuhl, P. (2021).
Center-based 3d object detection and tracking. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition (pp. 11784-11793).
[CrossRef]

[136] Mao, J., Xue, Y., Niu, M., Bai, H., Feng, J., Liang,
X., ... & Xu, C. (2021). Voxel transformer for 3d
object detection. In Proceedings of the IEEE/CVF
international conference on computer vision (pp.
3164-3173). [CrossRef]

[137] Deng, J., Shi, S., Li, P., Zhou, W., Zhang, Y., & Li, H.
(2021, May). Voxel r-cnn: Towards high performance
voxel-based 3d object detection. In Proceedings of the
AAAI conference on artificial intelligence (Vol. 35, No. 2,
pp. 1201-1209). [CrossRef]

[138] Song, Z., Wei, H., Jia, C., Xia, Y., Li, X., & Zhang,
C. (2023). VP-Net: Voxels as points for 3-D object
detection. IEEE Transactions on Geoscience and Remote
Sensing, 61, 1-12. [CrossRef]

[139] Wang, H., Chen, Z., Cai, Y., Chen, L., Li, Y., Sotelo,
M. A., & Li, Z. (2022). Voxel-RCNN-complex: An
effective 3-D point cloud object detector for complex
traffic conditions. IEEE Transactions on Instrumentation
and Measurement, 71, 1-12. [CrossRef]

[140] Sheng, H., Cai, S., Liu, Y., Deng, B., Huang, J., Hua, X.
S., & Zhao, M. J. (2021). Improving 3d object detection
with channel-wise transformer. In Proceedings of the
IEEE/CVF international conference on computer vision
(pp. 2743-2752). [CrossRef]

[141] Li, J., Dai, H., Shao, L., & Ding, Y. (2021, October).
From voxel to point: IoU-guided 3D object detection
for point cloud with voxel-to-point decoder. In
Proceedings of the 29th ACM International Conference on
Multimedia (pp. 4622-4631). [CrossRef]

[142] Miao, Z., Chen, J., Pan, H., Zhang, R., Liu, K., Hao, P.,
... & Zhan, X. (2021). Pvgnet: A bottom-up one-stage
3d object detector with integrated multi-level features.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (pp. 3279-3288).
[CrossRef]

[143] Noh, J., Lee, S., & Ham, B. (2021). Hvpr:
Hybrid voxel-point representation for single-stage
3d object detection. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition (pp.
14605-14614). [CrossRef]

[144] Guan, T., Wang, J., Lan, S., Chandra, R., Wu,
Z., Davis, L., & Manocha, D. (2022). M3detr:
Multi-representation, multi-scale, mutual-relation 3d
object detection with transformers. In Proceedings of the
IEEE/CVF winter conference on applications of computer
vision (pp. 772-782). [CrossRef]

[145] Mao, J., Niu, M., Bai, H., Liang, X., Xu, H., & Xu, C.
(2021). Pyramid r-cnn: Towards better performance
and adaptability for 3d object detection. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision (pp. 2723-2732). [CrossRef]

[146] Liu, Z., Tang, H., Zhao, S., Shao, K., & Han, S. (2021).
Pvnas: 3d neural architecture search with point-voxel
convolution. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 44(11), 8552-8568. [CrossRef]

[147] Li, P., Su, S., & Zhao, H. (2021, May).
Rts3d: Real-time stereo 3d detection from 4d
feature-consistency embedding space for autonomous
driving. In Proceedings of the AAAI Conference on
Artificial Intelligence (Vol. 35, No. 3, pp. 1930-1939).
[CrossRef]

[148] Zhang, R., Qiu, H., Wang, T., Guo, Z., Cui, Z., Qiao,
Y., ... & Gao, P. (2023). MonoDETR: Depth-guided
transformer for monocular 3D object detection. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision (pp. 9155-9166). [CrossRef]

[149] Lu, B., Sun, Y., & Yang, Z. (2023). Voxel Graph
Attention for 3D Object Detection from Point Clouds.
IEEE Transactions on Instrumentation and Measurement.
[CrossRef]

[150] Deng, J., Zhou, W., Zhang, Y., & Li, H. (2021). From
multi-view to hollow-3D: Hallucinated hollow-3D
R-CNN for 3D object detection. IEEE Transactions
on Circuits and Systems for Video Technology, 31(12),
4722-4734. [CrossRef]

[151] Zhang, Y., Chen, J., & Huang, D. (2022). Cat-det:
Contrastively augmented transformer formulti-modal
3d object detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(pp. 908-917). [CrossRef]

[152] Shi, S., Jiang, L., Deng, J., Wang, Z., Guo, C., Shi, J.,
... & Li, H. (2023). PV-RCNN++: Point-voxel feature
set abstraction with local vector representation for 3D
object detection. International Journal of Computer Vision,
131(2), 531-551. [CrossRef]

[153] Wu, P., Gu, L., Yan, X., Xie, H., Wang, F. L., Cheng,
G., & Wei, M. (2023). PV-RCNN++: semantical
point-voxel feature interaction for 3D object detection.
The Visual Computer, 39(6), 2425-2440. [CrossRef]

[154] Tu, J., Wang, P., & Liu, F. (2021, July). Pp-rcnn:
Point-pillars feature set abstraction for 3d real-time
object detection. In 2021 International Joint Conference on
Neural Networks (IJCNN) (pp. 1-8). IEEE. [CrossRef]

[155] Li, J., Luo, C., & Yang, X. (2023). PillarNeXt:
Rethinking network designs for 3D object detection
in LiDAR point clouds. In Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition (pp. 17567-17576). [CrossRef]

[156] Hu, J. S., Kuai, T., & Waslander, S. L. (2022).
Point density-aware voxels for lidar 3d object
detection. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition (pp. 8469-8478).
[CrossRef]

[157] Geng, K., Dong, G., Yin, G., & Hu, J. (2020).
Deep dual-modal traffic objects instance segmentation
method using camera and lidar data for autonomous
driving. Remote Sensing, 12(20), 3274. [CrossRef]

27

https://openaccess.thecvf.com/content/CVPR2021/papers/Yin_Center-Based_3D_Object_Detection_and_Tracking_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content/ICCV2021/papers/Mao_Voxel_Transformer_for_3D_Object_Detection_ICCV_2021_paper.pdf
https://doi.org/10.1609/aaai.v35i2.16207
https://doi.org/10.1109/TGRS.2023.3271020
https://doi.org/10.1109/TIM.2022.3165251
https://openaccess.thecvf.com/content/ICCV2021/papers/Sheng_Improving_3D_Object_Detection_With_Channel-Wise_Transformer_ICCV_2021_paper.pdf
https://doi.org/10.1145/3474085.3475314
https://openaccess.thecvf.com/content/CVPR2021/papers/Miao_PVGNet_A_Bottom-Up_One-Stage_3D_Object_Detector_With_Integrated_Multi-Level_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Noh_HVPR_Hybrid_Voxel-Point_Representation_for_Single-Stage_3D_Object_Detection_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content/WACV2022/papers/Guan_M3DETR_Multi-Representation_Multi-Scale_Mutual-Relation_3D_Object_Detection_With_Transformers_WACV_2022_paper.pdf
https://openaccess.thecvf.com/content/ICCV2021/papers/Mao_Pyramid_R-CNN_Towards_Better_Performance_and_Adaptability_for_3D_Object_ICCV_2021_paper.pdf
https://doi.org/10.1109/TPAMI.2021.3109025
https://doi.org/10.1609/aaai.v35i3.16288
https://openaccess.thecvf.com/content/ICCV2023/papers/Zhang_MonoDETR_Depth-guided_Transformer_for_Monocular_3D_Object_Detection_ICCV_2023_paper.pdf
https://doi.org/10.1109/TIM.2023.3301907
https://doi.org/10.1109/TCSVT.2021.3100848
https://openaccess.thecvf.com/content/CVPR2022/papers/Zhang_CAT-Det_Contrastively_Augmented_Transformer_for_Multi-Modal_3D_Object_Detection_CVPR_2022_paper.pdf
https://link.springer.com/article/10.1007/s11263-022-01710-9
https://link.springer.com/article/10.1007/s00371-022-02672-2
https://doi.org/10.1109/IJCNN52387.2021.9534098
https://openaccess.thecvf.com/content/CVPR2023/papers/Li_PillarNeXt_Rethinking_Network_Designs_for_3D_Object_Detection_in_LiDAR_CVPR_2023_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Hu_Point_Density-Aware_Voxels_for_LiDAR_3D_Object_Detection_CVPR_2022_paper.pdf
https://doi.org/10.3390/rs12203274


IECE Transactions on Sensing, Communication, and Control

[158] Ignatious, H. A., & Khan, M. (2022). An overview
of sensors in Autonomous Vehicles. Procedia Computer
Science, 198, 736-741. [CrossRef]

[159] Vargas, J., Alsweiss, S., Toker, O., Razdan, R., &
Santos, J. (2021). An overview of autonomous vehicles
sensors and their vulnerability to weather conditions.
Sensors, 21(16), 5397. [CrossRef]

[160] Cartenì, A. (2020). The acceptability value of
autonomous vehicles: A quantitative analysis of the
willingness to pay for shared autonomous vehicles
(SAVs) mobility services. Transportation Research
Interdisciplinary Perspectives, 8, 100224. [CrossRef]

[161] Sakib, S. M. (2022). LiDAR Technology-An Overview.
IUP Journal of Electrical & Electronics Engineering, 15(1).

[162] Bastos, D., Monteiro, P. P., Oliveira, A. S., &
Drummond, M. V. (2021, February). An overview of
LiDAR requirements and techniques for autonomous
driving. In 2021 Telecoms Conference (ConfTELE) (pp.
1-6). IEEE. [CrossRef]

[163] Royo, S., & Ballesta, M. (2019). An overview
of imaging lidar sensors for autonomous vehicles.
[CrossRef]

[164] Thomä, R., Dallmann, T., Jovanoska, S., Knott, P.,
& Schmeink, A. (2021, March). Joint communication
and radar sensing: An overview. In 2021 15th European
Conference on Antennas and Propagation (EuCAP) (pp.
1-5). IEEE. [CrossRef]

[165] Paterniani, G., Sgreccia, D., Davoli, A., Guerzoni, G.,
Di Viesti, P., Valenti, A. C., ... & Boriani, G. (2023).
Radar-based monitoring of vital signs: A tutorial
overview. Proceedings of the IEEE, 111(3), 277-317.
[CrossRef]

[166] Mielle, M., Magnusson, M., & Lilienthal, A. J. (2019,
September). A comparative analysis of radar and lidar
sensing for localization andmapping. In 2019 European
Conference on Mobile Robots (ECMR) (pp. 1-6). IEEE.
[CrossRef]

[167] Kim, K. E., Lee, C. J., Pae, D. S., & Lim, M. T.
(2017, October). Sensor fusion for vehicle tracking
with camera and radar sensor. In 2017 17th International
Conference on Control, Automation and Systems (ICCAS)
(pp. 1075-1077). IEEE. [CrossRef]

[168] Abro, G. E. M., Abdullahi, M. S., Ganasan, J., & Ricky,
S. K. (2021). Prototyping an IoT-enabled Autonomous
Unmanned Ground Vehicle Using SLAM. International
Journal of Control Systems and Robotics, 6. [CrossRef]

[169] Pravallika, A., Hashmi, M. F., & Gupta, A. (2024).
Deep Learning Frontiers in 3D Object Detection: A
Comprehensive Review for Autonomous Driving.
IEEE Access. [CrossRef]

[170] Berrio, J. S., Shan, M., Worrall, S., & Nebot, E.
(2021). Camera-LIDAR integration: Probabilistic
sensor fusion for semantic mapping. IEEE Transactions
on Intelligent Transportation Systems, 23(7), 7637-7652.
[CrossRef]

[171] Khan, D., Baek, M., Kim, M. Y., & Han, D. S.
(2022, October). Multimodal Object Detection and
Ranging Based on Camera and Lidar Sensor Fusion
for Autonomous Driving. In 2022 27th Asia Pacific
Conference on Communications (APCC) (pp. 342-343).
IEEE. [CrossRef]

[172] Das, D., Adhikary, N., & Chaudhury, S. (2022,
September). Sensor fusion in autonomous vehicle
using LiDAR and camera Sensor. In 2022 IEEE
10th Region 10 Humanitarian Technology Conference
(R10-HTC) (pp. 336-341). IEEE. [CrossRef]

[173] Mendez, J., Molina, M., Rodriguez, N., Cuellar, M. P.,
& Morales, D. P. (2021). Camera-LiDAR multi-level
sensor fusion for target detection at the network edge.
Sensors, 21(12), 3992. [CrossRef]

[174] Thakur, A., & Rajalakshmi, P. (2023, July). LiDAR
and Camera Raw Data Sensor Fusion in Real-Time for
Obstacle Detection. In 2023 IEEE Sensors Applications
Symposium (SAS) (pp. 1-6). IEEE. [CrossRef]

[175] Ai, C., Qi, Z., Zheng, L., Geng, D., Feng, Z., & Sun, X.
(2021, March). Research on mapping method based
on data fusion of lidar and depth camera. In 2021 4th
International Conference on Advanced ElectronicMaterials,
Computers and Software Engineering (AEMCSE) (pp.
360-365). IEEE. [CrossRef]

Ghulam E Mustafa Abro earned his B.S. in
Electronic Engineering with honors from
Hamdard University, Pakistan, in 2016,
followed by M.S. in Control and Automation
from Sir Syed University in 2019, and a Ph.D.
in Electrical and Electronic Engineering from
Universiti Teknologi PETRONAS, Malaysia,
in 2023. He is currently a Postdoctoral Fellow
at King Fahd University of Petroleum and
Minerals (KFUPM) in Saudi Arabia, working

in the Interdisciplinary Research Centre for Aviation and Space
Exploration. Dr. Abro has nearly a decade of involvement with
IEEE, serving in various roles, including conference chair and
reviewer for SCI-indexed journals. His diverse research interests
span control of underactuated systems, autonomous navigation,
robotics, swarm technology, and multi-agent systems. Prior
to KFUPM, he held academic and research roles at Hamdard
University, Universiti Teknologi PETRONAS, and defense research
institutes in Malaysia. (Email: Ghulam.abro@kfupm.edu.sa;
mustafa.abro@ieee.org)

Zain Anwar Ali earned his B.S. in Electronic
Engineering from Sir Syed University of
Engineering and Technology (SSUET),
Karachi, in 2009, followed by an M.S. in
Industrial Control and Automation from
Hamdard University in 2012, and a Ph.D. in
Control Theory and Engineering from Nanjing
University of Aeronautics and Astronautics
(NUAA) in 2017. He has held academic
positions at SSUET and Hamdard University,

and conducted Ph.D. research with Nanjing Strong Flight
Electronics. Currently, he is an Assistant Professor at Department

28

https://doi.org/10.1016/j.procs.2021.12.315
https://doi.org/10.3390/s21165397
https://doi.org/10.1016/j.trip.2020.100224
https://doi.org/10.1109/ConfTELE50222.2021.9435580
https://www.preprints.org/manuscript/201908.0108/v1
https://doi.org/10.23919/EuCAP51087.2021.9411178
https://doi.org/10.1109/JPROC.2023.3244362
https://doi.org/10.1109/ECMR.2019.8870345
https://doi.org/10.23919/ICCAS.2017.8204375
http://www.iaras.org/iaras/filedownloads/ijcsr/2021/011-0004(2021).pdf
https://doi.org/10.1109/ACCESS.2024.3456893
https://doi.org/10.1109/TITS.2021.3071647
https://doi.org/10.1109/APCC55198.2022.9943618
https://doi.org/10.1109/R10-HTC54060.2022.9929588
https://doi.org/10.3390/s21123992
https://doi.org/10.1109/SAS58821.2023.10254075
https://doi.org/10.1109/AEMCSE51986.2021.00082


IECE Transactions on Sensing, Communication, and Control

of Electronic Engineering Department, Maynooth International
Engineering College (MIEC), Maynooth University, Maynooth,
Co. Kildare, Ireland. Dr. Ali has published over 73 research
articles and is a member of various international engineering
bodies. He was twice selected as a Highly Talented Foreign Expert
by the Chinese Ministry. He has served as Assistant Editor of
SSUET Research Journal and Director of the Continuing Education
Program at SSUET, and participates in research collaborations
funded by Pakistan’s Higher Education Commission (HEC).
(Email: Zainanwar.ali@mu.ie )

Summaiya Rajput is a telecommunication
graduate from Quaid E Awam University
of Engineering and Technology (QUEST),
Nawabshah, Pakistan. Her academic
background has equipped with skills in
project design, management, and data analysis.
Recognized for resourcefulness and a positive
approach. As enthusiastic about applying
her knowledge to contribute to the evolving
landscape of technology she is looking

forward to excelling further in exploring innovative solutions at
the forefront of robotics, computer vision and object detection and
recognition. She is currently looking forward for an opportunity
to pursue MS Studies under any funded project at abroad.(Email:
summaiya.rajput@gmail.com)

29


	Introduction
	State of the Art Approaches in 3D Object Detection
	Monocular 3D Object Detection
	Stereo-Based 3D Object Detection
	Multi-view 3D object Detection

	Most trending approaches & Technologies
	Point Based 3D Object Detection
	Advanced Feature Learning in Point-based Detection
	Grid Point Based 3d object detection
	Point-Voxel-Based 3D Object Detection


	Comparative Analysis of Camera, LiDAR, and Radar Sensors
	Utilization of Camera
	Utilization of LiDAR
	Utilization of Radar 
	Comparative analysis of Radar and LiDAR

	Integration of Camera and LiDAR Sensor
	Probabilistic Sensor Fusion Approach
	Object Detection and Ranging System
	Enhancing Accuracy and Real-time performance
	Indoor Mapping & Combined Sensor Efficacy

	Benefits of Integrating LiDAR and Camera
	Affordable Alternatives
	Technical Discussion on Limitations & Shortcomings
	Future Directions and Recommendations
	Conclusion
	Ghulam E Mustafa Abro
	Zain Anwar Ali
	Summaiya Rajput


