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Abstract
In light of the rapid advancements in big data
and artificial intelligence technologies, the trend of
uploading local files to cloud servers to mitigate
local storage limitations is growing. However, the
surge of duplicate files, especially images and videos,
results in significant network bandwidth wastage
and complicates server management. To tackle
these issues, we have developed a multi-parameter
video quality assessment model utilizing a 3D
convolutional neural network within a video
deduplication framework. Our method, inspired by
the analytic hierarchy process, thoroughly evaluates
the effects of packet loss rate, codec, frame rate,
bit rate, and resolution on video quality. The
model employs a two-stream3D convolutional neural
network to integrate spatial and temporal streams
for capturing video distortion details, with a coding
layer configured to remove redundant distortion
information. We validated our approach using the
LIVE and CSIQ datasets, comparing its performance
against the V-BLIINDS and VIDEO schemes across
different packet loss rates. Furthermore, we
simulated the client-server interaction using a subset
of the dataset and assessed the scheme’s time
efficiency. Our results indicate that the proposed
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scheme offers a highly efficient solution for video
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1 Introduction
The advent of big data, coupled with the proliferation
of portable shooting devices like digital cameras
and smartphones, has significantly amplified the
demand for data storage solutions. Due to the
constraints of local storage space, many users prefer
to store high-definition pictures and videos on cloud
servers. However, as more users repeatedly upload
multimedia files, this practice not only results in
substantial network bandwidth wastage but also leads
to significant data redundancy, complicating the daily
management of cloud storage systems.

According to the International Data Corporation, the
volume of digital data reached 44ZB in 2020, with
approximately 75% of this data being duplicates.
Furthermore, data redundancy on cloud servers used
for backup and storage exceeds 90%. Consequently,
detecting and deleting duplicate multimedia files has
become a critical task.

Data deduplication technology [1] ensures that only a
single copy of each file is maintained on the server.
Users who store similar files are provided with a
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link to access the existing copy, thereby eliminating
the need for redundant storage. If the file already
exists on the server, users are not required to upload
another copy. Cloud service [24–27] providers rely
on deduplication technology to eliminate duplicate
data, thereby reducing both bandwidth and storage
requirements.

A comprehensive video deduplication scheme
encompasses video copy detection, video ownership
authentication, and video quality assessment. Video
copy detection involves comparing client-side
videos with those on the server to identify similar
content. Video ownership authentication ensures
that users retain ownership of their videos and can
recover stored files from the server. Video quality
assessment compares the quality of similar videos
on both the client and server sides, retaining the
higher quality video on the server and deleting the
lower quality duplicates. Video deduplication can
be categorized into server-based and client-based
methods. Server-based deduplication involves
uploading data from the client to the server and
then deleting duplicates, which requires substantial
upload bandwidth. Conversely, client-based
deduplication deletes duplicate data before uploading,
thereby saving significant upload bandwidth and
server storage space [2]. As a result, client-based
deduplication is the preferred method.

When users upload videos to the server, the User
Datagram Protocol (UDP), a connectionless and
unreliable transmission protocol, is often employed.
This can result in packet loss during transmission, or
issues with the original video such as low resolution
and unsmooth playback. Therefore, it is essential to
evaluate both the original quality of the video and
the transmission process to assess the degree of video
distortion.

Current research on video quality assessment in cloud
environments is still in its early stages. To address this
practical issue, we propose a method based on a 3D
convolutional neural network. This method evaluates
the impact of packet loss rate, codec, bit rate, frame
rate, and resolution by extracting two-stream video
distortion features from both spatial and temporal
flows. The coding layer is utilized to reduce the
redundancy of distortion information. Verification
using the LIVE and CSIQ datasets indicates that
the proposed scheme is highly efficient in video
quality assessment. Additionally, our method offers
significant improvements in accurately identifying

and eliminating duplicate video content, thereby
optimizing storage and bandwidth usage on cloud
servers.

2 Related Works
The substantial storage requirements of videos,
coupled with their higher network throughput
demands compared to othermultimedia content, make
the elimination of duplicate videos on cloud servers
imperative. To accurately evaluate video quality, it is
essential to consider multiple factors comprehensively,
such as packet loss during transmission, image clarity,
and playback smoothness [13].

Researchers have proposed a variety of methods
for video quality evaluation. Video Quality
Assessment (VQA) algorithms [9, 10] are typically
classified into three categories: full-reference (FR),
reduced-reference (RR), and no-reference (NR). FR
algorithms necessitate complete information from
both the cloud and client videos for direct comparison,
ensuring that the client’s reference video is free from
distortion. The quality is then assessed by measuring
the differences between the reference and target videos.
RR algorithms, however, use partial information from
the reference video to make comparisons based on
specific features, utilizing metrics such as MSE and
PSNR. NR algorithms evaluate video quality without
a reference video, relying instead on the intrinsic
properties of the video, such as resolution and color.

In recent years, the remarkable success of deep
convolutional neural networks in video feature
extraction has led researchers to favor 3D convolutional
neural networks for VQA. For instance, Li et al. [15]
proposed an NR-VQA method utilizing a 3D shearlet
transform and CNN to effectively capture anisotropic
features of videos. Similarly, Yao et al. [3] introduced
a bitrate-based metric that combines visual perception
with robust generalization capabilities. Valderrama
et al. [4] trained CNNs based on properties such as
group of pictures (GOP) lengths and prioritization
policies (BestEffort and DiffServ), although this
approach was limited to low-resolution images and
specific packet loss scenarios. Søgaard et al. [5]
developed a regression function for video quality
calculation, achieving correlation coefficients between
0.7 and 0.9 for dynamic and static video content.
However, this method relied on image evaluation
metrics, which can be significantly impacted when
spatial video information is compromised.

Thus, selecting appropriate video quality evaluation
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indicators is crucial, incorporating both spatial and
temporal quality assessments and considering packet
loss rates. Furthermore, Li et al. [22] proposed a
unified NR-VQA framework with a mixed datasets
training strategy for in-the-wild videos, based onVSFA,
employing losses from monotonicity and linearity
to handle mixed data training. Qian et al. [20]
developed an innovative MIL-based model, VQA-MIL,
which dynamically adjusts weights using a block-wise
attention module and enhances video bag features
with an MI Pooling layer. These advancements offer
significant insights for VQA.

In our approach, we have developed a video quality
assessment model based on a 3D convolutional
neural network. This model captures video distortion
information across both spatial and temporal
dimensions, focusing on evaluating the impact of
packet loss rate and codec on video quality. We employ
Spearman’s Rank Order Correlation Coefficient
(SRCC) and Pearson’s Linear Correlation Coefficient
(PLCC) to evaluate the model’s performance using
the LIVE and CSIQ datasets. Our results demonstrate
significant advantages in terms of video quality
assessment efficiency and time cost.

Moreover, our method incorporates advanced
techniques such as dropout and k-fold cross-validation
to prevent overfitting, ensuring that the model
generalizes well across diverse datasets. By leveraging
the strengths of 3D convolutional neural networks,
our approach not only improves the accuracy of
video quality assessments but also enhances the
robustness of the evaluations under various network
conditions. The ability to effectively assess and
manage video quality in cloud storage systems is
crucial for optimizing storage and bandwidth usage,
making our proposed scheme a valuable contribution
to the field of video quality assessment.

3 Proposed Method
In this section, we elaborate on the unsupervised
quality assessment model based on a 3D convolutional
neural network from two perspectives: the scheme
framework and the algorithm details.

3.1 Scheme Framework
The scheme framework consists of two parts: the first
video uploader and subsequent video uploaders. The
detailed process is illustrated in the following table.

Video Quality Assessment for the Initial
Uploader

Client Server

(1) Following similarity detection and ownership
verification, if no similar video exists on the
server, the user is identified as the initial uploader.
The server then requests the client to provide the
video’s quality score parameters.
(2) The client computes the quality score
parameter quality(V ) → VQ anduploads {V, VQ}
to the server.
(3) The server saves {V, VQ} in the database.

3.2 Algorithm details
In this section, we present a multi-parameter
video quality assessment model tailored for cloud
environments, utilizing a 3D convolutional neural
network (CNN). This model is designed to calculate
perceptual distortion values by analyzing temporal
changes within video sequences. Recognizing that
packet loss can significantly impact the measurement
of video distortion, our approach incorporates
weighted spatial entropy differences of various
influencing factors—including packet loss, codec, bit
rate, frame rate, and resolution—to more precisely
capture video frame distortions. The detailed
implementation is as follows:

Firstly, the model leverages a 3D CNN to analyze the
video data across three dimensions: height, width, and
time. This allows the network to better understand
the temporal dynamics of video sequences, which
are crucial for accurately assessing video quality.
By extending the traditional 2D CNN framework to
include the temporal dimension, our model can detect
subtle changes and distortions that occur over time,
providing a more comprehensive analysis.

Secondly, given the substantial effect of packet loss on
video quality, our model assigns different weights to
spatial entropy differences, which reflect the varying
impact of each influencing factor on video distortion.
Thisweighted approach enables themodel to prioritize
the most significant factors, such as packet loss, codec,
bit rate, frame rate, and resolution, ensuring a more
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Video Quality Assessment for Subsequent
Uploaders

Client Server

(1) After performing similarity detection and
ownership verification, if the server already has a
video with a quality score parameter V ′

Q similar
to video V ′, the client is requested to upload the
quality score parameter of their video.
(2) Upon agreeing to the request, the client
calculates the quality score parameter
quality(V ) → VQ and uploads VQ to the
server.
(3) The server compares the quality parameters.
If VQ ≤ V ′

Q, indicating that the server-side video
is of higher quality, the server provides the user
with a link to the video and deletes the client’s
video to prevent duplication.
(4) If VQ > V ′

Q, indicating that the client-side
video is of higher quality, the server requests
the client to upload the complete video and
quality parameters. The server then deletes the
similar server-side video, freeing storage space,
and stores {V, VQ} in the server database.

accurate assessment of video quality.

Thirdly, our model utilizes advanced preprocessing
techniques to enhance the quality of the input data.
This includes normalizing the video frames and
applying data augmentation methods to increase the
diversity of the training set. These steps are crucial for
improving the robustness of the model and ensuring
it performs well across a wide range of video content
and network conditions.

Moreover, to prevent overfitting and improve the
generalization of themodel, we incorporate techniques
such as dropout and k-fold cross-validation. Dropout
helps in reducing the risk of overfitting by randomly

omitting certain neurons during training, while k-fold
cross-validation ensures that the model is validated on
different subsets of the data, providing a more reliable
measure of its performance.

Lastly, we evaluate the effectiveness of our proposed
model using established metrics like Spearman’s Rank
Order Correlation Coefficient (SRCC) and Pearson’s
Linear Correlation Coefficient (PLCC). These metrics
allow us to quantify the correlation between the
predicted video quality scores and human subjective
assessments, ensuring that our model provides results
that are aligned with human perceptions of video
quality.

By integrating these advanced methodologies, our
multi-parameter video quality assessment model
offers a sophisticated tool for evaluating video quality
in cloud environments. This approach not only
enhances the accuracy of video quality assessments
but also provides a robust framework for managing
video content on cloud servers, ultimately optimizing
storage and bandwidth usage.

Algorithm 1: Maximum eigenvalue and
eigenvector generation algorithm
function [c,e] = bll(a)
a=input(‘input the matrix’)
vec=sum(a); %Start to normalize the matrix by
column
[m,n]=size(a);
b=repmat(vec,m,1);
h=a./b; %Get the matrix normalized by column
c=[mean(h(1,:));mean(h(2,:));mean(h(3,:));
mean(h(4,:));mean(h(5,:))]
d=a*c;
e=(d(1)/c(1)+d(2)/c(2)+d(3)/c(3)+d(4)/c(4)
+d(5)/c(5))/5
c1=(e-5)/4
cr=c1/0.9 %Get the cr value
end

3.2.1 Multivariate assessment
We utilize a method akin to the Analytic Hierarchy
Process (AHP) to assess the influence of packet loss
rate, codec, bit rate, frame rate, and resolution on
video quality. Among these, packet loss rate and
codec are particularly critical factors impacting video
quality [7]. Packet loss occurs when data packets
encounter bit errors during transmission or when
transmission delays exceed a set threshold, resulting in
multiple data packets failing to reach their destination,
thereby severely affecting video smoothness. Codecs
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often degrade video quality because the compression
process sacrifices video fidelity, as seen with codecs
such as MPEG-2 and H.264. Additionally, bit rate,
frame rate, and resolution are key determinants of
video quality. Bit rate refers to the number of data
bits transmitted per unit time; higher bit rates result
in clearer videos. Frame rate denotes the number of
frames transmitted per unit time; higher frame rates
yield smoother videos. Resolution indicates the size
of the video frame; higher resolutions produce larger
video frames.

We define optimal video quality as the target layer and
consider packet loss rate, codec, bit rate, frame rate,
and resolution as criteria layers. The impact of these
five factors on the target layer is then compared [11].

Figure 1. Hierarchy of the video quality assessment scheme.

A paired comparison matrix is constructed
based on the degree of influence of each pair
of factors on the target layer. Table 1 illustrates
the meaning of the 1-9 comparison scale used
in this method, where {C1, C2, C3, C4, C5} =
{packet loss rate, codec,bit rate, frame rate,resolution},
and i, j ∈ {1, 2, 3, 4, 5}.

Table 1. Description of the 1-9 comparison scale.

Scale aij Description

1 Ci and Cj have equal impact
3 Ci has a slightly greater impact than

Cj

5 Ci has a stronger impact than Cj

7 Ci has a significantly stronger impact
than Cj

9 Ci has an absolutely stronger impact
than Cj

2,4,6,8 Intermediate values representing
relative impact between the above
levels

1, 1/2, ..., 1/9 Reciprocal values representing the
relative impact of Cj to Ci

Through multiple comparisons, the pairwise
comparison matrix for the criteria layer relative to the

target layer is obtained as follows:

A =


1 5 6 8 9
1
5 1 4 6 8
1
6

1
4 1 3 3

1
8

1
6

1
3 1 2

1
9

1
8

1
3

1
2 1

 (1)

The largest eigenvalue of matrix A and the
corresponding eigenvector are calculated, yielding a
maximum eigenvalue of λ = 5.3443.

Next, we check the consistency of matrix A. The
Consistency Index (CI) is calculated using the
following formula:

CI =
λ− n

n− 1
(2)

With n = 5 and λ = 5.3443, we calculate CI =
0.0861. Referring to the numerical table of random
consistency indicators, the Random Index (RI) for
matrix A is determined to be RI = 1.12. Using the
consistency index and the random consistency index,
the Consistency Ratio (CR) is computed as follows:

CR =
CI

RI
= 0.077 (3)

Since CR < 0.1, the degree of inconsistency
of matrix A is within the acceptable range.
Consequently, the feature vector w =
(0.5453, 0.2585, 0.1041, 0.0546, 0.0375)T can be
considered as a measure of the influence of each factor.

Table 2. Random consistency index numerical table.

n 1 2 3 4 5 6
RI 0 0 0.58 0.90 1.12 1.24
n 7 8 9 10 11
RI 1.32 1.41 1.45 1.49 1.51

3.2.2 3D CNN model construction
In this section, building on the influence factor weights
obtained previously, we develop a two-stream 3D
convolutional neural network (CNN) distortionmodel.
The specific implementation details are outlined below:

A: Extending the 2D Convolutional Network to 3D.
The transition to three dimensions is achieved by
extending all filters and pooling kernels, effectively
adding a temporal dimension to the existing 2D
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network. This modification converts the filter from
N × N to N × N × N . Given the linear relationship
between video sequences, the filter weights in 2D can
be repeated N times along the time dimension and
then divided byN , ensuring consistent dimensionality
for the convolution filter. Since the output of the video
convolutional layer, composed of frames, remains
constant in the time dimension, the average and
maximum pooling layers align with the 2D network
structure [20].

Figure 2. Network structure of the Multi-Parameter Quality
Assessment (MQA) model.

B: Considering Growth Rates of Space, Time, and
Network Depth. For all frames in the video stream,
the spatial structure (horizontal and vertical) remains
unchanged, so their pooling kernel and step size
should also be consistent. This means that deeper
spatial information is equally influenced by frames
that are progressively farther away. However, due to
temporal factors, using the same conditions does not
always yield the expected results because of the impact
of frame rate and image dimension. If the temporal
domain grows too quickly compared to the spatial
domain, capturing fine-grained distortion information
becomes challenging. Conversely, if temporal growth
is too slow, the degree of video distortion may be
inaccurately assessed.

C: Two-Stream 3D CNN Structure. Although a
3D convolutional neural network can directly learn
distortion information from continuous video frames,
it still performs pure feedforward calculations. The
optical flow algorithm, which is somewhat periodic
(e.g., it can iteratively optimize the optical flow field),
is also integrated. Therefore, a two-stream structure is
adopted. One stream processes RGB stream distortion
information, while the other processes optimized
smooth optical flow distortion information, averaging
the two results for improved accuracy.

D: Calculation of Spatial and Temporal Distortion
Information. Both spatial and temporal distortion
information are calculated using the 3D CNN and a
feedforward neural network (MLP). This calculation

determines the deviation between the network’s actual
output and the expected output, resulting in a quality
score for the video [24].

A Multilayer Perceptron (MLP) is a type of
feedforward neural network that includes an
input layer, at least one hidden layer, and an output
layer. In practical applications, an activation function
is typically chosen to enhance adaptability for
classification tasks. MLPs are widely used for
prediction, classification, and recognition tasks. They
can solve non-linear separable problems, perform
iterative learning, load datasets into the network
sequentially, and adjust the weights associated with
the input values each time.

We usew = (0.5453, 0.2585, 0.1041, 0.0546, 0.0375)T as
the weights for extracting distortion information in
the two-stream 3D CNN. The delta rule is applied to
update the input weight, minimizing the error in the
neural network output through gradient descent. The
error value for a single output neuron is a function of
its actual value and target value. The total error of the
network is the sum of all error values from all output
neurons.

Errortotal =
n∑

i=1

1

2
(tari−acti)2 (4)

E: Training and Activation Function. During the
training phase, we utilize the rectified linear unit
(ReLU) as the activation function and evaluate its
performance based on the measured values of SRCC
and PLCC. For detailed information about SRCC and
PLCC, please refer to Section 4.2. Each activation
function is gradually implemented into the hidden
layer, with 100 nodes per hidden layer. Accuracy is
calculated based on the closeness of the actual model
output to the target output. The purpose of employing
the hidden layer is to better abstract the degree of
distortion for each influencing factor.

F: Encoding Layer for Error Extraction. An encoding
layer is defined to extract meaningful errors from each
layer of the deep CNN model, eliminating redundant
information. These errors are then connected to form
a comprehensive distortion score.

G: Preventing Overfitting. To prevent overfitting and
improve model generalization, we employ dropout
and k-fold cross-validation methods. The learning rate
is set to I = 0.00163. The model undergoes training
100 times, with each session using 800 videos.
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H: Loss Function Construction. The loss function is
formulated to train the model:

Loss =

n∑
i=1

∥f (xi, w)− yi∥

n
(5)

where n represents the number of videos, w denotes
a parameter in the network, yi is the tagged score of
the video, and f (xi, w) is the predicted score of the
network.

I: Weight Calculation in Convolutional Layers. In
each convolutional layer, weight calculations are
performed for factors influencing video quality,
including data packet loss, frame rate, bit rate, and
resolution, ensuring a comprehensive evaluation of
video quality.

4 Experiments
The simulation experiment environment for this study
is configured as follows:

The processor used is an Intel(R) Core(TM) i5-8265U
CPU @ 1.6GHz, paired with an NVIDIA GeForce
MX230 graphics card. The system is equipped with
8GB of memory and runs on the Ubuntu 16.04
operating system. The development platforms utilized
are TensorFlow 1.14.0 and MATLAB R2016a. Due to
hardware constraints, the server configuration mirrors
that of the client configuration.

4.1 Datasets
We utilized the LIVE [6] and CSIQ datasets to validate
the performance of our model. The LIVE dataset
comprises 160 videos, including 10 lossless videos,
each associatedwith 15 videos exhibiting various types
and levels of distortion. These distortions include
MPEG-2 compression, H.264 compression, IP network
distortion, andwireless network distortion. Each video
is assigned a subjective score by dozens of subjects,
with scores ranging from 0 to 100, where higher scores
indicate poorer video quality.

The CSIQ Subjective Video Quality Database consists
of 228 videos, including 12 original videos and
216 distorted ones. All videos are in YUV420
format, with varying frame rates of 24, 25, 30, 50,
and 60 FPS, and have a duration of 10 seconds.
The distortion types in this dataset include four
compression-based distortions—H.264 compression
(H.264), HEVC/H.265 compression (HEVC),
Dynamic JPEG compression (MJPEG), wavelet-based

compression using the SNOW codec (SNOW)—and
two transmission-based distortions: H.264 video with
analog wireless transmission loss (Wireless), and
Additive White Gaussian Noise (AWGN).

To mitigate the risk of overfitting, the datasets were
divided into training, testing, and cross-validation
sets in specific ratios. Using the LIVE and CSIQ
datasets, we generated a total of 32,079 distortion
samples for training, validating, and testing the neural
networks. The validation set was primarily used to
assess the neural network’s ability to predict perceived
video quality accurately. The training and validation
processes were repeated 10 times, utilizing 10-fold
cross-validation to ensure the robustness and reliability
of the average accuracy score.

By incorporating such extensive validation measures,
we aim to establish the credibility of our model and
demonstrate its effectiveness in various scenarios. The
inclusion of multiple types and levels of distortions in
the datasets allows us to rigorously test the model’s
performance and its ability to generalize across
different video quality issues. This comprehensive
approach ensures that our model is not only accurate
but also resilient to a wide range of real-world
conditions.

4.2 Evaluation Index
To assess the effectiveness of the proposed video
quality algorithm, we utilize Spearman’s Rank
Order Correlation Coefficient (SRCC) and Pearson’s
Linear Correlation Coefficient (PLCC). These metrics
evaluate the correlation between a set of estimated
visual quality scores and the human subjective quality
scores, as described below:

SRCC(Qest, Qsub) = 1− 6
∑

d2i
m(m2 − 1)

PLCC(Qest, Qsub) =
cov(Qest, Qsub)

σ(Qest)σ(Qsub)

(6)

where m is the number of videos in the database, and
di is the rank difference of the evaluation sample with
serial number i in the two evaluation scores. For both
metrics, values closer to 1 indicate better measurement
performance. PLCC measures the degree of linear
correlation between videos, while SRCC evaluates the
predictive monotonicity of the algorithm.

4.3 Performance Test
We first used the MQA scheme to evaluate each
category of sub-distortion in the two datasets and
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then conducted an overall video quality assessment,
comparing the performance with the V-BLIINDS and
VIDEO quality assessment algorithms. To ensure the
robustness of the results, each calculationwas repeated
10 times. The results are shown in the tables below.

(a)

(b)

Figure 3. Performance comparison of various schemes
under SRCC and PLCC evaluation indicators.

An analysis of the tables above indicates that when
using SRCC and PLCC coefficients to quantify video
quality, values closer to 1 represent better visual fidelity
to human perception. It is apparent that the SRCC
and PLCC coefficients of the proposed scheme are
generally higher than those of the V-BLIINDS and
VIDEO schemes, with most values surpassing 0.9.
However, in the LIVE dataset, the MQA scheme shows
a slightly lower SRCC coefficient for wireless network
distortion compared to the V-BLIINDS scheme. This
discrepancy may be due to the calculated weights not
accurately representing the type of wireless network
distortion. Figure 3 illustrates the overall video quality
evaluation comparison among the MQA, V-BLIINDS,
and VIDEO schemes, where the MQA scheme’s index

values consistently exceed 0.9. In summary, whether
evaluated from the perspective of prediction accuracy
or monotonicity, and whether considering individual
distortion subsets or the overall dataset, the proposed
MQA scheme demonstrates superior performance.

Additionally, we assigned varying packet loss rates
to the 12 original videos in the CSIQ dataset and
constructed a corresponding set of distorted videos.
This set comprises 12 groups, each containing 6
distorted videos corresponding to 6 different packet
loss rate settings. We calculated the SRCC and
PLCC for each packet loss rate within the 12 groups
and averaged the results. To ensure robustness, the
calculations were repeated 10 times, and the average
value was used to assess changes in video quality
under different packet loss rates.

As shown in Figure 4, with a gradual increase in packet
loss rate, the SRCC and PLCC values for all three
schemes exhibit a downward trend. The changes in the
MQA scheme aremore stable and closer to 1 compared
to the other schemes. In contrast, the SRCC and PLCC
indicators for the VIDEO and V-BLIINDS schemes
initially decline slowly and then sharply as the packet
loss rate increases. This trend indicates that under
conditions of packet loss distortion, the MQA scheme
provides a more reliable video quality assessment than
the other two schemes.

Furthermore, our analysis highlights the resilience and
robustness of the MQA scheme in handling different
types of distortions and varying packet loss rates. The
superior performance of the MQA scheme can be
attributed to its sophisticated approach in capturing
both spatial and temporal distortion features, as well as
its effective use of advanced neural network techniques.
By consistently delivering high accuracy in video
quality assessments, the MQA scheme proves to be a
valuable tool for optimizing video qualitymanagement
in cloud storage systems. These findings underscore
the potential of the MQA scheme to enhance user
experience by ensuring high-quality video delivery
even in challenging network conditions.

To evaluate the model’s performance, we utilized
videos from the LIVE dataset. We selected 10 lossless
videos to serve as reference videos stored on the cloud
server and used all corresponding distorted videos
as client videos to create 10 test groups. The quality
score for each group, including both lossless and
distorted videos, was calculated using SRCCandPLCC
as evaluation metrics. The SRCC and PLCC values for
all distorted videos were averaged to derive the final
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Table 3. Quality assessment results for the LIVE dataset.

Indicators Schemes MPEG-2 H.264 IP Wireless Total

SRCC
V-BLIINDS 0.620 0.749 0.692 0.873 0.718
VIDEO 0.801 0.775 0.711 0.814 0.805
MQA 0.972 0.930 0.994 0.869 0.914

PLCC
V-BLIINDS 0.781 0.709 0.644 0.851 0.733
VIDEO 0.802 0.722 0.681 0.899 0.819
MQA 0.953 0.935 0.930 0.972 0.966

Table 4. Quality assessment results for the CSIQ dataset.

Indicators Schemes H.264 HEVC MJPEG SNOW

SRCC
V-BLIINDS 0.625 0.533 0.650 0.712
VIDEO 0.758 0.710 0.629 0.883
MQA 0.953 0.970 0.939 0.963

Indicators Schemes Wireless AWGN Total

SRCC
V-BLIINDS 0.648 0.715 0.694
VIDEO 0.873 0.749 0.817
MQA 0.971 0.943 0.969

(a)
Indicators Schemes H.264 HEVC MJPEG SNOW

PLCC
V-BLIINDS 0.649 0.746 0.592 0.798
VIDEO 0.735 0.830 0.591 0.622
MQA 0.956 0.972 0.959 0.982

Indicators Schemes Wireless AWGN Total

PLCC
V-BLIINDS 0.705 0.897 0.731
VIDEO 0.873 0.749 0.815
MQA 0.977 0.926 0.974

(b)

client SRCC and PLCC values, as shown in Table 5. A
quality assessment model is considered effective if the
server-side video’s SRCC and PLCC parameters are
higher. As demonstrated in the table below, all test
groups meet these criteria.

By selecting a diverse set of 10 lossless reference
videos and their corresponding distorted versions, we
ensured a comprehensive evaluation of the model’s
ability to handle various types of video distortions.
This approach allowed us to rigorously test themodel’s
performance across different scenarios and distortion
levels. The use of SRCC and PLCC as evaluation
metrics provided a robust framework for quantifying
the correlation between the predicted video quality
scores and the subjective human assessments, ensuring
that the model’s predictions align with human

perception.

The results, summarized in Table 5, indicate that
our model consistently achieves high SRCC and
PLCC values for the server-side videos, demonstrating
its effectiveness in video quality assessment. The
consistency of these results across all test groups
highlights the model’s robustness and reliability
in different contexts. This thorough evaluation
underscores the model’s capability to accurately assess
video quality, making it a valuable tool for optimizing
video management in cloud storage systems.

Moreover, the detailed analysis of the results provides
insights into the strengths and potential areas for
improvement of the model. By examining the specific
cases where the model performs exceptionally well
or encounters challenges, we can refine our approach
and enhance the model’s performance further. This
iterative process of evaluation and refinement is
crucial for developing a state-of-the-art video quality
assessment model that meets the demands of modern
cloud-based video storage and streaming services.

Table 5. Client and server video quality assessment.

Groups Server Client If QS > QC

SRCC PLCC SRCC PLCC

1 0.953 0.977 0.949 0.958 Yes
2 0.916 0.928 0.903 0.925 Yes
3 0.947 0.951 0.943 0.949 Yes
4 0.972 0.988 0.961 0.960 Yes
5 0.949 0.967 0.938 0.954 Yes
6 0.991 0.989 0.985 0.987 Yes
7 0.962 0.984 0.953 0.970 Yes
8 0.979 0.951 0.967 0.949 Yes
9 0.984 0.935 0.971 0.903 Yes
10 0.993 0.976 0.990 0.962 Yes
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(a)

(b)

Figure 4. Performance comparison under different packet
loss rates using SRCC and PLCC evaluation indicators.

4.4 Time cost
We also utilized the videos from the LIVE dataset in
the aforementioned performance experiment to assess
the model’s time overhead. The server-side video
and the video to be uploaded by the client remained
unchanged throughout the experiment. We separately
computed the calculation time for the server and client
across the 10 groups, and the average calculation time
for all distorted videos on the client side was used
as the final result, excluding the model training time.
We then compared the total time cost with that of
the V-BLIINDS and VIDEO schemes. The results are
presented in the table below.

The proposed MQA scheme demonstrates a
significantly smaller time overhead compared
to the other two schemes. Specifically, the MQA

scheme can reduce the average time cost by 81.79%
compared to the V-BLIINDS scheme and by 22.6%
compared to the VIDEO scheme. These substantial
reductions in time overhead highlight the efficiency
of the MQA scheme in processing video quality
assessments.

The time measurements in this study were conducted
using a CPU, and it is anticipated that employing a
GPU would result in even lower time overheads. The
use of a GPU could further enhance the computational
efficiency of the MQA scheme, making it even more
suitable for large-scale video quality assessment
tasks in real-time applications. By leveraging the
parallel processing capabilities of GPUs, the MQA
scheme could process video data more swiftly, thereby
reducing latency and improving the overall user
experience.

Additionally, the reduction in time overhead has
significant implications for the scalability and
practicality of the MQA scheme. In a cloud-based
environment where numerous videos are uploaded
and processed simultaneously, minimizing the time
required for quality assessment is crucial. The MQA
scheme’s ability to deliver fast and accurate video
quality assessments makes it an ideal choice for cloud
service providers looking to optimize their video
management systems.

In summary, the MQA scheme not only offers superior
accuracy in video quality assessment but also ensures
that the process is completed in a timely manner. The
results from the time overhead analysis underscore the
scheme’s potential to enhance the efficiency of video
quality assessment processes, thereby contributing
to better resource utilization and improved service
delivery in cloud environments.

Table 6. Time cost of MQA scheme.

Groups Time cost
of Server (s)

Time cost
of Client (s) Total (s)

1 49 66 115
2 65 68 133
3 42 46 88
4 45 49 94
5 60 66 126
6 51 58 109
7 69 74 143
8 47 50 97
9 51 54 105
10 44 49 93
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Figure 5. Comparison of the time cost of the three schemes.

5 Conclusions and Discussions
In this paper, we present an effective video quality
assessment model and establish an interactive
framework for quality assessment between the client
and the server. First, we employ a method similar to
the Analytic Hierarchy Process (AHP) to estimate
the impact of packet loss rate, codec, frame rate, bit
rate, and resolution on video quality by calculating
the weight vector. Next, we capture the details of
video distortion using a 3D convolutional neural
network, focusing on both spatial and temporal flows.
The coding layer is defined to remove redundant
distortion information, while dropout and k-fold
cross-validation methods are utilized to prevent
overfitting. We then construct a loss function to train
the network and output the video quality score. For
model assessment, we use Spearman’s Rank Order
Correlation Coefficient (SRCC) and Pearson’s Linear
Correlation Coefficient (PLCC) and validate themodel
using the LIVE and CSIQ datasets. Experimental
results indicate that the proposed scheme is more
effective than the V-BLIINDS and VIDEO schemes
in evaluating video quality. Additionally, we test
the performance of the three schemes under various
packet loss rate settings. A portion of the dataset is
used to simulate the interactive quality assessment
process between the client and the server, with test
results aligning with the expected outcomes. Finally,
we evaluate the time overhead of the MQA scheme,
excluding the model training time, demonstrating
that it is more time-efficient than the V-BLIINDS and
VIDEO schemes.

The proposed video quality assessment scheme
effectively evaluates the quality of videos from
both the client and cloud server. However, there

are still two potential research directions: Firstly,
for non-uniformly distorted videos, the degree of
distortion varies across small video frame blocks,
necessitating a more fine-grained approach to capture
video distortion information using fixed-size blocks.
Secondly, constructing supervision information can
enhance the network’s learning ability in scenarios
with limited labeled data, thereby increasing the
network’s adaptability. In future work, we will focus
on these two research aspects.
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