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Abstract
The volume and complexity of data in various fields,
particularly in biology, are increasing exponentially,
posing a challenge to existing analytical methods,
which often struggle with high-dimensional
data such as single-cell Hi-C data. To address
this issue, we employ unsupervised methods,
specifically Principal Component Analysis (PCA)
and t-Distributed Stochastic Neighbor Embedding
(t-SNE), to reduce data dimensions for visualization.
Furthermore, we assess the information retention
of the decomposed components using a Linear
Discriminant Analysis (LDA) classifier model.
Our findings indicate that these dimensionality
reduction techniques effectively capture and present
information not readily apparent in the original
high-dimensional data, facilitating the visualization
and interpretation of complex biological data. The
LDA classifier’s performance suggests that PCA
and t-SNE maintain critical information necessary
for accurate classification. In conclusion, our study
demonstrates that PCA and t-SNE are powerful tools
for visualizing and analyzing high-dimensional
biological data, enabling researchers to gain new
insights and understandings that are challenging to
achieve with traditional approaches.
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1 Introduction
Dimensional disaster is a widely faced problem in data
science realm. In the field of biology, there are a lot
of high-dimensional data with large samples that are
difficult to be processed by ordinary methods. The
dimension reduction method using machine learning
can enable us to quickly find the variation and features
among biological samples among the biology data
mountain.

Dimension reduction is a widely used feature
extraction method especially in computer vision.
There are multiple applications on extracting
low-dimensional features from images, such as
Eigen Face, Fisher Face and handwritten dimension
reduction as well as other feature selection methods
based on support vector machine or deep learning.
Hence, we decide to apply those method on biology
data.

The contact matrix of single-cell Hi-C data can regard
as image, which contains three-dimensional structure
information of the chromosome (Fig. 1). The positions
of the horizontal and vertical axes of the matrix
represent the two contact sites on the chromosome,
and the value of the matrix represents the interaction
frequency of the two sites. The interaction matrix
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can describe the three-dimensional structure of cell
chromosome to some extent.

Figure 1. The quality control of single-cell Hi-C data. The
left two figures show the total counts of each single-cell
before quality control, the right two show after quality

control.

Comparing with the face image, the sample amount
and categories of single-cell data is fewer, while
each single-cell data contains more information.
In additional, Hi-C data is apparently different
from images such as human faces and handwritten
characters. And it is difficult for human eyes
to distinguish obvious features between single-cell
Hi-C matrices. Therefore, there is a great demand
for machine learning algorithm [1] to classify and
recognize the variation between those biology samples.
Otherwise, the interaction matrix of single-cell data
can reach very high dimensions depending on the
resolution we choose, so it is necessary to apply
dimension reduce function in primary step when start
to analysis scHIC data.

2 Related Work
At present, single-cell sequencing technology
is becoming more and more mature, and more
high-dimensional single-cell sequencing data are
applied in data analysis, such as single-cell RNA-seq,
ATAC-seq, Chip-seq, etc. Since Nagano pioneered
single-cell HIC data in 2013 [1], single-cell Hi-C data
had become more and more common.
Due to the high throughput Hi-C data and 2D contact
matrix of Hi-C data, variety of transformations

methods for measuring the quality of and
reproducibility of Hi-C experiments were developed
previously. HiCRep [2], GenomeDISCO [3],
HiC-Spector [4], and QuASAR-Rep [5] measure
reproducibility and compute pairwise similarities
between Hi-C matrices. And those methods can also
use in single-cell data to measure the contact matrix.
As for the single-cell data, Ren’s group use SnapHi-C
identify loop domain and intercellular variation in
scHIC data [6]. Richard apply Explicit-PCA reveal the
dominant motion of genome 3D structure [7]. Zhou
use scHiCluster on different types of cells and find out
domain-like structures (TLSs) in single-cell data [8].
Lu and Feng apply unsupervised embedding method
handle scHiC data and distinguish them according
cell cycle [9]. Michael use Bayesian estimation and
priori information in bulk Hi-C to infer 3D structures
of chromosomes from single- cell Hi-C [1].

3 Methodology
3.1 Data Preparation
Single-cell Hi-C data used in this study were derived
from sequencing data of mouse embryonic stem
cells (mESC) and normal epithelia mouse mammary
gland cells (NMUMG) [11]. According to the
previous research, single-cell Hi-C data are inherently
variable, and there are differences between different
cells and different cell states, and between different
types of cells [2]. In addition, due to technical
limitations [17–20], the current single-cell HI-C library
construction method can only capture less than 1%
of the interactions in a single cell. Therefore, due to
the sparsity of data and the randomness of sampling
results, there are extensive noises and a large number
of missing in scHIC data, so we need to carry
out quality control, noise reduction and smoothing
processing on the interaction matrix.
In this experiment, we first apply the quality control on
mESC and NMUMG cells. And descriptive statistical
analysis was carried out to eliminate cells with too
little or too much interactive or with other obvious
problems. Gaussian blur and 2D Mean Filter are used
to smooth the matrix to solve the sparsity problem. In
order to reduce the noise caused by the experiment,
we try HiCNorm, ICE, Knight-Ruiz Matrix-Balancing
algorithms [12–14] which is commonly used in Hi-C
matrix normalization.
As for the resolution, we use the 1 MB to initialize
the matrix due to the sparse, which means each bin
of the contact matrix contains counts within 1 MB
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Figure 2. Workflow of single-cell Hi-C data dimension
reduction. (a) the single-cell Hi-C contact matrix on one
chromosome, horizontal and vertical axis represent the

contact loci, (b) normalized and smoothed convert matrix,
(c) cell embedding vectors, (d) clustering image in low

dimension.

scope. After data Preparation, we attain a 2735× 2735
dimension global converted contact matrix for each
single-cell. Fig. 2(a) shows local feature of raw contact
matrix.

3.2 Matrix Embedding
Since two-dimensional matrix data cannot be directly
used for data analysis, many scholars have proposed
great ideas on embedding of Hi-C matrix, such as
Yang’s HiCRep [2], Ursu’s GenomeDISCO [3] and
Yan’s Hic-Spector [4]. These methods provided some
algorithm to process Hi-C contact matrix based on
biology and statistic principle, which can measure the

similarity of Hi-C contact matrix in reasonable ways
and accomplish dimensional reduction [16].
In this paper, we focus on the machine learning
dimension-reduction methods, so we decide to
reference the processing technique in image data, that
is, transform the matrix into vector format or use
unsupervised dimension reduction algorithm to carry
out subsequent analysis.

3.3 Dimensionality Reduction
After the preprocess, now we have processed data
sample set D = {(X1, Y1), (X2, Y2), . . . , (xm, ym)},
where any sample xi is the vector representation of the
sample, and the sample label yi ∈ {0, 1}, where label 0
represents mESC cells and label 1 represents NMuMG
cells. At the resolution of 1 MB, the dimension n ≈
7, 000, 000 for each Xi, and increased by a factor of N2

for each n-fold increase in resolution. We will use the
following dimensional-reduction algorithms to project
the data to low dimensional.

3.3.1 PCA
Principal Component Analysis (PCA) is one of the
most commonly usedmethods in unsupervised feature
selection. It does not need to use labels and retain the
internal characteristics of the samples.
For a sample N = (x1, x2, . . . , xm) that you want to
map to a lower dimensional space, µ is the mean value
of the vector, and we need to project these samples
onto the hyperplane of dimension d using PCA. An
orthogonal matrix W of n × d is needed, and each
sample after projection yi = W Txi. This matrix is an
orthonormalmatrix according to the properties of PCA
W = {w1, w2, . . . , wd}. According to the principle of
PCA, tomake the projection vectors have themaximum
variance or minimum square error, we obtain the
equation:

argmaxL(W ) =

m∑
i=1

W Txix
T
i W

s.t. W TW = I

We can calculate the projection matrix W for the
first d largest eigenvector of the n × n matrix XXT

components, then according to the projection formula
yi = W Txi each sample can be projected to the new d
dimensional space.

3.3.2 t-SNE
The next method is t-distributed Stochastic Neighbor
Embedding (t-SNE). Both t-SNE and PCA are
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unsupervised dimension reduction methods, which
do not need sample labels. And t-SNE is also
a commonly used method for dimension-reducing
clustering, which is further developed based on LLE
and SNE.
Its principle is using affine transformation to map
data to a probability distribution in low dimension.
The distance within samples in high-dimensional
space transformed into a conditional probability to
represent the similarity between point and point,
then reconstruct the probability distribution of these
points in low dimensional space. make the probability
distribution between the low and high dimension as
close as possible. In other words, the most similar
points are clustered together and the least similar
points are moved away.
In order to make the projection vector closer to the
original distribution and retain the distance and local
characteristics, the solution of t-SNE involves using
t distribution as a probability distribution function,
KL divergence of before and after projection as the
loss function and updating parameters by means of
gradient descent. After a certain number of iterations
or achieve a certain indicator, we can obtain a character
representation in specified dimension.

3.3.3 LDA
Linear Discriminant Analysis (LDA) is a supervised
dimension reduction method and can also be used
for classification. The principle of LDA is similar to
PCA, which is to find an n×d projection matrix W to
project high-dimensional data. However, the purpose
of LDA is that the projection points of each category of
data should be as close as possible, while the distance
between the data center points of different categories
should be as far as possible.
In the binary classification problem, the samples can
only reduce to 1 dimension. So we need to find a vector
rather than amatrix to project the samples onto a linear
space. The projected formular is y = wTx, that is, for
any sample xi, its projection on the line is wTxi. The
projection center of the two types of samples (j = 0, 1)
is µj , and the covariance matrix of the two types of
samples isΣj . At this time, we candefine the intra-class
divergence matrix Sw and the inter-class divergence
matrix Sb in the case of dichotomization problem:

Sw = Σ0 +Σ1

Sb = (µ0 − µ1) (µ0 − µ1)
T

Then we can define the loss function below, and use

maximum likelihood estimation to calculate the project
vector.

argmaxJ(w) =
wTSbw

wTSww

In the binary classification problem, LDA calculates
the matrix Sw and the matrix Sb, and the final solution
projection vector is themaximum eigenvector ofmatrix
S−1
w Sb. Once we obtain the vector, we can use it for

projection and classification.
As for the multiple classification and decomposition
problem, we need to calculate the corresponding
S−1
w Sb matrix and its first several maximum

eigenvalues and eigenvectors instead of the projection
vector.

3.4 Cell Classification
In We use PCA or t-SNE on single-cell reduce the
data to low dimensions then use LDA for training.
The projection vector is reserved as LDA classifier
to identify the new input samples. We use the LDA
classifier and CV to measure the embedding result.

4 Experiments
In the dimension reduction problem, we try to use
PCA and t-SNE reduce the single-cell Hi-C data to low
dimension. And we supposed to the variance between
single-cell. As we expected, we discover that using
the principal components (PC) can distinguish the
two cell types directly. The PC1 and PC3 explain 57
percent and 6 percent variance, respectively. And they
were finely separated into two parts according their
cell types. So did the 2d t-SNE result demonstrate the
separation of two cell types.

Figure 3. PCA after embedding.

As for the cell type classification problem, we first
apply PCA on each contact matrix and remain several
principal components, then we using another LDA
on each PC to find out the first-class represent on
each sample. We preformed 5-fold CV and found
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Figure 4. t-SNE after embedding.

Figure 5. The ROC curve of PC1 for 5-fold CV.

PC1 achieve the highest AUC (average 0.95) in all the
principal components.

Table 1. 5-fold CV of first 5 principals.

Principal Components AUC (%) ACC (%)
PC1 95.98 92.12
PC2 89.59 88.60
PC3 89.07 88.35
PC4 83.94 81.35
PC5 82.54 80.60

5 Conclusion
Our results show the difference between cell types and
distinguish them in a decentmethod. However, deeper
analysis needs to take more factors into consideration.
And there are also many noises in Hi-C data, such
as random ligation noise and genomic distance noise.
We only consider the data structure and not too
much biological feature. In other area, there are
sharply increased large amount of high-dimensional
complicated data like single cell Hi-C contact matrix,
which are hard to analysis them directly. Therefore,
some combined machine learning methods need to
be used in this field to help people figure out the
difference or similarity between those samples. In our
further research we can discuss multiple classification

problem basing onmore cell types, pattern recognition
on more specific genome structure.
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