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Abstract
Nowadays, state estimation is widely used in
fields such as autonomous driving and drone
navigation. However, in practical applications, it
is difficult to obtain accurate target motion models
and noise covariance.This leads to a decrease in the
estimation accuracy of traditional Kalman filters. To
address this issue, this paper proposes an adaptive
model free state estimation method based on
attention parameter learning module. This method
combines Transformer’s encoder with Long Short
Term Memory Network (LSTM), and obtains the
system’s operational characteristics through offline
learning ofmeasurement datawithoutmodeling the
system dynamics and measurement characteristics.
In addition, based on the output of the attention
learning module, the expectation maximization
(EM) algorithm is used to estimate the system
model parameters online, and a Kalman filter is
used to obtain state estimation. This paper was
validated using the GPS trajectory path dataset, and
the experimental results showed that the proposed
parameter adaptive model free state estimation
method has better estimation accuracy than other
models, providing an effective method for using
deep learning networks for state estimation.
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1 Introduction
State estimation is an important research direction
in both control theory and machine learning, with
wide applications in fields such as computer vision
[1], robotics [2], and autonomous driving [3]. Its core
objective is to estimate the actual state of a target using
observeddata. Due to the influence of randomnoise on
system states and observations, Rudolf Emil Kalman
proposed the Kalman Filter (KF), which describes the
relationship between states and observations using
a state model [4]. It avoids the need to store all
historical data, thereby reducing the computational
and storage resource requirements. However, KF
cannot estimate states for nonlinear systemmodels. To
address this limitation, Bucy and Sunahara introduced
the Extended Kalman Filter (EKF), which linearizes
nonlinear systems before utilizing a generalized
Kalman filter for state estimation [5]. Nevertheless,
EKF’s approximation often leads to reduced accuracy
due to discarding higher-order derivative components
during linearization. To tackle this issue, Xiong et
al. proposed the Unscented Kalman Filter (UKF) [6].
UKF approximates probability distributions using a
set of determined points (sigma points) containing
mean and covariance, making it more efficient for
highly nonlinear systems compared to traditional
methods that require complex computations of
Jacobian matrices. However, UKF may lose some
statistical properties of the posterior distribution when
the sampling dimension exceeds three, resulting in
decreased estimation accuracy. Therefore, Haykin et
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al. proposed the Cubature Kalman Filter (CKF) [7].
The CKF is based on the third-order spherical radial
volume criterion and uses a set of cubature points
to approximate the mean and covariance of the state
of nonlinear systems with additional Gaussian noise.
Although the filtering accuracy of the CKF is higher,
the algorithm discards some approximation errors
when estimating nonlinear systems, which may lead
to filtering that does not meet quasi-consistency. As
a result, the CKF cannot accurately estimate the true
value of the state.

In order to mitigate the dependence of traditional
filtering algorithms on accurate motion model
parameters, Ghahramani and Hinton proposed the
EM-KF algorithm, which combines Kalman filtering
for linear dynamic system state estimation with
the EM algorithm for parameter estimation [8]. To
address the complex dynamic relationship between
target states and measurement data, researchers
have proposed a data-driven deep learning approach
for state estimation. This method utilizes large
amounts of measurement data and corresponding
true state values to train recursive neural networks
end-to-end, learning the intricate relationship between
measurement data and states for effective state
estimation. Recurrent Neural Networks (RNNs) are
commonly used for analyzing time-series data, and
the LSTM network, an excellent variant of RNNs,
was introduced by Hochreiter in 1997 [9]. LSTM
incorporates a hidden state unit to store important
information from previous positions in the sequence
and employs three gate control units to determine the
importance of neural input information. These gate
control units, utilizing different activation functions
and computation methods, effectively address issues
such as gradient explosion, thereby demonstrating
significant advantages in long-term sequence
modeling compared to traditional RNNs. While deep
learning methods exhibit strong learning capabilities,
neural networks often encounter challenges in training
due to the receipt of large amounts of information,
some of which may be irrelevant. To address this
issue, attention mechanisms have been introduced to
simulate human attention, allowing neural networks
to focus on useful information while disregarding
irrelevant data. In recent years, Transformer has
emerged as a novel attention mechanism [10]. It
effectively addresses long-term dependency issues
in LSTM networks, thereby improving modeling
capabilities for complex nonlinear data and colored
noise.

In order to solve the problems faced by estimation
methods in applications, this paper proposes a
new algorithm TL-EF, which mainly consists of two
steps: offline training and online estimation. The
first step is to use the Transformer multi head
self attention mechanism and LSTM to learn the
complex relationships between system states and
measurements, and obtain the statistical characteristics
of its complex motion. The second step is to provide
more accurate filtering parameters for theKalman filter
based on the network output and the EM method.

2 Methodology
2.1 Offline Training Of SystemModel - TL Learner

With existing filter model-based state estimation
methods, the model needs to be used in conjunction
with each other and the state estimation methods. The
current target motion state is estimated based on the
measurement information observed by the sensors,
combined with the a priori knowledge of the tracked
target. In order to provide an accurate description of
the current state of the maneuvering target and the
measurement sensors, the motion process model and
measurement model of the maneuvering target need
to be established. Usually, the linear system model is
as follows

xk = Axk−1 + ωk (1)
yk = Cxk + νk (2)
ωk ∼ N(0, Q), νk ∼ N(0, R) (3)
x0 ∼ N(m0, P0), k = 1, 2, ..., N (4)

In the equation, xk represents the state, yk represents
themeasurement data,A represents the state transition
matrix, ωk represents the state noise, Q represents
the covariance of the state noise, C represents the
measurement matrix, νk represents the measurement
noise, R represents the covariance of the measurement
noise, and m0 and P0 represent the mean and
covariance of the initial state, respectively. Typically,
these parameters are modeled based on historical
knowledge or system mechanics, referred to as initial
parameters in this paper.

Offline training involves training a system model
learner based on attention and LSTM with the initial
parameters of the system (as shown in fig1), By
combining the encoder structure of Transformer and
LSTM, themodel learns from observation datawithout
the need to model the dynamics and measurement
characteristics of the system, The training of the
neural network enables the learning of the motion
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Figure 1. Model studies of the system.

characteristics of the system. The reason why
Transformer can capture long-term dependencies is
because it integrates multi-head self-attention and
residual connections, which enhances the depth of
model training and reduces the risk of overfitting.
Combining LSTM with the Transformer encoder
can strengthen the structural advantages of the
Transformer encoder and its sequence modeling
capabilities. Since Transformer can capture saliency
that LSTM cannot capture, their combination can
better characterize the motion sequences. This
model can fully utilize the known information of
the system’s mechanistic model, while training the
network model to capture the complex dependencies
of the system from historical measurement data.
Compared to relying solely on a mechanistic model,
this model can better describe the dynamics and
measurement relationships of real-world systems.
Drawing inspiration from the cognitive attention
mechanism in humans, multi-head self-attention
generates multiple attention heads in parallel within
the network [11]. The inputs to this module are the
observed data y1:N = [y1, y2, ..., yN ], the query vectors
Query related to the attention task, and the feature
informationKey and V alue represented in key-value
pairs. The vectorsQuery,Key, and V alue are obtained
through linear transformations of the input observed
data y1:N , and the attention process can be represented
as

Query =WQy1:N (5)
Key =WKy1:N (6)

V alue =WV y1:N (7)

Attention(Query,Key, V alue)

= softmax
(
QueryKeyT√

dk

)
V alue

(8)

In the equation, matrices WQ, WK , and WV are
trainable parameter projection matrices, while dk
represents the feature dimension of Key. Based
on input data Query and Key, the dot product can
be obtained. then, using the function described in
softmax, the weights corresponding to each element
in input data V alue can be obtained. dk serves as a
scaling factor for the dot product, preventing it from
becoming too large and facilitating faster learning.

The essence of the multi-head self-attention
mechanism is a linear transformation of the
concatenated results of multiple attention
computations. This mechanism allows the model
to utilize different feature information obtained at
different positions, thereby increasing feature diversity.
The calculation method of multi-head self-attention is
shown below

MHA(Query,Key, V alue) =

Concat(head1, ..., headt)W
o (9)

headi = softmax
(
QueryiKey

T
i√

dk

)
V aluei (10)

In the equation, t represents the total number
of heads, W o denotes the weight matrix used to
ensure alignment with the target dimension, Concat
indicates the vector concatenation operation, andhead1
represents the features of the i head.

This paper adopts the Transformer encoder structure
to encode the latent dynamical properties of the
observed data. Utilizing the multi-head attention
mechanism, it constructs attention information with
higher dimensionality and multiple channels, thereby
exploring rich information. The attention-based
learning module takes the observed data as input into
the Transformer encoder module. Within the encoder,
positional encoding is applied to the observed data
before being fed into the multi-head self-attention
layer. To prevent network degradation and accelerate
convergence, the encoder’s structure includes residual
connections, layer normalization, and feedforward
neural networks. The latent encoded features are
obtained through the Transformer encoder module,
After the Transformer, we use LSTM to learn longer
dependencies among the measurement data as follows

ỹtransformerEncoder = TransformerEncoder(y1:N ) (11)

ỹlstm = LSTM(ỹTransformerEncoder, ht−1) (12)
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Figure 2. A system model learner based on attention and LSTM.

In the equation, ht−1 represents the hidden state from
the previous time step.

The system model learner (as shown in Fig2) achieves
the learning of system dynamics through offline
training. The input-output relationship pairs consist
of observation data and the reference state of the
system. Based on the Transformer encoder structure
with multi-head self-attention and LSTM, the model
can learn the latent features of the data, eliminating the
need formodeling system dynamics andmeasurement
characteristics.

2.2 Online Estimation Based On The EM Algorithm

The network model trained offline still exhibits biases
when applied to the actual system. During the
estimation process, online estimation is performed
using the EM algorithm to update model parameters
in real-time. Specifically, measurement data is
input into the pre-trained attention-LSTM learning
module to obtain dynamically characterized data
reflecting the motion sequence. Subsequently, Kalman
filtering is employed for recursive estimation online.
Furthermore, the EM algorithm is utilized to update
current parameters such as the state transition matrix,
measurement matrix, state noise, and measurement
noise variances.

In the Algorithm 1, z0:N represents the latent variable,

Algorithm 1: EM algorithm
Input θ0, ε, nm
Output θ∗
1: repeat
2: E-step: θ(n) = E[log p(z0:N , y1:N |θ)|y1:N , θ(n)]
Q(θ, θ(n)) = θ(n)

3: M-step: θ(n+1) = argmaxθQ(θ, θ(n))
4: until |θ(n+1) − θ(n)| < ε or iteration number is
up to nm
5: return θ∗ ← θ(n+1)

θ represents the unknown parameters to be estimated,
and θn represents the parameters at the nth iteration,
When there are latent variables in the probability
density function (PDF), the expectation maximization
(EM) algorithm iterates E-steps and M-steps to
calculate the maximum likelihood estimate (MLE)
of the parameters, For state estimation, maximizing
the logarithm of the probability density function
of observation log p(z0:N , y1:N |θ) is equivalent to
maximizing parameter Q.

The system’s state to be estimated is denoted by xk, and
themeasurement is denoted by yk, with the probability
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distribution as follows

p(xk|xk−1) =

exp

{
−1

2
[xk −Axk−1]TQ−1[xk −Axk−1]

}
(2π)−u/2|Q|−1/2

(13)

p(yk|xk) = exp

{
−1

2
[yk − Cxk]TR−1[yk − Cxk]

}
(2π)−v/2|R|−1/2

(14)

p(x0) = exp

{
−1

2
[x0 −m0]

TP0
−1[x0 −m0]

}
(2π)−u/2|P0|−1/2

(15)

u and v are the number of mass transfers and
observation margins in the state. In the context of
the character of marriages and the independence of
conditions observed, we can obtain

Q(θ, θ(n)) = −1

2
ln |2πP0| −

N

2
ln |2πQ| − N

2
ln |2πR|

− 1

2
tr{P0

−1[P0|N + (m0|N −m0)(m0|N −m0)
T ]}

− 1

2

N∑
k=1

tr{Q−1E[(xk −Axk−1)(xk −Axk−1)T |y1:N ]}

− 1

2

N∑
k=1

tr{R−1E[(yk − Cxk)(yk − Cxk)T |y1:N ]}

(16)

∂Q(θ, θ(n))
∂θ(n)

= 0 (17)

For the parameter estimation of the model, we
utilize both the original measurement data y[1,N ] and
the data ỹlstm estimated by the attention learning
module trained offline in the EM algorithm. Through
the multi-head self-attention and long short-term
memory (LSTM) network, we can capture long-term
dependencies among the data and the underlying
correlations between them. This enables a better
estimation of the parameters of the filter model.

A = (

N−1∑
k=1

E[x̂k|k−1x̂Tk−1|k−1])/

(

N−1∑
k=1

E[x̂k−1|k−1x̂Tk−1|k−1])

(18)

C = (
N−1∑
k=0

ylstm,kE[x̂k|k]T )/(
N−1∑
k=0

E[x̂k|kx̂Tk|k]) (19)

Q =

1

N − 1

N−2∑
k=0

(E[x̂k+1|k+1]−AE[x̂k|k])(E[x̂k+1|k+1]

−AE[x̂k|k])T +AV ar[x̂k|k]A
T + V ar[x̂k+1|k+1]

− Cov(x̂k+1|k+1, x̂k|k)A
T −ACov(x̂k+1|k+1, x̂k|k)

(20)

R =
1

N

N−1∑
k=0

[
ylstm,k − CE[x̂k|k]

] [
zk − CE[x̂k|k]

]>
+ CVar[x̂k|k]C>

(21)

x̂k|k represents the estimation of the filter at step
k, By recursively applying the Kalman filter, the
estimated trajectory of the output state x̂k|k is obtained.
When using the Kalman filter, A represents the state
transition matrix calculated from Equation (18), ωt
represents the state noise, Q represents the state
noise covariance calculated from Equation (20), C
represents the measurement matrix calculated from
Equation (19), vk represents the measurement noise,
and R represents the measurement noise covariance
calculated from Equation (21).

3 Experiments
3.1 Experimental Setup and Evaluation Metrics

In this study, we utilized the open-source deep
learning library PyTorch to build neural network
models. All experiments were conducted on a PC
machine with an Intel Core i5-7300HQ @2.50 GHz
CPU processor and 8GB RAM. The neural network
models were designed with default parameters in
PyTorch for initialization, including deterministic
weight initialization. Additionally, a fixed random
seed was set for all experiments.The experiments
involved comparing different filter parameters and
various neural network models. We conducted the
following cases:

(1) Case 1: Comparison based on publicly available
trajectory datasets.

(2) Case 2: Comparison based on GPS trajectory
datasets of vehicles in Beijing.

To evaluate the predictive performance of different
models, four evaluation metrics were used to assess
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their performance comprehensively: Root Mean
Square Error (RMSE), Mean Absolute Error (MAE),
Symmetric Mean Absolute Percentage Error (SMAPE),
and Pearson Correlation Coefficient (R). The four
evaluation indicators have the following meanings:
for (RMSE), (MAE), and (SMAPE), smaller values
indicate higher accuracy of model estimation. On
the contrary, for the evaluation metric (R), the larger
the value, the better the fit between the reference and
estimated trajectory.

3.2 Results and Discussion

3.2.1 Comparison based on public trajectory datasets

In this context, We used a publicly available
trajectory dataset from an online source
(https://github.com/btbuIntelliSense). The simulated
dataset consists of 4200 trajectory paths containing
201 data points. The simulated data range is in
a two-dimensional plane from 0 to 100, and pink
noise signals are added. The proposed estimation
method is compared with traditional KF [4], EM-KF
[8], and process models such as CA [12], CV [13],
Singer [14], Current Statistical [15]. Traditional
Kalman filters are primarily designed for linear
systems, assuming Gaussian models for both system
and measurement noise. The CV and CA models
treat the acceleration of the maneuvering target
and its derivatives as zero-mean Gaussian noise,
while the Singer model considers the maneuvering
target and acceleration as exponentially correlated
zero-mean colored noise. However, assuming zero
mean is not suitable for describing the motion state
of actual maneuvering targets. The current statistical
models assume that the target motion follows a
constant velocity process, and observations are linear
combinations of state variables, enabling effective state
estimation through minimummean square estimation.
On the other hand, the EM-Kalman filter combines the
Expectation-Maximization (EM) algorithm to update
system model parameters and estimate hidden state
variables iteratively. When the underlying system
model is inaccurate or uncertain, the EM-Kalman filter
can outperform traditional Kalman filters, making
it a popular method in practice. By comparing our
proposed estimation method with these widely used
approaches, we aim to demonstrate its superior
performance in tracking highly maneuverable targets.

We compared the trajectory tracking performance of
different filter models, and the results are shown in
Table 1. The proposed models have RMSE, MAE,
SMAPE, and R of 1.71, 1.35, 4.36, and 0.99, respectively.

Compared with the other six models, our proposed
TL-EF model reduced RMSE by 78.2%, 20.9%, 34.9%,
30.9%, 70.4%, and 0.72%, MAE by 66.5%, 10.7%, 12.4%,
11.3%, 60.1%, and 61.1%, and SMAPE by 79.6%, 80.4%,
82.2%, 81.4%, 91.5%, and 57.8%, respectively. From
the index of R, the R value of the proposed model
represents the best fit between the estimated value and
the true value. The analysis of the above experimental
data shows that our proposed model eliminates the
complex manual parameter adjustment process and
outperforms other filter models in estimation accuracy
and result fitting, further proving its applicability in
the field of state estimation.

3.2.2 Based on GPS track data sets in Beijing

We utilize the Geolife Beijing vehicle GPS trajectory
dataset (https://www.gpsvisualizer.com/). Among
these are 13987 GPS seats. In which, 80% was
selected as the training set for the model, while the
remaining 20% was allocated for testing. Figure3
illustrates an instance of trajectory within this dataset.
Neural network models have significant advantages

Figure 3. Examples of GPS track data sets for GeolifeBeijing
vehicles.

in estimation applications, especially when dealing
with complex nonlinear problems and large-scale data.
However, different types of neural network models
exhibit obvious differences in estimation accuracy,
computational efficiency, and model parameters.
Therefore, we applied the TL-EF model to the Beijing
vehicle trajectory dataset and conducted comparative
experiments with five other models, including LSTM
[9], GRU [12], CNN-LSTM [13], ConvLSTM [14],
and PFVAE [15]. For each comparison model, we
set corresponding parameters. Taking GRU as an
example, we used 50 hidden neural units, a learning
rate of 0.0001, 1000 iterations, and a batch size of 30.
It consisted of two network layers, each containing
50 hidden units. For the sliding window strategy of
comparison models, we adopted the same recursive
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Table 1. Estimation Results of Different Filtering Models.

Model Model parameters RMSE MAE SMAPE R

KF 7.88 4.04 11.79 0.97
CA T=0.5 R=400 Qq=100 2.83 1.64 7.13 0.98
CA T=1 R=1600 Qq=200 2.15 1.50 5.98 0.99
CV T=0.5 R=400 Qq=100 3.18 1.62 7.00 0.97
CV T=1 R=1600 Qq=200 2.61 1.53 6.57 0.98

Singer T=0.5 R=400 Qq=100
A=2

3.24 1.64 7.10 0.98

Singer T=1 R=1600 Qq=200
A=1

2.46 1.51 6.29 0.98

Current
Statistical

T=0.2 R=50 a=0.5
xamax=50

5.76 4.30 15.00 0.93

Current
Statistical

T=0.1 R=25 a=0.2
xamax=30

5.74 3.36 13.76 0.93

EM-KF 6.14 3.55 10.28 0.98
TL-EF 1.71 1.35 4.36 0.99

estimation strategy as the filter model. Table 2 presents
the estimation results of the six models used in the
experiments.

Table 2. Evaluation of estimated performance evaluation of
GPS track data for vehicles in Beijing.

Model RMSE MAE SMAPE R

LSTM 3.84 3.97 3.75 0.99
GRU 6.83 5.52 4.29 0.99

CNN-LSTM 5.92 4.47 3.87 0.99
ConvLSTM 5.76 4.69 3.15 0.99
PFVAE 1.82 1.32 0.97 0.99
TL-EF 1.82 1.32 0.97 0.99

In Table2, Compared with LSTM, GRU, CNN-LSTM,
ConvLSTM, and PFVAE models, our proposed TL-EF
model has reduced RMSE by 52.6%, 73.8%, 69.2%,
68.4%, and 27.7%, respectively, and reduced MAE
by 66.7%, 76.1%, 70.5%, 71.8%, and 32.9%. SMAPE
decreased by 74.1%, 77.3%, 74.9%, 69.2%, and
48.9%. In addition, the R index obtained by the
TL-EF model is comparable to that of LSTM, GRU,
CNN-LSTM, ConvLSTM, and PFVAE models. In
Fig 4, we observe scatter plots showing each model
trajectory’s estimated values and true values. The
lines corresponding to these estimates closely align
with the true latitude and longitude values of the
respective scatter points, accurately reflecting the
model’s estimation results. The analysis above
demonstrates that the TL-EF model exhibits high
precision and stability in estimating GPS trajectories,
outperforming traditional and deep learning models.

This effectiveness makes it a valuable tool for
trajectory-tracking applications. The introduction
of this model holds significant importance for state
estimation methods and provides reliable technical
support for further research endeavors.

Figure 4. Comparison of vehicle GPS movement trajectories
in the Beijing area estimated by different models. (a)

Trajectory estimated using TL-EF, (b) Trajectory estimated
using PFVAE, (c) Trajectory estimated using LSTM, (d)
Trajectory estimated using GRU, (e) Trajectory estimated

using CNN-LSTM, (f) Trajectory estimated using
ConvLSTM.

4 Conclusion
State estimation is an important research field,
although widely used, it still faces many challenges.
In practical applications, GPS navigation signals are
prone to signal weakness or complete occlusion, and
it is difficult to model the system when dealing
with highly maneuvering targets or complex systems
containing colored noise. Therefore, there is an
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urgent need to develop novel and effective estimation
algorithms to address this challenge and improve state
estimation accuracy.To address this challenge, this
paper proposes an adaptive Kalman algorithm for
state estimation, which utilizes a learning module
based on Transformer and LSTM. By combining the
Transformer encoder structure with LSTM, a neural
network parameter learning module was designed to
learn measurement data in offline state, in order to
obtain the motion characteristics of the systemwithout
modeling the system dynamics and measurement
characteristics. Subsequently, based on the output of
the neural network parameter learning module, the
EM algorithm is used to obtain model parameters
suitable for estimating the Kalman filter estimation,
and the Kalman filter is used for state estimation.
However, the model still has some limitations, such as
the potential impact on the model’s performance for
measurement data with complex nonlinear noise. In
addition, the computational complexity of this model
is higher than that of traditional Kalman filters, which
limits real-time performance.

Future research can explore using different deep
learning networks or adjust the trade-off between
estimation accuracy and computational complexity
to further improve the practicality of state estimation
systems. By addressing these challenges, we
can open up new possibilities for developing and
deploying advanced state estimation systems in
various applications.
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